
~ 1 ~

International Journal of Engineering in Computer Science 2021; 3(1): 01-07

E-ISSN: 2663-3590

P-ISSN: 2663-3582

IJECS 2021; 3(1): 01-07

Received: 01-11-2020

Accepted: 03-12-2020

Adegbenjo A

Department of Computer

Science & Information

Technology, Babcock

University, Ilishan-Remo,

Ogun State, Nigeria

Adekunle Y

Department of Computer

Science & Information

Technology, Babcock

University, Ilishan-Remo,

Ogun State, Nigeria

Correspondence

Adegbenjo A

Department of Computer

Science & Information

Technology, Babcock

University, Ilishan-Remo,

Ogun State, Nigeria

Performance analysis of real-time operating system

(RTOS) on information models

Adegbenjo A and Adekunle Y

DOI: https://doi.org/10.33545/26633582.2021.v3.i1a.39

Abstract
The design of the real-time operating system (RTOS) is quite critical, particularly if we Any unique
systems choose to use it. Many inquiries have acknowledged traditional RTOS as is the customary
solution to the construction of children's toys. Since they are capable of Facilitating the application of
multiple requirements, including clustering, cohesion and substitute programmes. Many publications
were reviewed in this paper to track the efficiency of the RTOS Various restrictions as it is exposed to.
The research concentrates on a play analysis of RTOS Models for research on different computer
devices and operating systems. The magazines We also gathered it for a rigorous analysis leading to the
setup. Many variables that impact device features. Statistics and findings are equally relevant to
Encourage the implementation of a more oriented RTOS strategy. During this phase The software
classifies clustering and performance for all applications as the highest RTOS standards, This was
viewed as the least significant by alternative programs. Thus, the preference of parameters is a major
problem to contend with.

Keywords: operating system (OS), play model, real-time, RTOS, performance; criteria for RTOS

1. Introduction
In 2015, a book was released on the implementation of an OS evaluation method with a
broad variety of relevant topics covering the OS interface, processes and facilities (Watson,
2018) [30]. Momeni et al. (2019) provided an analysis of OSs' commonly observed anomalies
and recommendations for OS-level self-management techniques. To build a consistent OS
for multimedia files and apps, Romman (2019) investigated to equate this data with three of
its current collaborators. However, one of its implementations was never released to our
knowledge, at least, a thorough analysis of the real-time operating system (RTOs) of
children's play models. Due to this, witnessing past and ongoing research findings on
optimum operating systems for play models has become important. The objective of this
paper is to analyze the compromises between certain factors which influence the operating
system's functionality. Because this analysis aims to closely analyze the probability of
discovering an effective childcare scheme, it will pave the path to creating efficient and
sophisticated RTOS.

2. Literature Review

An OS is important in every technological arena since it helps users to view records and files

and manages the work of the other programs in the framework. Such well-known OSs like

Mac OS, Unix, Windows and Linux, both of which have been checked and accredited in all

aspects of their functionality depending on different factors. Therefore, it is important to

retain acute alertness when deciding on a supplementary technological utility resource,

which is focused in turn on many factors compiled with the current market conditions. If the

solution has been established to choose the right criterion, it is simpler to judge if the

operating systems used in child toys offer inevitable assistance as stated. Many strategies

were devised and eventually classified in general in hardware, applications, interface,

protection and virtualization for the selection of an Iso.

An OS that can process data as input without substantial buffer delays supports an RTOS

program in real-time. Examples of RTOS include OS for scientific equipment, mechanical

control systems and industrial control systems. The time limit for approving a submission

and processing is the variability in the amount of time needed by the OS. A low jitter RTOS

is considered a hard RTOS and a strong jitter RTOS is considered a heavy RTOS.

https://doi.org/10.33545/26633582.2021.v3.i1a.39

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 2 ~

There is also a range of main possible properties of OS that

in addition to processing data and jitter:

1. Durability and stability: the chance that the OS would

not crash or malfunction.

2. Scalability: This is the OS' ability to increase efficiency

with the inclusion of additional resources.

3. Availability: This is the possibility that the OS

processes programs actively, and does not crash or

upgrade.

4. Usability: this is the level of which the OS has been

shown on the market.

