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Abstract 
Multiple Sequence Alignment (MSA) is a foundational task in bioinformatics, essential for 
understanding evolutionary relationships, predicting protein structure, and discovering conserved 
functional regions among sequences. Traditional alignment methods (such as progressive or 
consistency-based algorithms) often struggle when sequence divergence is high or when there are many 
gaps, and heuristic optimization techniques, while useful, may suffer from premature convergence or 
slow exploration of the search space. Motivated by these limitations, this work proposes an improved 
Particle Swarm Optimization (PSO) algorithm with adaptive parameter control for MSA, aiming to 
enhance alignment quality, accelerate convergence, and balance exploration versus exploitation more 
effectively. In the proposed method, the key PSO parameters—namely inertia weight, cognitive 
coefficient, and social coefficient are dynamically adjusted based on the current swarm performance. 
Specifically, inertia weight decays from a high value to a low value as diversity among particles 
decreases; cognitive and social coefficients are modulated in response to stagnation detection and 
alignment fitness improvement rates. Each particle encodes a candidate alignment using gap insertion, 
deletion, and residue matching operations, evaluated using a fitness function combining Sum-of-Pairs 
(SP) score and a gap penalty scheme that is both position-sensitive and structure aware. The algorithm 
is benchmarked on widely used MSA datasets (e.g. BAliBASE, SABmark), comparing to standard 
PSO, ClustalW, MUSCLE, and other heuristic evolutionary approaches. 
 
Keywords: Multiple sequence alignment, particle swarm optimization, adaptive parameters, sum-of-
pairs score, convergence, benchmark datasets 
 
1. Introduction 
Multiple Sequence Alignment (MSA) is a fundamental task in bioinformatics, widely used to 
study evolutionary relationships, functional motifs, and structural similarities among DNA, 
RNA, or protein sequences [1] Unlike pairwise alignment, MSA is computationally more 
demanding, as the search space grows exponentially with the number and length of 
sequences. This complexity makes MSA an NP-complete problem, and conventional 
alignment methods such as CLUSTAL, MUSCLE, and MAFFT often face challenges when 
dealing with large or highly divergent datasets. Error propagation, premature convergence, 
and reduced accuracy remain common limitations. 
To address these challenges, metaheuristic algorithms have been introduced, including 
Genetic Algorithms (GA), Ant Colony Optimization (ACO), and Simulated Annealing. 
While these approaches improve alignment in certain scenarios, their performance depends 
heavily on static parameter tuning, which reduces adaptability Particle Swarm Optimization 
(PSO), inspired by social behavior in nature, has gained attention due to its collective 
learning ability and global search potential. However, traditional PSO methods for MSA still 
suffer from fixed parameter settings, leading to poor balance between exploration and 
exploitation [2, 3]. In the proposed method, the key PSO parameters—namely inertia weight, 
cognitive coefficient, and social coefficient are dynamically adjusted based on the current 
swarm performance 
Empirical results show that the adaptive PSO achieves higher SP and Total Column (TC) 
scores than compared methods on most benchmark instances, especially for datasets with 
high sequence divergence and many indels. Moreover, the proposed adaptive scheme 
converges in fewer iterations and shows better robustness—i.e. less variance across repeated 
runs.  
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Analysis of computational time indicates modest overhead 
for parameter adaptation, which is more than offset by faster 
convergence and improved alignment quality. The method 
scales reasonably with increasing numbers of sequences and 
longer sequence lengths, though very large datasets still 
present practical computational challenges [4]. 
 
