

~ 6 ~

International Journal of Engineering in Computer Science 2023; 5(2): 06-12

E-ISSN: 2663-3590

P-ISSN: 2663-3582

IJECS 2023; 5(2): 06-12

Received: 16-05-2023

Accepted: 22-06-2023

Tyler W Thomas

Department of Mathematics

Statistics and Computer

Science, University of

Wisconsin-Stout, Menomonie,

United States

Corresponding Author:

Tyler W Thomas

Department of Mathematics

Statistics and Computer

Science, University of

Wisconsin-Stout, Menomonie,

United States

The intersection of static analysis and security code

reviews: A collaborative model

Tyler W Thomas

DOI: https://doi.org/10.33545/26633582.2023.v5.i2a.93

Abstract
The development of code review methods highlights a growing demand for more robust systems to

detect security vulnerabilities. Despite their benefits, conventional code review techniques including

"Over the shoulder," "Pair programming," and "Email pass around," have shown persistent

effectiveness gaps. Better synchrony between stated review goals and outcomes can be achieved with

advancements in code comprehension among reviewers and facilitating automation in review tasks.

In this paper, I present a design and prototype of an experimental tool that combines static analysis

with security code reviews to boost efficiency. Initiated by static analysis, developers make subsequent

corrections that are later melded into the security review process. Developers, in liaison with security

experts, aim to remedy any potential issues before the code is added to the codebase.

Three pivotal roles are recognized in this tool design - the primary developer, additional developers,

and a security expert, which underscores the need for efficient collaboration. The tool is equipped with

features like immediate messaging, conversation recording, synchronization of warnings and

annotations, and a system to sort issues accordingly. In alliance with the open-source lightweight code

review tool, Gerrit, this tool design could enhance code review productivity and stimulate developers'

acceptance of security code reviews. Future research will be crucial in gauging the impact and efficacy

of such tools in practical implementations.

Keywords: Code review, security, cyber security, code review, static analysis, interactive static analysis

Introduction

As previous work demonstrates, code review is very effective at detecting bugs in code and

can also be used to detect security vulnerabilities in code [5, 2]. However, it has been shown to

be ineffective on its own for detecting security vulnerabilities [7, 6, 4]. Researchers have called

for security code review as a separate process, and in my previous security auditor study [11],

participants reported that this does occur [4]. Various attempts have been made to combine

static analysis and standard code review for the purposes of finding defects in code [9, 3, 8].

Most have been successful at this task, but have not focused on security issues [9, 3, 8].

Previous research has shown that interactive static analysis can help mitigate the problems of

static analysis and make it something developers are more willing to perform [15, 14, 13] and

has also shown that it can help train the developer [15, 14, 13]. However, in previous work on

interactive annotation, I have shown that developers need more assurance that their solution

is correct and do not always know how to resolve vulnerabilities [10]. Code review involving

a security expert in a security code review could provide that assurance and catch incorrect

solutions. Therefore, combining interactive static analysis with security code review may

prove effective.

In this paper, I first discuss key design considerations about the security code review process.

Moreover, I provide details of a tool design from the design considerations. I propose a new

lightweight, tool assisted, security code review process. I finally discuss the security code

review tool I built, an implementation of this tool design.

My previous work has shown an aggregate security auditor workflow model based on the

workflows described by my participants [11]. If security code review fed by interactive static

analysis is to be useful, it must be inserted into existing processes somehow.

It seems most intuitive to place this process after functional testing, independent of audits.

In this new workflow model, developers would conduct interactive static analysis or standard

static analysis, apply remediations, and feed the output into the security code review process.

https://doi.org/10.33545/26633582.2023.v5.i2a.93

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 7 ~

Fig 1: Security auditor workflow model with security code review

They would then communicate with security experts during

security code reviews. Once this is done, they would attempt

to fix issues based on received guidance. Audits would

remain the same as before, with the removal of static

analysis. Ideally audits would be conducted by security

experts as an independent process. However, for

organizations with limited budgets or application security

experts, audits could skip manual code inspection since the

code would have already been inspected in stages. For

organizations with extremely limited budgets, audits could

be removed entirely. The most ideal process, with audits

included, is illustrated in Figure 1.

Design Considerations

In this section, I discuss three categories of design

considerations necessary to my security code review tool

design. These design considerations include roles,

communication and collaboration, and warnings. Moreover,

I discuss why each one is important.