5. Security: this is to the point that the OS is unable to

strike externally.

6. Clustering and portability: this is the ability of the OS

to transfer and/or spread device cluster activities.

7. User-interface: the user interface capability of the OS.

8. Certification: if those properties have been shown by

the OS.

A RTOS typically has high reliability, availability, but the

user interface is always limited. Some operating systems

have various property variations.

Research carried out by Swift et al. (2018) has identified the

significance of the functionality of any device and separate

the device from driver errors to boost it. The stability aspect

was taken into consideration in the absence or without

modifications to the current driver or machine code for

multiple incidences of driver-caused accidents inside the

machine. That is why machine stability has been defined by

Patterson et al., 2017 Segal and Frieder, 2019 as a

significant yet impenetrable field under discussion. Also

interesting is that although the cost of high-end computation

is still declining, there has been an uptick in loss

expenditure since then. These failures entail excessive

installs on an e-commerce site, which contribute to the delay

of a variety of office tasks for work desk revision.

Moreover, the emerging section of hardware and software-

based technological devices in everyday usage raises the

need for durability as attempts are being made to render

these devices as lightweight, user-friendly and automotive

as practicable (Lin and Chang, 2013).

Baier et al. (2015) state that the construction of the modular

OSs has been a significant advancement to increase the

robustness of the current device and boost its performance

by introducing new hardware tools. In essence, this involves

developing computer system capabilities to satisfy a

growing demand for flexibility while saving costs.

Particular factors rely on processor size, memory,

applications and heterogeneity. As a subject for inspection,

software scaffolding is critical particularly when a node is

shared between a device with multiple processor

connections and a symmetric multiprocessor with a single

memory position from which availability plays a vital part

in system output.

Availability is a key consideration when selecting an Iso

since it is an essential element in all continuing work, even

processor instructions. In these conditions, an operating

system that enables software upgrades and fixes to be used

without downtime or service failure are critical (Baumann &

Appavoo, 2016). It may also be delayed to boot or restart if

the computer is enabled at all times. Security corrections

may also be implemented or reliability can be enhanced by

software upgrades. Owing to the assumption that device

infrastructures were the object of unplanned downtime, the

availability resolution has even been improved, contributing

to a substantial improvement in the likely overlay of

announced downtime. For eg, the visa processing system is

regularly modified about 20,000 times a year, although

tolerating downtime of less than 0.5% (Gillen and

Kusnetzky 2016). (Visa transaction processing system).

Several strategies have been developed, such as dynamic

upgrades (Tushman and Newman, 2018) to reduce

downtimes, which will allow the software upgrade

application to operate without interrupting the operation,

thus improving device usefulness.

Zhu et al. (2017) note that compatibility or market-proven

consideration is one of the most reliable factors in choosing

an operating system. In certain safety-critical systems, OSs

which are on the market for more than 10-15 years are

checked (or used) by consumers for a long period. Through

time, the consumer also found several inaccuracies in the

sense in which modified versions have been rectified. These

advantages comprise ecosystem, VxWorks and VRTX,

respectively. The usability of Windows 7 was 44.02 per cent

in March 2015, which was up significantly to over 50% in

January 2013, according to a survey released by StaCounter

covering the period January 2019-January 2013, in

comparison to the market share enjoyed by OSs in the

United States. The effective use of Windows Vista and

Windows 7 (Swift et al . , 2019) and system stability are the

primary explanations for these efforts.

One of the fundamental questions, namely the protection of

operating structures, was posed by Yang (2017). This is the

key reason for concern among end-users, as OS is the

central program that carries out instructions from

programmed computers, servers, desktops and other

components. This could lead to unnecessary assaults or

break-ins between apps. The lack of protection could then

result. According to the US government's "DOD

Trustworthy Computer Device Assessment Requirements"

(2015), most purchasing OSs have a protection level C2

requiring Discretionary Access Control (DAC), which

facilitates and safeguards a simultaneous multiple

application setting. Many attempts were made to create the

most stable OS model. Together with HP-LX (Dalton and

Choo, 2017), Spencer et al. (2019) and Trust Solaris have

made available tests, which may indicate that the

fundamental security of the OSs is the ultimate protection of

applications.

