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Abstract 
Additional-extensive graphical and numerical results for BED model (Biological Effective Dose) in 
Head and Neck tumors hyper fractionation TPO optimized with Pareto-Multiobjective (PMO) Genetic 
Algorithms (GA) software are presented. The mathematical GA is applied for two series of Pareto 
Functions. Artificial Intelligence (AI) with GA is applied on Radiotherapy Treatment Planning 
Optimization (TPO) is explained in brief. Series of findings comprise PMO imaging process sequences 
and numerical values of PMO Head and Neck cancer parameters. Further solutions prove PMO-GA 
BED model both with Pareto-Optimal Front detailed graphics, charts and numerical dose fractionation 
datasets. Improved and advanced RT Head and Neck cancer TPO, and tumors in general for Fractional-
dose photon dose delivery are explained. 
 
Keywords: Pareto-Multiobjective Optimization (PMO), Mathematical Methods (MM), Biological 
Models (BM), Radiation Therapy (RT), etc. 
 
Introduction 
In a recent study, Artificial Intelligence with Genetic Algorithms was applied on 
radiotherapy BED model for Head and Neck tumors [87, 88]. The objective of this research is 
further extend, explain, apply, and detail those previous results [87, 88].  
For these objectives, Nonlinear GA-PMO engineering software was improved and designed 
in a number of programs for PMO-BED models, Figures 1-5, Tables 3-4. In [87, 88], a second 
model for N Effective (Effective Tumor Population Clonogens Number) was optimized with 3D 
Graphical optimization programs and imaging processing techniques [75, 85-88]. 
Therefore, innovation of this article is the extension and detail of previous results for easy 
learning and results confirmation. Thorough GA findings are presented both in 2D graphics 
and dataset. Numerical results and applications to improve head and neck tumor RT 
treatment are detailed in Tables 5-6.  
Head and neck cancer pathology have very specific oncological, epidemiological, 
pathogenesis, and radiobiological characteristics [75-79, 83-88]. Additionally, those tumors are 
classified rationally in those strands because of a number of common anatomical-
pathological characteristics. Namely, their onco-pathogenesis shows two main origins, 
external, which is the most important, and the internal.  
The external media intake/contact from a group of substances have significant pathogenesis 
factors in the oncological origin of these cancers. These intakes could be toxic substances or 
biological ones, such as virus or bacteria. Among virus, for example, the Espstein-Barr one is 
linked to nasopharyngeal carcinoma pathogenesis, and Papillomavirus to Tonsillar 
carcinomas. That is, the head, thorax cavity and neck anatomical zones catch from air many 
of them from exterior media into the mouth nose, and lungs. Therefore tobacco influence is 
epidemiologically-statistically high. The oral cavity can accumulate tobacco and alcohol as 
oncogenetical factors. The high-temperature drinks that can damage the interior mucose of 
mouth and esophagus can also create oncological conditions/predisposition in these 
structures. The lungs could also take in materials that cause mesothelioma. Specific 
processed substances contained in food could cause oncogenesis phenomena in oral cavity, 
esophagus and stomach. External radiation sources show an important influence for thyroid 
cancer origin [83, 84]. Electromagnetic radiation constant and daily magnitude may have 
epidemiological influence in specific brain cancer tumors pathogenesis. 
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As an example of internal pathogenesis, the lymphomas, 
methastases from other regions, or neural-spinal cancers 
located on brain, neck and thorax constitute an important 
group. 
Succintly, an extension of previous Nonlinear Pareto-
Multiobjective GA optimization was performed for 
radiotherapy BED models in head and neck tumors [87, 88]. 
Applications for radiotherapy TPO and future improvements 
in RT are also presented.  
 
