
~ 31 ~

International Journal of Engineering in Computer Science 2021; 3(1): 31-34

E-ISSN: 2663-3590

P-ISSN: 2663-3582

www.computersciencejournals.

com/ijecs

IJECS 202; 3(1): 31-34

Received: 11-03-2021

Accepted: 02-04-2021

Farah Ali Tahseen

Department of Computer

Engineering, College of

Engineering, University of

Mosul, Iraq

Salah Abdulghani Alabady

Department of Computer

Engineering, College of

Engineering, University of

Mosul, Iraq

Sukaina Shukur Alhajji

Department of Computer

Engineering, College of

Engineering, University of

Mosul, Iraq

Corresponding Author:

Salah Abdulghani Alabady

Department of Computer

Engineering, College of

Engineering, University of

Mosul, Iraq

Error detection and correction implementation for

computer networks using Arduino

Farah Ali Tahseen, Salah Abdulghani Alabady and Sukaina Shukur Alhajji

DOI: https://doi.org/10.33545/26633582.2021.v3.i1a.44

Abstract
Error detection and correction, in particular in high-data-rate and high-reliability wireless network

applications, has received significant concentration. Error detection and correction are techniques that

enable secure transmission of digital data through unreliable communications networks in the

information and coding theory. The use of error detection and correction techniques leads to an

increase in the performance of the network by reducing the end-to-end delay, reducing the bit error

rate, and thus increasing the throughput. Since OSI and TCP/IP models have no bits corrections

operation, and the only error detection operation is performed in the data link layer and the transport

layer using Cyclic Redundancy Check (CRC). We suggest adding a sub-layer between the physical

layer and the data link layer responsible for detecting and correcting errors in this paper. The hardware

design of the proposed sub-layer using the Hamming code is implemented using Arduino. As a result,

without having to demand retransmission from the sender, we will have a network device that can

detect and correct a bit of error in the frames.

Keywords: Wireless networks, error correction, error detection, forward error correction, hamming

code, Arduino, system on chip (SoC)

Introduction

Generally, any real wireless system is riddled by errors in data transmission from time to

time and from several various sources such as channel fading, interference, random noise,

etc. Without the use of error control methods, accurate data transfers will be impossible. The

Forward Error Correction (FEC) can detect and correct the errors, thus it is possible to avoid

data retransmission [1].

The common feature about the communication channel is that the data is passed through the

channel from the source to the recipient. The channel may be crowded in the event that

whatever it received may not be the same as what has already been sent. Consequently, if

binary data is sent through the channel when 0 is sent, it is received hopefully as 0, but often

it is received as 1 (or as unacknowledged). The basic issue with coding theory is deciding

which message has been sent based on what has been received [2]. The error detection and

correction codes must have little complexity and smaller memory. A serious challenge in the

Internet of Things (IoT) and Wireless Sensor Networks (WSNs) is energy-saving and energy

usage. Avoiding or decreasing the amount of sending the error packets is really important.

One of the strategies that used to decrease energy consumption is utilizing forward error-

correcting methods like hamming code.

Over the past decade, several error detection and correction code schemes such as (Reed-

Solomon code, Turbo codes, Bose-Chaudhuri-Hochquenghe (BCH) code, and low-density

parity-check (LDPC) codes) were researched to ensure the robustness of the wireless

networks, in addition to fulfilling the reliability of the data in a high data rate network. Every

one of the developed codes does have its own advantage to be used as the channel coding

scheme in a communication network [3].

The remaining part of the paper is coordinated as follows: the related work is given in

section II. Hardware implementation is presented in section III. Section IV discusses the

results. Eventually, section V concludes the paper.

Related work

The important role of error detection and correction has led researchers to develop a large

http://www.computersciencejournals.com/ijecs
http://www.computersciencejournals.com/ijecs
https://doi.org/10.33545/26633582.2021.v3.i1a.44