Design Roles

In performing security code review, three roles quickly

become apparent. The first of these roles is that of the

primary developer. The primary developer is considered to

be the developer who wrote the code. This person requests a

security code review and alters the code directly to fix the

vulnerabilities. The second role is that of the reviewer or

alternate developer. Alternate developers work on similar

projects or code as the main developer and serve as peers.

They raise issues or comment on issues raised by the IDE,

as well as questions from the primary developer. Lastly, I

propose that security code review involve at least one

security expert to ensure the security effectiveness of the

code or suggestions raised by the alternative developers.

The security expert fills a similar role to the alternative

developers, but is in a unique position to comment on the

security effectiveness of vulnerability resolutions. Alternate

developers, on the other hand, are likely to possess more

knowledge of software engineering best practices and the

functionality of the underlying project code.

Communication and Collaboration

Security code review should involve much collaboration

between the primary developer, alternate developers, and

security experts. Primary developers have direct knowledge

of the code being reviewed, as they have either written all of

it or a large portion of it. However, they may have very little

security knowledge to accurately address security warnings

from static analysis and spot other security issues in code

that the algorithms may miss. Security experts, on the other

hand, know much about the security vulnerabilities, but are

very unlikely to have much understanding of the current

project code. Alternate developers are likely to have

expertise somewhere between the two. Alternate developers

are likely to have much knowledge of software engineering

best practices and some knowledge of the project. They may

also know alternative software engineering solutions to

problems that the primary developer does not know.

However, it is extremely unlikely that they will have the

security knowledge of a true security expert. They may each

provide different perspectives and different kinds of reviews

and responses in this type of code review.

Warnings

When the primary developer interacts with a static analysis

tool such as ASIDE prior to conducting a code review, they

will be shown many vulnerability warnings. These include

warnings for SQL injection, cross site scripting, CSRF, and

access control vulnerabilities. Contextual help based on the

actual underlying code will be provided when the warnings

are selected. The primary developer will interact with these

warnings and attempt to resolve them. The primary

developer will also perform interactive annotation for

annotation requests. When the code review process occurs,

the alternate developers and the security expert should both

be able to observe the warnings and comment on the

warnings.

Research Questions

Roles

 What are the activities and contributions of people in

each of the three roles in security code review?

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 8 ~

 How can a tool support these roles and activities?

 What are the perceptions of people in different roles of

performing security code review?

 What type of training is required for developers to

effectively perform security code review?

Communication and Collaboration

 How do participants in each role communicate and

collaborate with each other regarding code review

information?

 Which features in a tool are most effective for

collaboration between people in three roles and security

experts?

 How should feedback from other participants be

displayed to users in each role?

Warnings

 How to effectively communicate static analysis

warnings, mitigations, etc to code reviewers?

 How do code reviewers interpret and respond to

different kinds of security warning and vulnerability

information?

 How do code reviewers resolve security vulnerabilities

through code review?

 How effective are they?

 What is the role of security experts in security code

review?

Sec View Prototype

With these design considerations in mind, I have created a

tool prototype to study the security code review process. In

this section, I describe the features of this design. I also

discuss an example implementation of these features.

Additionally, I discuss collaboration through the tool, and I

provide a summary of the tool's research contributions.

Prototype Features

The Sec View prototype extends Gerritt and adds an

embedded web server, embedded application server,

Javascript files, and a database. As a reminder, Gerritt is an

open source light code review tool with a web based

interface [1]. It can intercept commits in route to a git

repository and postpone the commit until a code review has

been completed. These features allow the tool to serve as a

dedicated security code review tool. The tool will leverage

all of the existing features of Gerritt which it uses for

normal code review. However, the annotations, annotation

requests, and warnings are shown to other developers and

security experts as a part of a security code review. Security

experts are then able to login through a web interface and

collaborate on the issues. The interface for the security

experts is designed slightly differently than the interface for

other developers. The tool enables collaboration between

the primary developer, other developers, and the security

experts. The details of this design are based on the results

from my previous security auditor study [11]. The tool design

includes the following features:

 Instant messaging between developers in the IDE and

security experts using the web interface, handled per

warning.

 Log of instant messaging conversations for each

warning.

 Synchronization of annotations and warning

information, made viewable to the security experts and

developers.

 Ability to mark issues as correctly resolved, requiring

modification, or unresolved

 Ability to push final code to repository.

Prototype Roles

When the tool is deployed, users are able to fill any of the

three roles. The primary developer interacts with the tool

through the IDE and initiates a code review. The security

experts interact with the tool by logging in through a web

interface, synced in real time. However, they do not initiate

the code review and will instead receive notices of ongoing

code reviews. The IDE of the primary developer is

synchronized during code reviews. Additionally, other

developers assigned as reviewers are able to log in and

contribute to the code review through a web interface.