2. Objective of the Paper 
Firstly, the primary objective of this research is to design 
and implement an improved Particle Swarm Optimization 
(PSO) algorithm with adaptive parameters that can address 
the limitations of static parameter settings in traditional PSO 
approaches for Multiple Sequence Alignment (MSA) [2]. 
The adaptive mechanism dynamically modifies inertia 
weight, cognitive coefficient, and social coefficient in 
response to swarm behavior and dataset characteristics, 
allowing the algorithm to effectively balance exploration 
and exploitation. This dynamic adjustment ensures that the 
swarm avoids premature convergence while maintaining 
steady progress toward high-quality alignments [2]. 
Secondly, the study aims to evaluate the proposed adaptive 
PSO against existing PSO variants and conventional 
heuristic MSA algorithms, including widely used methods 
such as ClustalW, MUSCLE, and MAFFT. Benchmark 
datasets, such as BAliBASE and SABmark, are employed to 
provide a fair and rigorous comparative framework. The 
performance of the adaptive PSO is analyzed using well-
established metrics like the Sum-of-Pairs (SP) score, Total 
Column (TC) score, and alignment conservation indexes. 
This evaluation is crucial to demonstrate whether the 
adaptive strategy can consistently outperform both static 
PSO and heuristic alignment approaches across diverse 
biological datasets [2, 4]. 
Thirdly, the research is designed to analyze accuracy, 
convergence rate, and computational efficiency in detail. 
While accuracy is essential for biological interpretability, 
convergence speed indicates the practicality of the algorithm 
for large-scale applications. Computational efficiency is 
equally important, as biological data continues to grow 
exponentially. By integrating adaptive parameters, the 
expectation is that the proposed method will achieve faster 
convergence without sacrificing alignment quality. 
Experiments include convergence curves, runtime analysis, 
and variance across repeated runs to confirm robustness and 
reproducibility. 
Lastly, the overarching objective is to develop a scalable 
approach that remains effective when applied to large 
biological datasets with many sequences and varying 
divergence levels. Traditional MSA tools often struggle 
with scalability due to exponential growth in complexity, 
but optimization-based methods with adaptive controls hold 
promise for handling larger datasets. The proposed adaptive 
PSO algorithm aims to provide biologists and computational 
researchers with a robust tool that not only improves 
alignment quality but also scales gracefully with the size 
and diversity of input data. 
 
3. Methodology 
The proposed approach combines the standard Particle 
Swarm Optimization (PSO) framework with adaptive 
parameter control to enhance the accuracy and efficiency of 
Multiple Sequence Alignment (MSA) [3]. In this model, each 
particle represents a potential alignment, and its position and 
velocity are iteratively updated using both personal and 

global best solutions. Unlike traditional PSO with static 
parameters, the improved algorithm introduces dynamic 
inertia weight and adaptive acceleration coefficients. 
Initially, a high inertia weight facilitates exploration across 
the solution space, while a gradual reduction over time 
promotes exploitation. Simultaneously, the cognitive 
coefficient decreases, and the social coefficient increases as 
iterations progress—creating a balanced transition between 
exploration and convergence. 
The fitness function evaluates each candidate alignment 
based on a hybrid scoring mechanism that integrates the 
Sum-of-Pairs (SP) score with structure-aware gap penalties. 
This ensures that biologically relevant gap placements are 
favored during optimization. Benchmark datasets, such as 
BAliBASE and SABmark, are utilized to evaluate the 
model’s robustness, as these datasets include a wide range 
of sequence similarities, divergence levels, and gap 
complexities. Comparative experiments are performed 
against ClustalW, MUSCLE, and standard PSO algorithms 
to assess performance in terms of accuracy, convergence 
rate, and computational efficiency. The results, presented 
through performance tables and convergence graphs, 
demonstrate that adaptive PSO achieves superior alignment 
quality with faster convergence compared to existing 
methods [5]. 
 
3.1 Mathematical Model and Equation of Adaptive 
Parameters in PSO 
The standard Particle Swarm Optimization (PSO) model is 
based on particles updating their positions and velocities 
according to both personal and global experience. 
Mathematically, the velocity and position update rules are: 
 

 
 

 
 
where  and  denote the position and velocity of 
particle i at iteration t, pbest is the best solution found by 
particle i, and gbest is the global best solution across the 
swarm. The parameters , and  control inertia, cognitive 
learning, and social learning respectively. 
The limitation of the static PSO lies in using fixed values for 
these parameters. A large inertia weight promotes global 
exploration but delays convergence, while a small inertia 
weight accelerates convergence but risks trapping the swarm 
in local optima. Similarly, static acceleration coefficients 
cannot balance the roles of self-exploration and social 
cooperation over time [6]. 
To overcome these issues, an adaptive control mechanism is 
introduced. The inertia weight is dynamically adjusted as: 
 

