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Abstract

The fast developments of renewable energy has increased the need for reliable and efficient energy
storage, and lithium-ion batteries characteristic to a large extent in current applications. Accurate and
fine prediction of state of charge (SoC), state of health (SoH), with optimized charging are still
challenging. This work presents a machine learning based support that is the combination of prediction
and smart charging. Comparative analysis shows that LSTM outperforms traditional models with R2 =
0.97 and RMSE = 0.067. A reinforcement learning based charging scheme is benchmark with
traditional CCCV charging, demonstrating a reduction of about 18% in charging time, an efficiency
increase of 2.7%, and a longer cycle life of about 15%. The proposed approach highlights how
advanced ML and RL can improve battery reliability, reduce the cost of storage (LCOS), and support
large-scale renewable integration.

Keywords: Energy storage, machine learning, SoC/SoH prediction, smart charging, reinforcement
learning

1. Introduction

The worldwide energy transition for decarbonization is promoting the integration of
renewable energy sources (RES) and boost the adoption of electric vehicles (EVs) and micro
grids. However, the variable nature of RES (solar and wind) creates reliability challenges.
They require efficient battery energy storage systems (BESS) to stable the supply, balancing
loads, and ensure flexibility ™, . from the various available technologies, lithium-ion
batteries are leading due to their high energy density, long cycle life, and comparatively low
cost, making them suitable to EV and distributed energy storage applications [,

Based on their advantages, the safety features, efficient operation, and sustainable
development of BESS depends on their state of charge (SOC), state of health (SOH), and
remaining useful life (RUL). Moreover, safe & optimal charging planning’s are essential to
extend battery lifetime cycle maintaining system availability and user confidence [,
Traditional methods of SoC/SoH estimation such as Coulomb calculations, open-circuit
voltage (OCV) measurements, and model-based filters such as the extended Kalman filter,
widely used in battery management systems (BMS). But, these techniques have limitations:
Coulomb calculations accumulate errors due to current sensor drift, OCV requires long
relaxation times, and Kalman filter requires accurate electrochemical models, but these are
usually nonlinear, temperature-dependent, and computationally expensive [l [l These
limitations make classical methods inadequate under dynamic condition, real-world
operations as fast charging, high C-rates, and fluctuating loads in EVs and micro grids.
deferent from this model-based techniques, machine learning (ML) can take nonlinear
degradation patterns, adapt to new operating conditions, and be position for online
monitoring using lightweight algorithms 1. This opens the way for smart BMS that not only
predicts SOC/SoH, but also recommend optimal charging for balance performance.

This study address major research questions i.e. how machine learning (ML) models predict
state-of-charge (SoC), state-of-health (SoH), and remaining useful life (RUL) accurately,
under different operating conditions using datasets? To mark these, this paper develops a
comprehensive dataset processing pipeline that prepares publicly available lithium-ion cell
datasets for ML training and evaluation. To uncover predictive improvements, a systematic
comparison is performed between baseline models (e.g., linear regression) and state-of-the-
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art approaches, including ensemble learning and neural
networks. Based on these, a smart-charging controller is
designed that leverages ML predictions to improve both
safety and cycle life. This work contributes to the next
generation of intelligent battery management systems
(BMS), enabling safer, more efficient, and wider adoption
of electric vehicles (EVs) and renewable-integrated micro
grids.
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Fig 1: Overall Research Framework Flow Diagram.

2. Related Work

Approximating the state of charge (SoC) in lithium-ion
batteries has become a core area of research due to its
importance in electric vehicles (EVs) & renewable energy
storage systems. Accurate SoC estimation improves safety,
optimizes performance, and extends battery life, these are
critical for general adoption of EVs and reliable renewable
integration [, (1],

2.1 Traditional approaches

Traditional methods such as Coulomb calculation and the
open-circuit voltage (OCV) method are too old and starting
techniques. Coulomb calculation calculates SoC by
integrating current over time. But it accumulates errors from
sensor noise and depends on accurate initial charge values,
limiting long-term applicability ©. In the OCV method its

https://www.computersciencejournals.com/ijecs

measures battery voltage at rest & it provides reliability
under only the static conditions. Due to requirement of long
relaxation periods, it unsuitable for dynamic EV operations
1. These drawbacks are motive to researchers for real-time
and stronger solutions.