Fig 2: A screenshot of the modern lightweight code review tool, Gerrit, showing its web based interface.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 9 ~

Fig 3: A screenshot showing an ASIDE Interactive Static Analysis IDE warning being resolved prior to a security code review

Fig 4: A security expert marking a resolved interactive static analysis warning in a security code review

Fig 5: Security expert interface after a developer-resolved interactive static analysis warning is marked as correctly resolved

Fig 6: Developer view of an interactive static analysis warning marked as correctly resolved by the security expert during a security code

review

Prototype Warning Details
The tool design supports all existing ASIDE warnings.

These warnings represent all of the major categories of web

security threats and include SQL Injection, Cross Site

Scripting, Cross Site Request Forgery, and Access Control

vulnerability warnings. These are presented in the IDE to

the left of the code in the primary developer's interface.

These warnings are also present in the security expert's web

interface. Warnings are presented in the same manner and

style as my ASIDE tool, building on lessons learned from

my numerous studies on interactive static analysis. The

specific warnings present in the web interface are as

follows:

 Red Flag. Presented to the security expert when the

developer has ignored a static analysis warning

 Blue Flag. Presented to the security expert when the

developer has marked a static analysis warning as a

false positive

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 10 ~

 Green Flag. Presented to the security expert when the

developer has attempted to resolve a static analysis

warning

 Red Devil. Presented to developers when a security

expert has marked a warning as “Requires

Modification”

 Yellow Orb. Presented to developers when a security

expert has marked a warning as “Leave Unresolved”

 Green Orb. Presented to developers when a security

expert has marked a warning as “Correctly Resolved"

Security experts and developers may contextually

collaborate on the warnings at any time, regardless of

whether or not the warnings are resolved. Security experts

may also change their judgments of a warning at any time

before the entire code review change has been completed.

Fig 7: Tooltip showing what type of sanitization was applied to a developer-resolved warning which was resolved incorrectly

Fig 8: A security expert marking a developer-resolved warning which was resolved incorrectly

Collaboration

Collaboration is a key part of the tool's design. I have

learned in several studies that developers wanted assurance

as to whether or not their resolutions to vulnerability

Fig 9: Developer interface showing warning marked as requiring modification

warnings and annotations were correct [10, 14, 13, 15]. Studies

have also shown that security experts desire easily available

records of vulnerabilities or issues [12]. The design of this

tool should enable developers and security experts to

communicate easily. It also groups records of this

communication around the vulnerability warnings

themselves. This enables users of the tool to avoid being

overburdened with information which may come about as a

result of single channel instant messaging. The records will

also be retrievable later for the creation of reports.

Additionally, developers and experts have additional buttons

called “ack” and “done.” The quote button is the same as the

reply button, except it also copies the prior response and

quotes it. The “ack” button stands for acknowledge, and is a

one-click reply. The “done” button is also a one click reply,

but says “done” instead of “ack.” Ack can be used to

indicate that a message was received and understood, while

“done" can be used to indicate that a resolution has been

carried out.

Fig 10: Screenshot showing the interface for contextualized warning collaboration

Implementation

Implementation of these features was achieved by the use of

several key pieces of infrastructure. The Eclipse plugin of

the primary developer submits the code to a

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 11 ~

Fig 11: Developer replying to contextualized comment from security expert

git repository running Gerrit when the developer is ready to

request a code review. When this occurs, the Eclipse plugin

also submits HTTP requests containing the state of the

user's annotations, interactions, and warnings. These calls

will be made to a separate web and application server,

which will accept and store the updates. The developer then

logs into the modified Gerritt through a web based interface

and selects a security expert to conduct a security code

review. The source code of Gerritt was modified to include

additional Javascript files and calls to those files. From this

point on, tool-related logic is executed by custom Java script

included within Gerritt. When security experts perform

security code review, they login to Gerrit's web based

interface and begin the reviewing process. When they do so,

the custom Javascript modifies the HTML produced by

Gerrit and shows additional functionality not provided by

Gerritt. This includes warning-contextualized comments,

warnings themselves, and the solutions the primary

developer has chosen. When the security expert interacts

with these additional elements, the integrated web and

application server receives the input and updates its

database. The custom Java script files pull updates from the

web and application servers, using AJAX, and the HTML is

modified to display these updates. When the review is

finished, the final changes are submitted through Gerrit and

the application and web servers maintain the additional

content in their database for later retrieval and display.