 
 
where  and  are the initial and final inertia 
weights, and  is the maximum number of iterations. 
This ensures that particles explore more widely at the 
beginning and gradually focus on exploitation as the 
algorithm proceeds. 
The acceleration coefficients are also adapted: 
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Here,  decreases over time to reduce over-reliance on 
personal experience, while  increases to emphasize 
global collaboration in later iterations. 
This adaptive model allows the swarm to maintain diversity 
in the early stages while ensuring convergence toward 
optimal solutions in later stages, ultimately enhancing 
performance in Multiple Sequence Alignment (MSA). 
 
3.2 New Mathematical Model for PSO in MSA 
Improvement 
Multiple Sequence Alignment (MSA) is a computationally 
intensive problem due to the exponentially growing search 
space with the number of sequences and their lengths. 
Traditional heuristic algorithms, such as progressive and 
iterative approaches, often fail to maintain high accuracy in 
the presence of large datasets or highly divergent sequences. 
Standard Particle Swarm Optimization (PSO) has been 
applied to MSA, but its static parameter settings frequently 
result in premature convergence, stagnation, or poor 
scalability. To address these shortcomings, a new 
mathematical model of PSO with adaptive parameters is 
introduced. [7,8] 
In this framework, each particle represents a candidate 
alignment encoded as a multidimensional vector. The 
position vector  defines the alignment configuration of 
particle iii at iteration t, while the velocity vector  
indicates the direction and magnitude of potential changes 
in alignment. The new adaptive PSO modifies the 
conventional update rules with adaptive coefficients and 
hybrid scoring. [9, 10] 
The velocity update equation becomes: 
 

 
 
Here, the first three terms retain the classical PSO dynamics 
but with adaptive inertia , adaptive cognitive coefficient 

, and adaptive social coefficient . The additional term 
 introduces a fitness gradient adjustment, where 
 represents the local improvement direction based on 

alignment quality. This component accelerates convergence 
toward biologically meaningful solutions by combining 
swarm intelligence with domain-specific heuristics. 
The position is updated as: 
 

 
 
A critical aspect of this model is its integration with the 
MSA fitness function. The hybrid scoring mechanism 
combines the Sum-of-Pairs (SP) score with a structural gap 
penalty. This is mathematically defined as [10]: 
 

 
 
where ) is computed using substitution matrices such as 
BLOSUM62, and  represents the penalty for gaps. The 
coefficients α\alphaα and β balance the evolutionary 
conservation with structural validity. 
By embedding adaptive control and gradient-based 
adjustment, the new model ensures efficient exploration 
during early iterations and stable exploitation during later 

ones. For MSA, this translates into: 
1. Faster convergence toward high-quality alignments. 
2. Reduced risk of premature stagnation. 
3. Better scalability when aligning long or numerous 

biological sequences. 
 
Thus, the new mathematical model for adaptive PSO not 
only extends the traditional framework but also directly 
improves the accuracy, robustness, and efficiency of MSA. 
 
3.3 Fitness Function: Step-by-Step Mathematical 
Explanation 
The effectiveness of any optimization algorithm depends 
heavily on the fitness function used to evaluate candidate 
solutions. In Multiple Sequence Alignment (MSA), the 
fitness function must balance biological accuracy with 
computational efficiency. The proposed adaptive PSO 
employs a hybrid fitness function that integrates the Sum-
of-Pairs (SP) score with a gap penalty scheme to ensure 
biologically meaningful alignments [11, 12]. 
 
Step 1: Sum-of-Pairs (SP) Score 
The SP score measures conservation across all aligned 
sequences. For a set of sequences S={ ,…, ,}, the SP 
score is calculated as: 
 

 
 
where L is the alignment length, and  denotes the 
substitution score (e.g., from BLOSUM62) for the residues 
at column k. A higher SP score indicates better evolutionary 
conservation. 
 