2.2 Data-driven approaches

Data-driven SoC inference has gained momentum with the
machine learning. On public datasets ! comparison of
different techniques like support vector machines (SVM),
neural networks (NNs), and linear regression (LR), showing
that LR is computationally efficient with R? ~0.8. Its
performance degrades with battery aging, and conditions
where NNs perform better (R2 ~0.9, MAE ~1%). on the
other hands, NNs demand more computational resources,
which limits real-time embedded applications I, [13],

2.3 Hybrid and feature-based methods

Recent research aim to hit a balance between simplicity and
accuracy. 1 Proposed combining LR with a Kalman filter,
which improved accuracy (R? ~0.85), especially in aging
condition. Similarly, 4 highlights the temperature and
current as key features to improve forecast models. These
hybrid and feature-optimized approaches represent a
growing research trend and they increase model complexity
and data requirements.

2.4 Dataset Challenges

Public datasets, such as the NASA Ames repository 19, is
useful for validate reproducible research. Still, deviation,
missing values, and scaling differences reduce reliability of
that data. author 2 show that poor preprocessing data can
deflect the results, on the other side author ! shows that
strong preprocessing increased LR accuracy (R? ~0.75).
Recent studies in ' point up the importance of scalable
SoC models built on open datasets, making preprocessing
techniques a research application.

2.5 Practical Implications

The approximation of SoC is for direct safety and economic
consequences. For example, the IEA [ mentioned that
battery failures, sometimes may be associated with
misconfigured SoCs, resulted to 47 fire incidents in 2022.
This has forced the research on efficient & accurate models
for a real-time battery management systems (BMS). Due to
computational simplicity, LR remains attractive for it, into
low-power BMS hardware . Lightweight ML models 23
represent an outcome to the accuracy-efficiency trade-off.

Table 1: Summary of literature work

Method/Approach Key Features Strengths Limitations References|
Coulomb Counting Current integration Simple, intuitive Error accumulation, sensitive to initial SoC el
OCV Method Voltage after rest Accurate under stable conditions Requires rest, impractical for EVs ol
Linear Regression (LR) Voltage, current, temperature Simple, low computation, fast Struggles with aging/noise 19 12
i 2 ~|
Neural Networks (NN) Nonlinear feature learning High aﬁ;xré%o(/g 0.3, High computational demand w1 el
Hybrid Models (LR+Kalman), LR + state estimation Balanced accuracy & efficiency More complex, needs validation el
Feature Optimization lAdds temp., cycle, current features| Improves generalization Requires large datasets (141
Public Datasets NASA Ames, EV testdata |  Reproducibility, scalability Missing values, inconsistency 110] [12] [14]

2.6 Research gaps

Even if significant progress made in SoC estimation, several

gaps still remain

e Balance between accuracy and efficiency: LR method
is effective but less accurate with old or unclear data,

other hands neural networks provide high accuracy but
are need high computation I, (3],

e Aging effects of battery: Most methods facing
problem with non-linear like capacity degradation and
life cycle variations [, [14],
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o limitations of Dataset : Public datasets are valuable
but, with missing values and scaling issues, leading to
bias model without strong preprocessing 1%, (22,

e Real-world validation: Most of the studies depends on
lab datasets which is available, only with few model
validated in real conditions (41,

e Weak combination in BMS: many ML models are
computationally too expensive for real-time systems,
leading to deployment gaps ™31,

This portion addresses these gaps by improving linear
regression with preprocessing, capability-based features,
and cross-validation, for ensuring efficiency & validation on
public datasets for practical BMS applications.

3. Materials and Methods

3.1 Data sources

This study utilized the publicly available lithium-ion battery
cycling datasets for validation. Mostly used datasets are the
NASA Prognostics Center of Excellence (PCoE) dataset. It
provides aging and random load cycles under constant
current (CC) and constant voltage (CV) condition ['%, Each
dataset varies in sampling rate, cycling profile &
temperature conditions for a realistic scenarios.

To avoid the missing data, the dataset is partitioned into
training, validation, and testing under various strategies:

Battery Data

l

Preprocessing

l

Feature
Engineering

|

Model Training

|

Evaluation

l

Smart Charging

|

Deployment

Fig 2: Proposed ML-Based Workflow for Battery Life Prediction
and Smart Charging

3.2 Preprocessing

With the given current (1), voltage (V), and temperature (T)
time series, preprocessing includes the Synchronization and
resampling, Noise-removal, Missing values, SoC estimation

https://www.computersciencejournals.com/ijecs

derived from Coulomb calculations with OCV-based
correction 4. SoH estimation based on capacity fade
(Q/Qo), where EOL is at 80% of nominal capacity [*4l. RUL
estimation like number of cycles remaining before EOL.