Portability and clustering are other considerations.

Clustering is used to spread the load through many

computers. If a computer crashes, maintenance may be sent

without interrupting service

Of other providers. Of other providers. The number of

computers connected is a fundamental decision (Bekman

and Cholet, 2015). Accordingly, some of the requirements,

in compliance with Zhu et al. (2017), involve the collection

of OSs dependent on certification and OSs established using

a formally specified semantics standard and subject to a

stringent testing protocol. It is therefore a challenging

proposal for substitute programs and configuration

assistance to be gained when operating on an OS, as well as

to procure a system driver for an unsupported system

(Smith, 2010).

3. Methodology

3.1 Categorizing OS

By the different properties listed above, OSs can be

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 3 ~

classified into different categories by the clustering OSs.

The issue of clustering OSs by different features can be

minimized by clustering a collection of data consisting of n

separated dimension vectors into m clusters such that

Euclid's distance from the median of each cluster is minimal

for each variable of each cluster. A collection of algorithms

may be used to detect effective multi-dimensional vector

clustering (Shore and Gray, 2018), e.g. vector quantizations

(Grey, 2015; Gersho and Gray, 2016). The number n in our

case was quite high, but only 6 were expected, so our job

was simple to handle.

To estimate the number of devices in each OS, the operators

are grouped into six groups to estimate the performance and

usefulness of each O. This categorization was created for

play models in particular. As examples of devices that use

Linux, Linux OS consisted of publications linked in the

early years of impairment (Huber et al., 2019), RC goods

for infant vehicle tests through the internet (Aoto et al.,

2016), and Bluetooth toy car controls (Cai et al., 2011). For

Windows models, a toy aeroplane (Tanguay, 2010), a

musical video game (Hämäläinen et al., 2018) and a virtual

auto racing controller (Togelius and Lucas, 1906-1919)

were known. Many robot toys were found in the underlying

Unix OS (Kronreif, 2016), and therefore for those specific

use OSs that restrict the portability of the device, to help and

play with seriously disabled children.

The special-purpose OSs is developed especially for

particular uses, including the interactive C system, the

centre for certain low-cost reactive behaviour vehicles

(Capozzo, 2019), the Robot C system for an OS based on a

monoball robot, LEGO Mindstorms, which centred on

primary education (Prieto et al., 2015). For a competitive

online game, Strifeshadow Fantasy OS was used (Chan and

Chang, 2018). The development of a UAV helicopter also

needed special-purpose OS (Cai et al., 2016) and a custom

R-Learning framework running on the robot software

platform (Ko et al., 2010). The Distributed OS (Berglund

and Cheriton, 2015) was another multi-player video game

called Amaze using V-System. Publications on embedded

devices, including LEGO Mindstorms NXT principles for

student technological creation (Sharad, 2019), were also

reviewed. The PlayStation 3 processor CELL (Buttari et al.,

2019) was used on scientific computing, while in the central

field of ESoccer Robot Toy, built as an instructional play

platform, the Intel Microcontroller (Vial et al. 2019) was

discovered.

It has been mentioned that Windows OS is used in contrast

to other OSs for many devices.

Fig 1: Criteria in RTOS used in play models publication.

The query emerged as to what the origin of its success might

be and journal papers which were recognized for the

collection of an OS were closely examined.

The most widely selected criteria for a device are efficiency,

scalability, flexibility, accessibility, protection, portability,

clustering and performance, consistency and qualification,

alternative programs and GUI. The explanation for the

existence of each of the parameters was defined and the

outcomes evaluated numerically.

Literature was chosen to conduct numerical analysis in

compliance with unique requirements. It should be

remembered that numerical values indicating

competitiveness were not included in the analysis of criteria,

and therefore the criteria appear to be numerically

appropriate as a whole.

Nevertheless, data were provided in a few pieces of

literature that set out the percentage of parameters for the

RTOS restriction percentage. Therefore the data was

collected in compliance with the parameters under which

the proportion was calculated with the remainder of the

literature. The graph showing the percentage of literature

parameters correlated with the children's play model was

then shown as seen in Figure 1. It has been noticed that the

clustering and efficiency calculation of OS is 93.75% in all

but one unit. Similarly, it was discovered that the OS

operates on multiple platforms and can not execute

programs from other operating systems properly, which is

18.75%.