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 32 ~

number of techniques in different areas. Sindhuaja
Muppalla, and et al. present a novel Very Large Scale
Integration (VLSI) implementation of Universal
Asynchronous Receiver Transmitter (UART) designed to
involve (8, 4) expanded hamming code known as Single
Error Correcting Double Error Detecting (SEC-DED) code
which can detect two errors and correct only one error. This
design can increase the system's noise immunity to
maximize data reception without errors. The entire
architecture is implemented in the Xilinx ISE 12.3 simulator
designed for the Xilinx Spartan 6 FPGA [4].
The authors in [5] proposed a code for error detection and
error correction known as hamming code. This code can
reveal errors in the same way that conventional codes do
while also correcting them. The architecture of the hamming
code and its process are described in [5]. The synthesis is
performed employing Xilinx ISE 14.7i, then the simulation
is performed using Questasim and the VERILOG language
is used to develop HDL. Mohammed Abdul Kader, and et
al. built up a wireless data acquisition scheme that can
gather data using error detection and correction code from a
wireless sensor array. The system transmitting gathers
information from different sensors and sends it using linear
block code. The receiving device is given the code word
passed through the sender circuit, the error tested, and the
error bits corrected if an error occurs and the data is
decoded. Finally, the data is stored on the SD card. The
system is being checked for data gathering from the sensor
array [6].
Carry-Select Adder (CSA) and Pre-Computed Carry-Select
Adder (PCSA) error detection modules were presented by
Karthik Kumar and P Sathish Kumar with enhanced delay.
These modules improve the overall system performance by
decreasing the propagation delay. The characteristics of the
suggested approach are integrated into the specification for
detecting and correcting the stuck-at-faults and transient.
The performance of the system is verified using Verilog
HDL. The suggested architectures are implemented and
synthesized in CADENCE [45 nm technology] for
Application Specific Integrated Circuit (ASIC) and Field
Programmable Gate Array FPGA (Virtex-6 family) [7].
N Karostiani and A B Pantjawati in [8] designing a (7, 4)
Hamming code encoder trainer. The trainer was developed
with various matrix generators to create code words in the
channel encoder. The trainer is represented in two different
stages: the manufacturing stage of hardware and Proteus 8
Professional stage of simulation. The Arduino Mega 2560 is
utilized to design the trainer. A similar study was carried out
with a Very High integrated circuit hardware Description
Language (VHDL) in [9].
This paper is concerned with attaching a sub-layer between
the physical layer and the data link layer in order to make a
network device capable of detecting and correcting a bit of
error in the frames.

Hardware implementation
Generally, the OSI and TCP/IP models lack error correction
mechanisms as they can only detect errors that occur in the
data link, the network, and the transport layers as explained
in Figure (1). So, when an error is detected, the data must be
transmitted again. In order to address this problem, we
proposed a System on Chip (SoC) device that could detect
and correct an error at the same time by adding a sub-layer
between the physical layer and the data link layer to detect
and correct an error known as Error Detection and
Correction (EDC) sub- layer as shown in the Figure (2).

Fig 1: Presence of error detection mechanisms in OSI and TCP/IP

models

Fig 2: The error detection and correction (EDC) sub-layer

The error detection and correction (EDC) sub-layer is

implemented by applying hamming code (4, 7) to Arduino.

In order to build the system on a chip device, the following

hardware components are required:

 Breadboard.

 Arduino Atmega or Uno.

 LEDs.

 Resisters 330 Ω.

 Dip switch 4 pins to generate the message.

 Dip switch 7 pins to add noise.

 Jumper wires.

 Arduino Integrated Development Environment (IDE)

program.

The hamming code equations used are

Encoded message

C = M.G (1)

Message received with noise

Physical

Application

Transport

Session

Presentation

Network

Data link

Error Detection and

Correction (EDC)

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 33 ~

R = C + E (2)

Syndrome vector to detect the error in message

S𝑦𝑛 = R. HT (3)

Correct the error

𝐶𝑐 = R + 𝐸𝑃 (4)

Decoded the message transmitted

M = AND (1111000, 𝐶𝑐) (5)

Where

M: Message.

G: Hamming code matrix (for encoding).

E: error (noise).

H: Parity Check Matrix Hamming code (for decoding).

EP: error pattern.

G=

[

𝟏 𝟎 𝟎 𝟎 𝟏 𝟏 𝟎
𝟎 𝟏 𝟎 𝟎 𝟎 𝟏 𝟏
𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏
𝟎 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏

]

H=[

𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎
𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎
𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏

]

The hardware components are connected as shown in Figure

(3).

Fig 3: The hardware implementation

Results and Discussion
Three different scenarios have been taken to ensure that the
designed system on the chip operates accurately and
correctly. Since the message consists of four bits, there are
sixteen possibilities for the data message. Table (1) shows
the sixteen probabilities of the data message and the values
of the encoded messages (C). While the possibilities for
error (error pattern) and Syndrome vector (Syn) values are
shown in Table (2).

Table 1: Message and C value

No Message C = M.G

0 0000 0000000

1 1000 1000101

2 0100 0100111

3 1100 1100010

4 0010 0010110

5 1010 1010011

6 0110 0110001

7 1110 1110100

8 0001 0001011

9 1001 1001110

10 0101 0101100

11 1101 1101001

12 0011 0011101

13 1011 1011000

14 0111 0111010

15 1111 1111111

Table 2: Error and SYN value

Number Ep SYN
0 0000000 000

1 1000000 100

2 0100000 010

3 0010000 001

4 0001000 110

5 0000100 011

6 0000010 111

7 0000001 101

First scenario

In this scenario, the message generated by the dip switch

was (1000), as shown in Figure (4). The message was

encoded using the hamming code to generate the encoded

message C (1000101). We were supposed to send a message

without any error, so the error dip switch was set (0000000).