3.3 Feature Engineering

Features draw out at cycle-level like Raw features - voltage
(V), current (1), temperature (T), and time (t). Derived
features like Incremental capacity analysis (dQ/dV) &
Differential voltage feature (dV/dt). Rest/recovery feature
(voltage relaxation after current cutoff) & Cycle counter [,

3.4 Models

Considered both baseline statistical & advanced ML
architectures for Baseline, Linear Regression, for Tree-
based, Random Forest (RF) & Gradient Boosted Trees
(XGBoost, LightGBM) to capture time dependencies [*°],
Smart charging controllers is Rule-based vs. MPC:
Comparison with RL policies.

RL data trained with states (SoC, SoH, T), actions
(charge/discharge C-rate), and rewards (capacity fade
minimization, safety constraint satisfaction) with taking the
Safety constraints: SoC € [10%, 90%], T <50 °C, | < rated
C.

3.5 Training Protocol

Cross-validation through Time-series blocked CV and k-
fold CV. Hyper parameter tuning with Bayesian
Optimization using Optima. Early stopping to prevent over
fitting, and Balancing for Class balancing across different
aging stages.

3.6 Evaluation Metrics

Used  multi-objective  performance  metrics  like
SoC/SoH/RUL estimation that is mean absolute error
(MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE), and R2.

Charging Strategy: Battery life improvement (% increase in
cycles until EOL). Energy Throughput (Delivered
Wh).Constraint Violations (Security Violations per 1000
cycles), and Statistical validation using Wilcoxon signed-
rank test, paired t-test, and 95% confidence intervals 6],

3.7 Deployment and difficulty

This evaluated under embedded BMS constraints like
Inference latency measured in ms per cycle window.
Memory footprint (RAM usage in kB) 51,

4. Experiments

4.1 Experimental setup

The experiments were conducted on a Python-based
environment anaconda with Scikit-learn for baseline
models, XGBoost for gradient boosting, and PyTorch for
deep neural architectures [,

To ensure reliability, fixed the random seeds in all libraries
(NumPy, Scikit-learn, and PyTorch) and logged all
configurations. Hyper parameter optimization is performed

using Optuna’s Bayesian search [16],
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Forest (RF), XGBoost (XGB), and a simple LSTM neural
network (NN).

Raw Data

l

Preprocessing

Model RMSE MAE R?
LR 0.145 + 0.003 0.118 +0.002 0.87+0.01
RF 0.097 + 0.004 0.074 +0.003 0.93+0.01
XGB 0.081 +0.002 0.061 £ 0.002 0.95+0.01
LSTM 0.067 +0.003 0.052 £ 0.002 0.97+£0.01

l

ML Models

|

Evaluation

l

SHAP/Uncertainty

|

Trade-offs

|

Smart Charging &
BMS Integration

Fig 3: Result Synthesis Framework

4.2 Baseline performance

First the classical and ML-based models on SoC, SoH, and
RUL prediction in cell-level and cross-cell splits. The
baseline models included Linear Regression (LR), Random

Note: Over 5 independent trials, Results are averaged. All values
in indicate standard deviation.

Table 2: Baseline Model Performance (SoC/SoH/RUL prediction)

MAE (SoC, | RMSE (SoC, | MAE (SoH, | RMSE (SoH, | Re

Modell g, %) %) %) (RUL)
R | 428 5.01 3.92 5.08 0.72
RE | 211 3.45 2.58 3.26 0.84

XGB| 187 3.12 2.02 2.87 0.89

LSTM| 155 2.1 178 2.39 0.01

The results show that LR fights with nonlinearity. Tree-
based methods (RF/XGB) remarkably reduce errors &
LSTMs improve accuracy 1€,

Here can examine from the error distributions and
calibration curves (Figure 5) to evaluate whether the
probabilistic  predictions align with the observed
distributions.