The results were related to RTOS for other applications like

pharmacy, supercomputing, the natural disaster response

method, cloud storage, vehicles and underwater appliances.

The goal was to equate toys 'output with other applications'

output with the same Iso.

A similar behaviour, which indicates the number of

parameters present in each publication in comparison to all

but play models for which the efficiency and clustering

parameters are the strongest, i.e. 96 percent, as seen in

Figure 3. However, the requirements for substitute programs

is the lowest, which indicates that 8% of applications

developed from medicine to aquatic devices are mainly

unique to those OSs and can not thus be run on different

OSs. Thus, the performance and performance of OSs in toys

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 4 ~

may be sufficiently inferred The same OS is almost identical

in other programs.

4.Discussion

4.1 Results in the application
Play models were evaluated in support of parameters and

vice versa and their values reported based on figures given

in publications. This detail is recorded in Figure 2 such that

each application's Iso output is tracked independently and

vice versa.

4.2 Results in terms of parameters

In wide parallel jobs, the device is strongly assumed to be

accurate over a long period. It effectively aims to reduce the

average time between job failures which affects reliability

and therefore generally improves the system's resilience and

thus enhances the 95 percent safety function

In comparison to trustworthiness. This program, therefore,

demonstrates strong

Clustering response and efficiency requirements along with

accessibility, that is to say, 97 percent, as seen in the newly

suggested high-performance measurement alternative Figure

4, which offers accelerated data care of broad magnitude

orders over single-controller systems and a few others.

Availability and scalability are reasonably consistent to

about 77% and 67% on average; and, for most RTOS

implementations, portability or interface is less than average

of 33%. For alternative software parameters, the graph was

the lowest

Fig 2: Criteria in RTOS used in the manufacturing industry.

Fig 3: Criteria in RTOS used in other applications.

That means 13% that the applications developed are OS

native and thus will not be operating on various systems

much of the time without significant adjustments. On the

other side, all the requirements with a 50 percent minimum

score in terms of efficiency, efficiency, design, portability,

protection and useability were reasonably steady in the

manufacturing sector's response. Analyzed literature on the

industrial sector meant that simple OS architecture was used

over different manufacturing lines. The loading of the

system had in most instances to be shared among several

production lines. In the event of the tile method, a

comparable commodity was manufactured across two

separate assembly lines in which the functionality of the

equipment is the same, Lin and Chang have provided a more

precise scenario. The other creates standard product forms

for all machinery and thus all output typologies share the

load of the computer (Lin and Chang, 2013). The other

generates a compact product form for certain machines. In

the absence of much comprehensive output evidence on

each production line, some other literature was reviewed,

indicating a reasonably consistent trend for most of the

manufacturing-related parameters. Protection and

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 5 ~

accessibility are 65% closer to the previous requirements,

and 87% further to alternative systems. This trend means

that the program would quickly operate from one OS to the

next, provided that the development lines have a similar

platform. But the overall behavioural trend and

compatibility demonstrated consistency and qualification

peaked up to 91%, the best. Figure 5 indicates the success

requirements for numerous applications in which

supercomputing and

Fig 4: Criteria in RTOS used in supercomputing.

Fig 5: Clustering and performance in different applications

The car hits 97% of the peak mark. In the development of

increasingly sophisticated applications, the system's

efficiency is a vital consideration for automakers. Besides,

the protection problem can be found both inside the vehicle

architecture and the superstructure, with stability and

usability in the sense of mechanical, electrical, and software

structures being historically critical (Broy et al., 2019). The

children's play models reacted to 94 percent by splitting the

program architecture for the majority of learning systems to

enhance efficiency and security. UAV helicopters, for

example, are built on a special purpose Iso that is highly

divided into various technological sub-areas, decreasing the

load for all activities in one region while raising the

protected characteristic to improve its efficiency. Disaster

recovery and cloud storage solutions showed a reasonably

consistent 92% output response. Cloud processing achieves

high efficiency by eliminating clustering very differently

since it is locally diffused since compared to clusters that

are strongly related within limited scales. Following this

medication are the regulations on medical instruments,

which reacted on average to 89%, while the processing

sector reacted to 50%; underground products came very

similarly to 41%. The explanation followed was that in

general, when machines deeper at the lower depths of the

water, the mean period between job failures escalates.

