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Abstract 
The fast developments of renewable energy has increased the need for reliable and efficient energy 

storage, and lithium-ion batteries characteristic to a large extent in current applications. Accurate and 

fine prediction of state of charge (SoC), state of health (SoH), with optimized charging are still 

challenging. This work presents a machine learning based support that is the combination of prediction 

and smart charging. Comparative analysis shows that LSTM outperforms traditional models with R² = 

0.97 and RMSE = 0.067. A reinforcement learning based charging scheme is benchmark with 

traditional CCCV charging, demonstrating a reduction of about 18% in charging time, an efficiency 

increase of 2.7%, and a longer cycle life of about 15%. The proposed approach highlights how 

advanced ML and RL can improve battery reliability, reduce the cost of storage (LCOS), and support 

large-scale renewable integration. 

 

Keywords: Energy storage, machine learning, SoC/SoH prediction, smart charging, reinforcement 

learning 

 

1. Introduction 

The worldwide energy transition for decarbonization is promoting the integration of 

renewable energy sources (RES) and boost the adoption of electric vehicles (EVs) and micro 

grids. However, the variable nature of RES (solar and wind) creates reliability challenges. 

They require efficient battery energy storage systems (BESS) to stable the supply, balancing 

loads, and ensure flexibility [1], [2]. from the various available technologies, lithium-ion 

batteries are leading due to their high energy density, long cycle life, and comparatively low 

cost, making them suitable to EV and distributed energy storage applications [3]. 

Based on their advantages, the safety features, efficient operation, and sustainable 

development of BESS depends on their state of charge (SOC), state of health (SOH), and 

remaining useful life (RUL). Moreover, safe & optimal charging planning’s are essential to 

extend battery lifetime cycle maintaining system availability and user confidence [6]. 

Traditional methods of SoC/SoH estimation such as Coulomb calculations, open-circuit 

voltage (OCV) measurements, and model-based filters such as the extended Kalman filter, 

widely used in battery management systems (BMS). But, these techniques have limitations: 

Coulomb calculations accumulate errors due to current sensor drift, OCV requires long 

relaxation times, and Kalman filter requires accurate electrochemical models, but these are 

usually nonlinear, temperature-dependent, and computationally expensive [7], [8]. These 

limitations make classical methods inadequate under dynamic condition, real-world 

operations as fast charging, high C-rates, and fluctuating loads in EVs and micro grids. 

deferent from this model-based techniques, machine learning (ML) can take nonlinear 

degradation patterns, adapt to new operating conditions, and be position for online 

monitoring using lightweight algorithms [8]. This opens the way for smart BMS that not only 

predicts SoC/SoH, but also recommend optimal charging for balance performance. 

This study address major research questions i.e. how machine learning (ML) models predict 

state-of-charge (SoC), state-of-health (SoH), and remaining useful life (RUL) accurately, 

under different operating conditions using datasets? To mark these, this paper develops a 

comprehensive dataset processing pipeline that prepares publicly available lithium-ion cell 

datasets for ML training and evaluation. To uncover predictive improvements, a systematic 

comparison is performed between baseline models (e.g., linear regression) and state-of-the-  
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art approaches, including ensemble learning and neural 

networks. Based on these, a smart-charging controller is 

designed that leverages ML predictions to improve both 

safety and cycle life. This work contributes to the next 

generation of intelligent battery management systems 

(BMS), enabling safer, more efficient, and wider adoption 

of electric vehicles (EVs) and renewable-integrated micro 

grids. 

 

 
 

Fig 1: Overall Research Framework Flow Diagram. 

 

2. Related Work 

Approximating the state of charge (SoC) in lithium-ion 

batteries has become a core area of research due to its 

importance in electric vehicles (EVs) & renewable energy 

storage systems. Accurate SoC estimation improves safety, 

optimizes performance, and extends battery life, these are 

critical for general adoption of EVs and reliable renewable 

integration [9], [11]. 

 

2.1 Traditional approaches 

Traditional methods such as Coulomb calculation and the 

open-circuit voltage (OCV) method are too old and starting 

techniques. Coulomb calculation calculates SoC by 

integrating current over time. But it accumulates errors from 

sensor noise and depends on accurate initial charge values, 

limiting long-term applicability [9]. In the OCV method its 

measures battery voltage at rest & it provides reliability 

under only the static conditions. Due to requirement of long 

relaxation periods, it unsuitable for dynamic EV operations 
[9]. These drawbacks are motive to researchers for real-time 

and stronger solutions. 
 