At the receiver side, we noticed that the received message

(1000101) was the same as the transmitted message and the

Syn indicator was (000) which means that there was no error

and the received data was correct.

Fig 4: Data message 1000 with no error (First scenario)

Second scenario
In this scenario, the generated message was (1001), so the

encoded message is C (1001110). We're supposed to have

an error in the sixth bit so we set the Ep to (0000010). On

the receiver side, we noticed that the received message

(1101110) was not the same as the transmitted message and

the Syn indicator was (111), which means that there was an

error in the sixth bit as shown in Table (2) and the received

data was incorrect. Thus, in order to correct the data, the

designed chip corrected the error using Equation (5) to

obtain the correct data (1001110) as shown in Figure (5).

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 34 ~

Third scenario

The generated message was (0010) in this scenario, so the

encoded message is C (0010110). We're supposed to have

an error in the fifth bit so we set the Ep to (0000100). On the

receiver side, we noticed that the received message

(0000110) was not the same as the transmitted message and

the Syn indicator was (011), which means that there was an

error in the fifth bit as shown in Table (2) and the received

data was incorrect. Thus, in order to correct the data, the

designed chip corrected the error using Equation (5) to

obtain the correct data (0010110) as shown in Figure (6).

Fig 5: Data message 1001 with error in the sixth bit (Second scenario)

Fig 6: Data message 0010 with error in the fifth bit (Third scenario)

Table (3) summarized the three different scenarios

Table 3: Results summary

Scenarios No Message Syn Ep C = M.G R = C + Ep 𝑪𝒄 = R + Ep

1st 8 1000 000 0000000 1000101 1000101 1000101

2nd 9 1001 111 0000010 1001110 1001100 1001110

3rd 2 0010 011 0000100 0010110 0000110 0010110

Conclusion

The importance of transmitting data without error or with

corrected errors without the need to retransmit incorrect data

to energy-saving, reducing delays, increasing throughput,

and improving network performance led to propose many

error detection and correction mechanisms. The main issue

with which the OSI and TCP/IP models have suffered is that

there are no error correction techniques; they only have

error detection techniques. To solve this problem, we

designed a system on chip (SoC) device by adding an error

detection and correction (EDC) sub-layer between the

physical layer and the data link layer capable of detecting

the error and correcting it. The device has been

implemented using Arduino Atmega. The device was

verified using different scenarios and the results showed the

accuracy of the proposed device.

References

1. Salbiyono A, Adiono T. LDPC decoder performance

under different number of iterations in mobile WiMax,

presented at the International Symposium on Intelligent

Signal Processing and Communication Systems

(ISPACS) 2010, P1-6.

2. Moon TK. Error correction coding, Wiley Online

Library 2005.

3. Alabady SA, Al-Turjman F. Low Complexity Parity

Check Code for Futuristic Wireless Networks

Applications, IEEE Access 2018;6:18398-18407.

4. Muppalla S, Vaddempudi KR. A Novel VHDL

Implementation of UART with Single Error Correction

and Double Error Detection Capability, In 2015

International Conference on Signal Processing and

Communication Engineering Systems, IEEE 2015,

P152-156.

5. Raghavaiah B, Omprakash. Implementation of

Hamming coding in Residue Number System, In 2018

International Conference on Current Trends towards

Converging Technologies (ICCTCT), IEEE 2018, P1-5.

6. Kader MA, Uddin MM, Rahaman MA, Islam N, Razak

MA. Data Transmission via Wireless Channel to Store

in a Remote Device Employing Error Detection and

Correction Code, In 2019 International Conference on

Sustainable Technologies for Industry 4.0 (STI), IEEE

2019, P1-6.

7. Kumar AK, Kumar PS. High Speed Error-Detection

and Correction Architectures for Viterbi Algorithm

Implementation, In 2019 3rd International Conference

on Electronics, Materials Engineering & Nano-

Technology (IEMENTech), IEEE 2019, P1-6.

8. Karostiani N, Pantjawati AB. Design and Realization of

(7, 4) Hamming Code Channel Encoder Trainer Using

Arduino Mega 2560, In IOP Conference Series:

Materials Science and Engineering 2020;850(1):12033-

12042.

9. Sani US, Shahono IH. Design of (7, 4) Hamming

Encoder and Decoder Using VHDL 1st International

Engineering Conference 2015, P103–106.

https://www.computersciencejournals.com/ijecs