Mathematical and Software Engineering Methods 
Pareto-Multiobjective Optimization basic BED Effective model 
was set in software, [24]. Parameters intervals are detailed in 
Algorithm 1 [85-88]. Two different PMO optimization 
programming series are presented with different parameter 
intervals magnitudes, Tables 1-2. This BED model 
constitutes the fundamentals for fractionate radiotherapy, 
although there are variations among authors [20-25]. 
Formulation is based on previous studies computational 
software [1-21, 85-88]. The algorithm that was set, with 
Chebyshev L1 norm, [Algorithm 1], reads. 
 

 (1) 
 
Where 
K. Dose fraction number for hyper fractionated. 
RT protocol. [20-25]. 
Software pattern set [35, 45] Fractions.  
D: Dose fraction for hyper fractionated 
RT protocol [20-25]. 
Software pattern set [1, 2.2 II Gy. 
A: Clonogen Head and Neck tumor 
Radio sensitivity parameter [0.19, 0.61]. [20-25].  
B: Clonogen Head and Neck tumor 

Radio sensitivity parameter [0.0581]. [20-25].  
T Treatment: Total time for radiation dose delivered. Software 
pattern set [22, 55] days [20-25].  
T Delay: Total standard repopulation delays for RT. Software 
set [21] days. [20-25]. 
T Potential: Total standard Head and Neck cancer potential 
repopulation factor. 
Software pattern set [3.5, 4.5] days [20-25].  
 
Algorithm 1 [Casesnoves, 2022]. Head and Neck PMO 
algorithm [1-21, 85-88] implemented in software. The intervals 
for optimization parameters in software are detailed. It is an 
improvement from a series of previous research in 
radiotherapy. 
Bio models equations depend on several parameters 
experimentally determined. Some of them, specific for 
every type of cancer are N0 and N Effective clonogens rates. 
Resulting Survival Rate, NS is determined usually by 
exponential functions, statistical distributions [Binomial or 
Poisson], and two radiosensitivity key parameters. Namely, 
[α and β biological modelling parameters], whose 
magnitudes intervals can be experimentally calculated by in 
vitro or in vivo experimental. An Integral Equation Model 
(IEM) for TCCP, based on new Linear Quadratic Model and 
Statistical Binomial Distribution approximation was 
published in recent contributions [20, 75, 85-88]. Dataset and 
approximation intervals for head and neck cancer 
implemented into Equation1 model is shown in Tables 1-2, 
[20-25, 75, 85-88]. 
The programming method(s) applied for this research are 
based in a number of previous papers [1-20, 74]. For Genetic 
Algorithm PMO and N Effective modeling Equation1 
implementation on 2D/3D programs. Tables 1-2 show the 
2D GA programming method variations to obtain acceptable 
better calculations, and 2D Graphical Optimization 
processing images, error determinations, and get applied 
exactly the PMO-BED model. All those figures are 
implemented in Equation 1 formula for software.
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Table 1: First GA optimization dataset. The simulations were done with approximate numerical-experimental data from several authors. T 
Potential in head and neck cancer is about 4 days as average. Simulation dataset from [20-25, 74, 75, 80, 81, 85-88]. 

 

 
 

Table 2: The second simulations were done with approximate numerical-experimental data from several authors. T Potential is taken [3.5, 4.5] days.
 

 
 

Table 2: The second simulations were done with approximate numerical-experimental data from several authors. T Potential is taken [3.5, 4.5] days
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Results 
Figures 1-5 show PMO results. Tables 3-4 present details of 
both numerical PMO optimization results. The most 
important to validate the results are those ones that show the 
Pareto Front. Average distance among generation 
individuals, stopping criteria, are also important. The other 
details are complementary and shown in additional 2D 
charts for first and second PMO optimization. Maximum 
number of generations selected was 300-800. Score 
histograms also prove the validity of the software and PMO 
done. Running time for both processes is about 2-4 minutes. 

Numerical results, Tables 3-4, resume for PMO in BED 
model. Dose fraction magnitude should be less than 2 Gy 
approximately [19-21, 75, 85-88]. 
 
PMO-GA Imaging Processing First Optimization 
Results 
First optimization results are shown in Figures 1-2, Table 1. 
Pareto function 2 results are more accurate than Pareto 
function 1. Every chart of Artificial Intelligence GA is 
detailed with further explanations. 