2.2 Data-driven approaches 
Data-driven SoC inference has gained momentum with the 
machine learning. On public datasets [9] comparison of 
different techniques like support vector machines (SVM), 
neural networks (NNs), and linear regression (LR), showing 
that LR is computationally efficient with R² ~0.8. Its 
performance degrades with battery aging, and conditions 
where NNs perform better (R² ~0.9, MAE ~1%). on the 
other hands, NNs demand more computational resources, 
which limits real-time embedded applications [9], [13]. 
 

2.3 Hybrid and feature-based methods 
Recent research aim to hit a balance between simplicity and 
accuracy. [9] Proposed combining LR with a Kalman filter, 
which improved accuracy (R² ~0.85), especially in aging 
condition. Similarly, [14] highlights the temperature and 
current as key features to improve forecast models. These 
hybrid and feature-optimized approaches represent a 
growing research trend and they increase model complexity 
and data requirements. 
 

2.4 Dataset Challenges 
Public datasets, such as the NASA Ames repository [10], is 
useful for validate reproducible research. Still, deviation, 
missing values, and scaling differences reduce reliability of 
that data. author [12] show that poor preprocessing data can 
deflect the results, on the other side author [9] shows that 
strong preprocessing increased LR accuracy (R² ~0.75). 
Recent studies in [14] point up the importance of scalable 
SoC models built on open datasets, making preprocessing 
techniques a research application. 
 

2.5 Practical Implications 
The approximation of SoC is for direct safety and economic 
consequences. For example, the IEA [11] mentioned that 
battery failures, sometimes may be associated with 
misconfigured SoCs, resulted to 47 fire incidents in 2022. 
This has forced the research on efficient & accurate models 
for a real-time battery management systems (BMS). Due to 
computational simplicity, LR remains attractive for it, into 
low-power BMS hardware [9]. Lightweight ML models [13] 
represent an outcome to the accuracy-efficiency trade-off. 

 
Table 1: Summary of literature work 

 

Method/Approach Key Features Strengths Limitations References 

Coulomb Counting Current integration Simple, intuitive Error accumulation, sensitive to initial SoC [9] 

OCV Method Voltage after rest Accurate under stable conditions Requires rest, impractical for EVs [9] 

Linear Regression (LR) Voltage, current, temperature Simple, low computation, fast Struggles with aging/noise [9], [12] 

Neural Networks (NN) Nonlinear feature learning 
High accuracy (R² ~0.9, 

MAE~1%) 
High computational demand [9], [13] 

Hybrid Models (LR+Kalman) LR + state estimation Balanced accuracy & efficiency More complex, needs validation [9] 

Feature Optimization Adds temp., cycle, current features Improves generalization Requires large datasets [14] 

Public Datasets NASA Ames, EV test data Reproducibility, scalability Missing values, inconsistency [10], [12], [14] 

 

2.6 Research gaps 

Even if significant progress made in SoC estimation, several 

gaps still remain 

 Balance between accuracy and efficiency: LR method 

is effective but less accurate with old or unclear data, 

other hands neural networks provide high accuracy but 

are need high computation [9], [13]. 

 Aging effects of battery: Most methods facing 

problem with non-linear like capacity degradation and 

life cycle variations [9], [14]. 
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 limitations of Dataset : Public datasets are valuable 

but, with missing values and scaling issues, leading to 

bias model without strong preprocessing [10], [12]. 

 Real-world validation: Most of the studies depends on 

lab datasets which is available, only with few model 

validated in real conditions [14]. 

 Weak combination in BMS: many ML models are 

computationally too expensive for real-time systems, 

leading to deployment gaps [13]. 

 

This portion addresses these gaps by improving linear 

regression with preprocessing, capability-based features, 

and cross-validation, for ensuring efficiency & validation on 

public datasets for practical BMS applications. 

 

3. Materials and Methods 

3.1 Data sources 

This study utilized the publicly available lithium-ion battery 

cycling datasets for validation. Mostly used datasets are the 

NASA Prognostics Center of Excellence (PCoE) dataset. It 

provides aging and random load cycles under constant 

current (CC) and constant voltage (CV) condition [10]. Each 

dataset varies in sampling rate, cycling profile & 

temperature conditions for a realistic scenarios. 

To avoid the missing data, the dataset is partitioned into 

training, validation, and testing under various strategies: 

 

 
 

Fig 2: Proposed ML-Based Workflow for Battery Life Prediction 

and Smart Charging 

 

3.2 Preprocessing 

With the given current (I), voltage (V), and temperature (T) 

time series, preprocessing includes the Synchronization and 

resampling, Noise-removal, Missing values, SoC estimation 

derived from Coulomb calculations with OCV-based 

correction [14]. SoH estimation based on capacity fade 

(Q/Q₀), where EOL is at 80% of nominal capacity [14]. RUL 

estimation like number of cycles remaining before EOL. 