Conclusion

Although building a working prototype design and tool was

a significant endeavor, it provides many research

contributions. The most important of these contributions is

the ability to study the security code review process and find

answers to my key research questions. With this tool, it will

be possible to study the interactions of participants in

various roles during code review. It is also possible to

determine which features in a code review tool are useful

for collaboration and how feedback from the security code

review process should be displayed to users in all three

roles. Lastly, the tool itself is a small research contribution,

since other researchers can expand on the tool and use it for

further security code review studies. Companies may also be

able to build a commercial version of the tool and use it in

their own security code review practices.

Acknowledgements

I would like to thank Heather R Lipford for her

contributions to this work. I would also like to thank the

Graduate Assistance in Areas of National Need (GAAN)

Fellowship for its support of this work.

References

1. Gerrit. Introduction; c2023. https://wiki.qt.io/Gerrit

Introduction.

2. Anderson P, Reps T, Teitelbaum T, Zarins M. Tool

support for fine-grained software inspection. Software,

IEEE. 2003;20(4):42-50.

3. Balachandran V. Reducing human effort and improving

quality in peer code reviews using automatic static

analysis and reviewer recommendation. In Proceedings

of the 2013 International Conference on Software

Engineering, ICSE '13, {940, Piscataway, NJ, USA,

IEEE Press; c2013. p. 931.

4. Bosu JC, Carver M, Hafiz P, Hilley, Janni D.

Identifying the characteristics of vulnerable code

changes: An empirical study. In Proceedings of the

22Nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, FSE, New York,

NY, USA, 2014. ACM; c2014. p. 257-268.

5. Fagan ME. Design and code inspections to reduce

errors in program development. IBM Syst. J.

1999;38(2-3):258-287.

6. McIntosh S, Kamei Y, Adams B, Hassan AE. The

impact of code review coverage and code review

participation on software quality: A case study of the qt,

vtk, and itk projects. In Proceedings of the 11th

Working Conference on Mining Software Repositories,

MSR, New York, NY, USA. ACM; c2014. p. 192-201.

7. Meneely ACR, Tejeda B, Spates S, Trudeau D,

Neuberger K, Whitlock C, et al. An empirical

investigation of socio-technical code review metrics

and security vulnerabilities. In Proceedings of the 6th

International Workshop on Social Software

Engineering, SSE, New York, NY, USA, ACM; c2014.

p. 37-44.

8. Panichella S, Arnaoudova V, Di Penta M, Antoniol G.

Would static analysis tools help developers with code

reviews? In Software Analysis, Evolution and

Reengineering (SANER), 2015 IEEE 22nd

International Conference on; c2015. p. 161-170.

9. Sadowski C, van Gogh J, Jaspan C, Soderberg E,

Winter C. Tricorder: Building a program analysis

ecosystem. In Proceedings of the 37th International

Conference on Software Engineering - ICSE '15,

Piscataway, NJ, USA, IEEE Press. 2015;1:598-608.

10. Thomas T, Chu B, Lipford H, Smith J, Murphy-Hill E.

A study of interactive code annotation for access

control vulnerabilities. In Proceedings of the 2015 IEEE

Symposium on Visual Languages and Human-Centric

Computing, VLHCC '15, Washington, DC, USA, IEEE

Computer Society; c2015.

11. Thomas TW, Tabassum M, Chu B, Lipford H. Security

during application development: An application

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 12 ~

security expert perspective. In Proceedings of the 2018

CHI Conference on Human Factors in Computing

Systems, CHI '18, Montreal QC Canada, ACM; c2018.

p. 262:1-262:12.

12. Werlinger R, Hawkey K, Beznosov K. Security

practitioners in context: Their activities and

interactions. In CHI '08 Extended Abstracts on Human

Factors in Computing Systems, CHI EA '08, New York,

NY, USA, ACM; c2008. p. 3789-3794.

13. Xie J, Chu B, Lipford HR, Melton JT. Aside: Ide

support for web application security. In Proceedings of

the 27th Annual Computer Security Applications

Conference, ACSAC '11, pages 267{276, New York,

NY, USA, ACM; c2011.

14. Xie J, Lipford H, Chu BT. Evaluating interactive

support for secure programming. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, CHI '12, New York, NY, USA, ACM; c2012.

p. 2707-2716.

15. Zhu J, Xie J, Lipford HR, Chu B. Supporting secure

programming in web applications through interactive

static analysis. Journal of Advanced Research.

2014;5(4):449-462.

https://www.computersciencejournals.com/ijecs