Numerous strategies have been developed for the

enhancement of the efficiency of these instruments, but

relative to the other applications, this sector could not

increase its performance. Alternative programs in

implementations are the least satisfying parameters. As

illustrated

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 6 ~

Fig 6: Alternate programs in a different application.

The program architecture for goods belonging to separate

production lines, which include then identical general

design, with very few changes according to product

specifications, reached the highest point for manufacturing

at 87 percent in Figure 6. For cloud storage and underwater

devices, the requirements are 33%, as the bulk of these

systems, along with the disaster management framework,

are unique to the OS with a 34% response. The dynamic

architectures are constrained to a single RTOS model

because of the existence of the circumstances in which such

applications are employed. The response for car and game

models decreases to 25 and 19% respectively, while

supercomputing has replied by 13%, medicine is the lowest

by 11%. The answer rate merely represents the rivalry

between different entities in application production and the

value added to the usage itself as far as the situation under

which it is implemented is concerned. Unix OS has been

used as far as OS usage is concerned, especially because it

has shown improved protection and performance potential.

It also features a decent load balance tool, rendering it stable

against crashes.

And the archive of ACM. Patents contained exclusion

conditions because the emphasis was solely on the device

hardware and representative samples and products displayed

a response rate of 50 percent or more. Longitudinal research

configuration of review units being OS sort,

implementations and parameters are adopted.

5. Conclusions

The paper reviewed and interpreted RTOS for use in play

models on different computer platforms and OSs. To

approximate the number of devices inside each OS, we

partitioned OSs into six groups to establish an assessment of

the performance and usabilities of each OS.

6. References

1. Nonlinear control experiment of RC car via internet

Aoto K, Inoue M, Nagshio T, Kida T. Applications for

Access. IEEE Meeting hearings 2016.

2. Christel B, Marcus D, Hendrik T, Marcus V. Benjamin

E, Joachim H., Sascha K., Steffen M. Particularly

symmetrical: findings on the scalability of the operating

system code probabilistic model. Conference on Device

Program Verification, Sydney, Australia 2015.

3. Appavoo J, Baumann A. Enhancement of operating

system complex upgrade. The 20th ACM OS Concepts

Symposium, Work-in-Progress Workshop in Brighton,

Great Britain. Bekman S, Cholet E (2015). Perl

functional mod. Perl functional mod. Beijing: O'Reilly,

Sebastopol, CA 2018.

4. Cheriton DR. Berglund EJ. Amaze A video game for

online gamers 2015;(3):30-39.

5. Greenfield J. Hollywood Reliability and Stability of

Information Device, IOS News 2019.

6. Wu M, M, M, M, M, Huo MM. An android computer

Bluetooth toy car power. International Conference on

Transport, Mechanical and Electrical Engineering

(TMEE) 2011.

7. Capozzo L, Cicirelli C, Attolico G. Construction of

low-cost cars with basic reactive actions. Cybernetics,

Systems, Guy, and. Conference of the IEEE SMC

Conference. International IEEE Meeting 2019;6:675-

680.

8. HT-Swedish, HRC-Swedish. Strifeshadow Fantasy: a

major video game with multiplayer. Session on

Networking and Customer relations. IEEE First 2018,

S.557-562 First

9. STD 5200.28. Evaluation Requirements (Orange Book)

of the DOD Trusted Computer Framework 2015.

http:/www.radium.ncsc.mil, file / book-in-box/5200.28-

STD.pdf .

10. Choo TH, Dalton C. An approach to E-Services

Operating System Stability. ACM Correspondence,

44(2):58. Correspondence 2017.

11. Kusnetzky D. Gillen A, McLaron S. Linux's position in

reducing business computing costs. A white paper by

IDC 2016.

12. Mäki-Patola T, Pulkki V, Airas M. Hämäläinen P.

Games performed by instrumental machine Singing. In

Proc. In Proc. The seventh Int. Naples, Naples, Italy, 5-

8 October: Wireless Audio Effects Conference (DAFX-

04) 2018.