 

3.3 Feature Engineering 

Features draw out at cycle-level like Raw features - voltage 

(V), current (I), temperature (T), and time (t). Derived 

features like Incremental capacity analysis (dQ/dV) & 

Differential voltage feature (dV/dt). Rest/recovery feature 

(voltage relaxation after current cutoff) & Cycle counter [4]. 

 

3.4 Models 

Considered both baseline statistical & advanced ML 

architectures for Baseline, Linear Regression, for Tree-

based, Random Forest (RF) & Gradient Boosted Trees 

(XGBoost, LightGBM) to capture time dependencies [15]. 

Smart charging controllers is Rule-based vs. MPC: 

Comparison with RL policies. 

RL data trained with states (SoC, SoH, T), actions 

(charge/discharge C-rate), and rewards (capacity fade 

minimization, safety constraint satisfaction) with taking the 

Safety constraints: SoC ∈ [10%, 90%], T < 50 °C, I < rated 

C. 

 

3.5 Training Protocol 

Cross-validation through Time-series blocked CV and k-

fold CV. Hyper parameter tuning with Bayesian 

Optimization using Optima. Early stopping to prevent over 

fitting, and Balancing for Class balancing across different 

aging stages. 

 

3.6 Evaluation Metrics 

Used multi-objective performance metrics like 

SoC/SoH/RUL estimation that is mean absolute error 

(MAE), root mean square error (RMSE), mean absolute 

percentage error (MAPE), and R². 

Charging Strategy: Battery life improvement (% increase in 

cycles until EOL). Energy Throughput (Delivered 

Wh).Constraint Violations (Security Violations per 1000 

cycles), and Statistical validation using Wilcoxon signed-

rank test, paired t-test, and 95% confidence intervals [16]. 

 

3.7 Deployment and difficulty 

This evaluated under embedded BMS constraints like 

Inference latency measured in ms per cycle window. 

Memory footprint (RAM usage in kB) [15]. 

 

4. Experiments 

4.1 Experimental setup 

The experiments were conducted on a Python-based 

environment anaconda with Scikit-learn for baseline 

models, XGBoost for gradient boosting, and PyTorch for 

deep neural architectures [17].  

To ensure reliability, fixed the random seeds in all libraries 

(NumPy, Scikit-learn, and PyTorch) and logged all 

configurations. Hyper parameter optimization is performed 

using Optuna’s Bayesian search [16]. 
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Fig 3: Result Synthesis Framework 

 

4.2 Baseline performance 

First the classical and ML-based models on SoC, SoH, and 

RUL prediction in cell-level and cross-cell splits. The 

baseline models included Linear Regression (LR), Random 

Forest (RF), XGBoost (XGB), and a simple LSTM neural 

network (NN). 
 

Model RMSE MAE R² 

LR 0.145 ± 0.003 0.118 ± 0.002 0.87 ± 0.01 

RF 0.097 ± 0.004 0.074 ± 0.003 0.93 ± 0.01 

XGB 0.081 ± 0.002 0.061 ± 0.002 0.95 ± 0.01 

LSTM 0.067 ± 0.003 0.052 ± 0.002 0.97 ± 0.01 

Note: Over 5 independent trials, Results are averaged. All values 

in indicate standard deviation. 

 
Table 2: Baseline Model Performance (SoC/SoH/RUL prediction) 

 

Model 
MAE (SoC, 

%) 

RMSE (SoC, 

%) 

MAE (SoH, 

%) 

RMSE (SoH, 

%) 

R² 

(RUL) 

LR 4.28 5.91 3.92 5.08 0.72 

RF 2.11 3.45 2.58 3.26 0.84 

XGB 1.87 3.12 2.02 2.87 0.89 

LSTM 1.55 2.71 1.78 2.39 0.91 

 

The results show that LR fights with nonlinearity. Tree-

based methods (RF/XGB) remarkably reduce errors & 

LSTMs improve accuracy [18]. 

Here can examine from the error distributions and 

calibration curves (Figure 5) to evaluate whether the 

probabilistic predictions align with the observed 

distributions. 

 

4.3 Ablation studies 

To measure the contribution of different features using raw 

features (V, I, T), engineered features (dV/dt, IC/dV 

curves), and combined features. The results show that 

features improve RUL prediction by ~14% compared to 

unmodified inputs alone [18]. 

Small windows (≤50 seconds) increased prediction variance, 

while optimal stability was observed at 200-300 seconds. 

Showed that models trained without temperature-awareness 

underperformed by up to 20% MAE under cold (<10 °C) or 

hot (>40 °C) conditions [18]. 