 

 
 

Fig 1: First optimization Multifunctional GA 2D graph. This is the most important graph given by software when PMO is performed to 
check the optimization accuracy. The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions charts. In this 

study both f 1 and f 2 show low residuals. 
 
Therefore, results are acceptable in first optimization for 
function 1 and function 2. The number of points on the 

Pareto front was: 18. The number of generations was: 300. 
Enhanced in Appendix. 

 

 
 

Fig 2: First optimization Multifunctional GA 2D graph. This is the complementary multifunctional graph given by software when PMO is 
performed to check the optimization accuracy. The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions 

charts. In this study both f 1 and f 2 show low residuals. Therefore, results are acceptable in first optimization for function 1 and function 2. 
The number of points on the Pareto front was: 18. The number of generations was: 300.
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PMO-GA Imaging Processing Second Optimization 
Results 
Second optimization results are shown in Figures 4-6, Table 

2. Pareto function 2 results be more accurate than Pareto 
function 1. Every chart of Artificial Intelligence GA is 
detailed with further explanations. 

 

 
 

Fig 3: Second simulation. Multifunctional GA 2D graph. This is the most important graph given by software when PMO is performed to 
check the optimization accuracy. The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions charts. In this 
study both f 1 and f 2 show low residuals. Therefore, results are acceptable. The number of points on the Pareto front was: 18. The number 

of generations was: 300. 
 

 
 

Fig 4: This is the most important graph given by software when PMO is performed to check the optimization accuracy. The fundamentals of 
Nonlinear PMO calculations are usually based on 2D PMO functions charts. In this study both f1 and f2 show low residuals. Objective 2 is 
more accomplished. Therefore, results are acceptable. The number of points on the Pareto front was: 18. The number of generations was: 

300. Enhanced in Appendix. 
 

 
 

Fig 5: This is important complementary graph given by software when PMO is performed to check the optimization accuracy. Average 
Distances is an significant parameter. The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions charts. In 
this study both f 1 and f 2 show low average distances, less than 2. Therefore, results are acceptable. The number of points on the Pareto 

front was: 18. The number of generations was: 300. 
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PMO-GA Numerical Results 
Examples of Numerical results resume for PMO in BED 
model are detailed in n Tables 3-4. Chebyshev norms were 
set for [55, 65] Gy interval. Dose fraction magnitude should be 

less than 2 Gy approximately. Numerical Results for model 
are developed and reviewed from the innovation from [20, 21, 

75, 85-88].  

 
Table 3: First simulation. Brief of PMO Artificial Intelligence with GA optimization numerical results in Head and Neck tumors for 

advanced TPO. Enhanced in Appendix. 
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Table 4: Second simulation. Brief of PMO Artificial Intelligence with GA optimization numerical results in Head and Neck tumors for 
advanced TPO. These numerical results are an example, the dataset got is much bigger 

 

 
 

Head and neck cancer radiotherapy physics applications 
Table 5 presents brief of RT TPO methods and subsequent 
positive effects in patient cure and post-radiation life, head 
and neck tumors in BED modeling. Table 6 shows a resume 
of radiotherapy applications in head and neck tumors. 

Medical physics principal applications for radiotherapy TPO 
are explained briefly. Those prospective according to N 
Effective model applications are useful for radiotherapy 
research/applications on head and neck tumors and other 
types of cancer.
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Table 5: Brief of RT TPO methods and subsequent positive effects in patient cure and post-radiation life. Those are justified also for the 
rise of head and neck tumor survival time and complete cure got by modern RT, IMRT, IMPT, Chemo and Immunotherapy advances. 

Enhanced in Appendix 
 

 
 

Table 6: Some radiotherapy and radioprotection for RT head and neck cancer TPO Medical Physics study applications derived from results. 
 