13. Burdea G, Nwosu ME, AbdelBaky M, Golomb M.

Michael B, Rabin B, Docan C. PlayStation 3-based

rehabilitation, immersive therapy for children with

hemiplegia 2019.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 7 ~

14. WH, Lee SM, Nam WH, Ji SH. Build a tailored

children's r-learning framework. IEEE / RSJ Inf.

Intelligent Robots and Systems (IROS). Conf.: Conf

2010, 269-497.

15. Kornfeld M, Meindl M, Prince M, Kronreif G.

PlayrobRobot-assisted infant physical impairment play.

Playrob. Presented at the IEEE, Chicago, IL, USA, 9th

International Robotics Recovery Meeting 2019.

16. Chang PC, Lin YK. Evaluation of reliability of many

separate manufacturing lines dependent on graphics. J.

System. System. Here we are. System. System.

Engineering 2013;22(1):85-36.

17. Kashefi OH, Sharifi H. Why will self-healing programs

be implemented? Theories and applications:

Information and networking systems. 3rd Conference

Foreign 2019.

18. Merzbache M, Oppenheimer D, Sastry N, Tetzlaff W,

Traupmann J, Treuhaft N, et al. Case Studies,

Inspiration, Description, Methods, and Rehabilitation

Oriented Computing (ROC). UC Berkeley Computer

Science Scientific Paper CSD-02-1175 2016.

19. Plaza MG, Polo OR, Prieto SS, Navarro TA. A LEGO

Mindstorms monoball robot. IEEE 2013;32(2):71-83

Control Schemes.

20. NA. Rumman. Help for Multimedia Operating System:

Survey. The Spring-Conference on Information

sciences and IT. World union. International association

2019.

21. Segal ME. Federal President. Dynamic Modified

Program: A Reduced Device Outage device repair

strategy. J. Management of Applications 2019;1(1):59-

79.

22. Sharad S. Introduction of LEGO MINDSTORMS NXT.

Microelectronic systems education for students in

integrated designs and sophomore engineering. Int.

IEEE. Conf.: Conf 2019, 119-120.

23. RW. from Smith. Linux Hardware Manual: [such

modules as the best components for your Linux

framework are chosen, mounted, and configured].

Indianapolis, in the northeast: Sams 2010.

24. Spencer R, Smalley S, Loscocco P, Hibler M, Andersen

D. The security infrastructure of Flask: help mechanism

for different security policies. In Proc. In Proc. 8th

Symposium on Defense at Usenix 2019, 123-139.

25. Bershad BN, Fast MM, Levy HM. In the context of the

19th ACM Symposium on Operating Systems

Concepts, Bolton Landing, NY, to boost the efficiency

of product operating systems 2015.

26. Bershad BN, Fast MM, Levy HM. ACM Transact

improves the stability of operating systems for goods.

Comp.-Comp. System. System 2018;22(3):2.

27. Tanguay D. Toy aircraft travel. Recognition of machine

vision and pattern. Trial. Method. IEEE, 2:231-238.

Meeting 2010.

28. Romanelli E, Tushman ML, Newman WH.

Convergence and upheaval: control of the unstoppable

rate of the organisation. Tushman M.L. Tushman

Tushman And Anderson, P. (Eds.), Strategic Innovation

and Progress Managing: A Readings List Oxford

University Press, New York, 2018, 530-540.

29. Raad I, Vial PJ, Serafini G. Football Robot Toy in a

learning environment. Digital Gaming and Intelligent

Toy Enhanced Learning IEEE International Seminar,

Jhongli, Taiwan, 26-28 March 2019, 215-217. IEEE

2019 Patent 2019.

30. Watson DJ, Swedish Chief. Analysis Book: Principles

of the Operating System. Three:2 2018.

31. Yang CQ. Protection and stable operating environments

in the operating system. V. 1.4b, GSEC Choice 1 1991.

32. Luo L, Xiong GZ, Zhu MY. The operating system is

possibly right. Analysis of ACM SIGOPS Operating

Systems. Print. Publishing 2017;35(1):17-33

https://www.computersciencejournals.com/ijecs