4.3 Ablation studies

To measure the contribution of different features using raw
features (V, 1, T), engineered features (dV/dt, IC/dV
curves), and combined features. The results show that
features improve RUL prediction by ~14% compared to
unmodified inputs alone [8],

Small windows (<50 seconds) increased prediction variance,
while optimal stability was observed at 200-300 seconds.
Showed that models trained without temperature-awareness
underperformed by up to 20% MAE under cold (<10 °C) or
hot (>40 °C) conditions 8],
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Fig 4: Ablation performance (feature group and sample sensitivity)

4.4 Smart charging results
evaluation of a reinforcement learning (RL) smart-charging

controller against a baseline constant current-constant
voltage (CCCV) charging strategy [%.The RL agent
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dynamically adjusted current rates based on cell aging and
grid signals (Figure 7). RL charging extended cycle life by
18-24% compared to CCCV while reducing capacity decay

https://www.computersciencejournals.com/ijecs

rate. Temperature and voltage safety constraints were never
violated, indicating safe operation. [*5],

Table 3: Smart Charging - CCCV vs RL-based Policy

Method Avg. Charging Time (min) Energy Efficiency (%) Estimated Cycle Life (relative)
CCCV 120 91.5 1.0x (baseline)
RL-based Smart Charging 98 94.2 1.15x (~15% improvement)

Table: Here a Comparative performance of CCCV and proposed RL-based charging strategy is presented. RL gives faster charging (~18%
reduction in time), improving energy efficiency (+2.7%), & cycle life (~15%).
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Fig 5: Charging profile behavior (RL vs CCCV)

5. Results and Discussion

5.1 Main findings

The results show that gradient boosting models (XGBoost)
Perform better than traditional baselines such as linear
regression and ridge regression in terms of SoC/SoH/RUL
prediction accuracy. Especially, XGBoost achieved the
lowest MAE (1.5-2.1% for SoC, 3-4% for SoH), as long as
LSTM networks performed better in long-horizon RUL
prediction 19 201, Random forest models show high variance
under temperature fluctuations.

Findings indicate the tree-based boosting models are best
suitable for static SOC/SoH prediction.

5.2 Interpretability

To ensure physical appearance, SHAP (SHapley Additive
Explanations) was applied to interpret model outputs [,
Voltage and temperature were identified as the most
impressive predictors [“4. Incremental capacitance (IC) &
differential voltage (DV) characteristics were also important
due to their establishment support to relationship with
lithium plating and active material loss ],

5.3 Trade-offs

Neural networks provided the highest prediction accuracy.
But, boosting models providing higher accuracy with lower
computational demand 2. In charging control, a trade-off
emerge between life extension and availability. ML-guided

charging extended battery life by 12-18% (cycles until
EOL).

5.4 Comparison with Literature

Compared to the recent works, this study shows 10-25%
improvement in SoH prediction accuracy compared to EKF-
based methods [*4 and 15% more robustness across datasets
compared to prior ML approaches [?,

Table 4: Presents a quantitative benchmark against representative

literature.
Study Approach Esror(cir Esror};){r R L(‘::I;Cllfersr)or Notes
(%) (%)
ggze;)a[';] EKF | 45 | 79 | -s00 | Sensitveto
Z?;ggz‘;ﬁg'- ANN | 34 | 67 | 300350 | Reaulres lerge
Thiswork | Yoo | 152 | 34 | 180220 int?r(;:k:gts;ble

6. Limitations

In the fact of strong performance in experimental validation,
several challenges still remain like most public datasets
(e.g., NASA, CALCE, and Oxford) are prepared under
controlled laboratory conditions, which may not fully
represent the complexity of field operating conditions [,
Practical deployments encounter sensor noise, thermal
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gradients across modules, and missing data, which limit
estimation accuracy . Many ML models first capture
cycle aging, with limited Durability to calendar-driven
degradation in real deployments (41,

Also the Smart charging or reinforcement learning-based
strategies optimized design may not be directly transferable
to systems with different electrical/thermal architectures [,

https://www.computersciencejournals.com/ijecs

7. Conclusions and future work

This work has shown that machine learning-based
approaches (XGBoost, LSTM, and hybrid physics-ML) can
notably improve accuracy in SoC/SoH/RUL prediction
compared to classical baselines. The best models balance
prediction accuracy allow potential deployment in real-
world BMS.

Extended
Battery Life

ML Models

/\
\/

Reduced Emissions

Sustainable Energy

Lower LCOS

Fig 6: Big-Picture Impact Flow Diagram

Key findings

Gradient boosting (XGBoost/LightGBM) provides strong
accuracy. Smart charging policies leveraging ML improve
battery cycle life by up to 20% compared to standard CCCV
protocols.

Future directions

Semi-supervised learning and domain conversion for
transfer to chemistry and field conditions 261 Combination
with digital frameworks to combine physics-informed
models with machine learning "1, Real-time embedded
testing for low-latency, energy-efficient inference 21,
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