 

 
 

Fig 4: Ablation performance (feature group and sample sensitivity) 

 

4.4 Smart charging results 

evaluation of a reinforcement learning (RL) smart-charging 

controller against a baseline constant current-constant 

voltage (CCCV) charging strategy [15].The RL agent 
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dynamically adjusted current rates based on cell aging and 

grid signals (Figure 7). RL charging extended cycle life by 

18-24% compared to CCCV while reducing capacity decay 

rate. Temperature and voltage safety constraints were never 

violated, indicating safe operation. [15]. 

 
Table 3: Smart Charging - CCCV vs RL-based Policy 

 

Method Avg. Charging Time (min) Energy Efficiency (%) Estimated Cycle Life (relative) 

CCCV 120 91.5 1.0× (baseline) 

RL-based Smart Charging 98 94.2 1.15× (~15% improvement) 

Table: Here a Comparative performance of CCCV and proposed RL-based charging strategy is presented. RL gives faster charging (~18% 

reduction in time), improving energy efficiency (+2.7%), & cycle life (~15%). 

 
 

Fig 5: Charging profile behavior (RL vs CCCV) 

 

5. Results and Discussion 

5.1 Main findings 

The results show that gradient boosting models (XGBoost)  

Perform better than traditional baselines such as linear 

regression and ridge regression in terms of SoC/SoH/RUL 

prediction accuracy. Especially, XGBoost achieved the 

lowest MAE (1.5-2.1% for SoC, 3-4% for SoH), as long as 

LSTM networks performed better in long-horizon RUL 

prediction [19] [20]. Random forest models show high variance 

under temperature fluctuations. 

Findings indicate the tree-based boosting models are best 

suitable for static SoC/SoH prediction. 

 

5.2 Interpretability 

To ensure physical appearance, SHAP (SHapley Additive 

Explanations) was applied to interpret model outputs [43]. 

Voltage and temperature were identified as the most 

impressive predictors [44]. Incremental capacitance (IC) & 

differential voltage (DV) characteristics were also important 

due to their establishment support to relationship with 

lithium plating and active material loss [45]. 

 

5.3 Trade-offs 

Neural networks provided the highest prediction accuracy. 

But, boosting models providing higher accuracy with lower 

computational demand [12]. In charging control, a trade-off 

emerge between life extension and availability. ML-guided 

charging extended battery life by 12-18% (cycles until 

EOL). 

 

5.4 Comparison with Literature 

Compared to the recent works, this study shows 10-25% 

improvement in SoH prediction accuracy compared to EKF-

based methods [14] and 15% more robustness across datasets 

compared to prior ML approaches [21].  

 
Table 4: Presents a quantitative benchmark against representative 

literature. 
 

Study Approach 

SoC 

Error 

(%) 

SoH 

Error 

(%) 

RUL Error 

(cycles) 
Notes 

He et al. 

(2021) [7] 
EKF 4-5 7-9 ~500 

Sensitive to 

noise 

Zhang et al. 

(2022) [8] 
ANN 3-4 6-7 300-350 

Requires large 

data 

This Work 
XGB + 

LSTM 
1.5-2 3-4 180-220 

Robust, 

interpretable 

 

6. Limitations 

In the fact of strong performance in experimental validation, 

several challenges still remain like most public datasets 

(e.g., NASA, CALCE, and Oxford) are prepared under 

controlled laboratory conditions, which may not fully 

represent the complexity of field operating conditions [10]. 

Practical deployments encounter sensor noise, thermal 
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gradients across modules, and missing data, which limit 

estimation accuracy [25]. Many ML models first capture 

cycle aging, with limited Durability to calendar-driven 

degradation in real deployments [14]. 

Also the Smart charging or reinforcement learning-based 

strategies optimized design may not be directly transferable 

to systems with different electrical/thermal architectures [60]. 

 

7. Conclusions and future work 

This work has shown that machine learning-based 

approaches (XGBoost, LSTM, and hybrid physics-ML) can 

notably improve accuracy in SoC/SoH/RUL prediction 

compared to classical baselines. The best models balance 

prediction accuracy allow potential deployment in real-

world BMS. 

 
 

Fig 6: Big-Picture Impact Flow Diagram 

 

Key findings  
Gradient boosting (XGBoost/LightGBM) provides strong 

accuracy. Smart charging policies leveraging ML improve 

battery cycle life by up to 20% compared to standard CCCV 

protocols. 

 

Future directions 

Semi-supervised learning and domain conversion for 

transfer to chemistry and field conditions [26]. Combination 

with digital frameworks to combine physics-informed 

models with machine learning [27]. Real-time embedded 

testing for low-latency, energy-efficient inference [28]. 
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