 
 
Discussion and Conclusions 
The objectives of the study were further and extensive 
results explanations from [87, 88]. Artificial intelligence with 
GA Pareto-Multiobjective method for head and neck tumors 

BED model was comprehensively developed.  
The PMO-BED model results can be considered illustrative, 
Figures 1-5, Tables 3-4. Simulations were presented as 
objective of the research, computationally designed for head 
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and neck tumors [82-88]. It was intended to set in software 
precise experimental constants [22, 81-88]. Therefore, 3D 
simulations could offer a realistic graphical and numerical 
dataset this type of cancers. Two different simulations with 
different constraints are shown and proven. 
Advantages of this AI-GA model are the precision/ 
adaptability of the method. Inconvenient for the PMO-BED 
model are the rather longer running time compared to 
Inverse Least Squares optimization methods, 2-4 minutes.  
Grosso modo, Pareto Multiobjective model was got applied 
for optimization of radiotherapy BED algorithm. The 
practical radiotherapy physics significance is an improved 
radiation therapy treatment for head and neck RT medical 
physics computational planning.  
 
Scientific Ethics Standards 
This article shows additional results that complement 
previous studies and contributions, recently [87-88]. All the 
images are new/improved and numerical results from former 
publications are extended and detailed. GA Artificial 
intelligence software was developed originally by Dr 
Casesnoves on September 2022. All initial modelling 
equations were developed from previous researcher’s 
contributions [20-25, 87-88]. The NS initial formulation and 
integral Tumor Control Cumulative Probability, (TCCP), 
were published in [20-25]. From those equations, all the 
mathematical development implementation is original from 
the author [1-21, 75]. This article has previous papers 
mathematical techniques, reviews with explanations, [1-21, 75], 
who’s use was essential to make model numerical solutions 
and approximations. Equation 1 and N Effective model are 
developed and reviewed from [20, 21, 75, 85, 86-88], essential for 
study understanding. Some information of [20, 21, 75, 86-88] was 
presented for results clarification, e. g., Table 2. Tables 5-6 
from [87, 88] were presented for results and applications 
further explaining. The number of Dr Casesnoves 
publications at references is intended also for reader’s 
learning. This study was carried out, and their contents are 
done according to the European Union Technology and 
Science Ethics and International Scientific Ethics norms [38, 

43-45]. This research was completely done by the author, the 
calculations, images, mathematical propositions and 
statements, reference citations, and text is original from the 
author. When a mathematical statement, proposition or 
theorem is presented, demonstration is always included. If 
any results inconsistency is found after publication, it is 
clarified in subsequent contributions. When a citation such 
as [Casesnoves, ‘year’] appears, there is not vanity or 
intention to brag. The reason is to keep clearly the 
intellectual property. The article is exclusively scientific, 
without any commercial, institutional, academic, religious, 
religious-similar, non-scientific theories, personal opinions, 
friends and/or relatives favours, political ideas, or 
economical influences. When anything is taken from a 
source, it is adequately recognized. Ideas and some text 
expressions/sentences from previous publications were 
emphasized due to a clarification aim [38, 43-45]. 
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Appendix 
 

 
 

Fig 1: [Enhanced]-First optimization Multifunctional GA 2D graph. This is the most important graph given by software when PMO is 
performed to check the optimization accuracy. The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions 

charts. In this study both F1 and F2 show low residuals. Therefore, results are acceptable in first optimization for function 1 and function 2. 
The number of points on the Pareto front was: 18. The number of generations was: 300. 

 

 
 

Fig 2: [Enhanced]-This is the most important graph given by software when PMO is performed to check the optimization accuracy. The 
fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions charts. In this study both F1 and F2 show low 
residuals. Objective 2 is more accomplished. Therefore, results are acceptable. The number of points on the Pareto front was: 18. The 

number of generations was: 300. 
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Table 1: [Enhanced]-First simulation. Brief of PMO Artificial Intelligence with GA optimization numerical results in Head and Neck 
tumors for advanced TPO. 
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