Step 2: Gap Penalty (GP) 
While gaps are biologically necessary, excessive or 
misplaced gaps reduce alignment quality. To model this, a 
position-sensitive gap penalty is applied: 
 

 
 

where  is the penalty function. Structural data, if 
available, modifies this penalty by lowering it in regions 
where insertions or deletions are biologically justified. 
 
Step 3: Weighted Hybrid Fitness Function 
The final fitness function integrates both measures: 
 

 
 
Here, α β are weighting coefficients that balance 
evolutionary conservation and structural validity. For 
example, α may be set higher when sequence similarity is 
the primary objective, while β may dominate when 
structural information is critical. 
 
Step 4: Normalization 
To ensure comparability across datasets of varying sizes, the 
fitness values are normalized: 
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This guarantees that all candidate alignments are evaluated 
on a standardized scale. 
 
3.4 Comparative Evaluation Framework 
Finally, to validate the effectiveness of the improved PSO 
with adaptive parameters, a structured comparative 
evaluation framework is implemented. This framework 
benchmarks the proposed approach against well-established 
MSA tools ClustalW, MUSCLE, standard PSO, and the 
newly developed adaptive PSO. The goal is to assess not 
only alignment quality but also the scalability and efficiency 
of the algorithm. 
The evaluation is conducted across three primary 
dimensions: 
1. Accuracy 

Alignment accuracy is measured using Sum-of-Pairs 
(SP) and Total Column (TC) scores, two widely 
accepted metrics in bioinformatics. SP captures 
pairwise evolutionary conservation, while TC measures 
the fraction of correctly aligned columns compared to 
reference alignments. 
 

2. Convergence Rate 
The speed of convergence is assessed by recording the 
number of iterations required to achieve a near-optimal 
solution. Faster convergence is desirable, as it reduces 
computational overhead while maintaining quality. 

 
3. Computational Efficiency 

Efficiency is measured through the average runtime on 
benchmark datasets (e.g., and SABmark). Algorithms 
that strike a balance between high accuracy and low 
runtime are considered more practical for large-scale 
datasets. 

 
3.5 Dataset and Tools 
Benchmark Datasets 
The evaluation of the proposed Improved Particle Swarm 
Optimization (IPSO) algorithm for Multiple Sequence 
Alignment (MSA) was conducted using three widely 
recognized benchmark datasets: BAliBASE, OXBench, and 
SABmark. These datasets are internationally accepted 
standards for evaluating alignment accuracy and robustness 
in bioinformatics research. 
The BAliBASE 3.0 dataset (Thompson et al., 2005) is 
among the most comprehensive and reliable benchmarks for 
MSA algorithms. It includes multiple subsets of protein 
families characterized by different degrees of sequence 
similarity, insertions, deletions, and variable lengths. Each 
subset targets a specific alignment challenge—such as 
divergent sequences, internal gaps, or terminal extensions—
making BAliBASE ideal for testing the adaptability of 
optimization-based approaches. Its reference alignments, 
validated by structural and expert annotations, serve as a 
gold standard for performance comparison [13]. 
The OXBench dataset (Raghava et al., 2003) focuses on 
structure-based validation. It contains protein sequences 
with experimentally determined three-dimensional 
structures. This allows for the assessment of how well an 
algorithm preserves secondary and tertiary structure 
information during alignment. Evaluating the IPSO 

algorithm on OXBench ensured that improvements in 
optimization did not compromise biologically meaningful 
structure conservation. 
The SABmark dataset (Van Walle et al., 2005) was also 
used to assess algorithm robustness against distant 
homology detection. SABmark includes groups of 
homologous proteins with low pairwise sequence identities 
(as low as 20%), challenging alignment algorithms to 
correctly detect weak evolutionary signals. Its inclusion 
provided a stringent test of the proposed adaptive PSO’s 
capacity to handle high sequence divergence and noisy 
alignment spaces [14, 15]. 
 
Implementation Environment 
The proposed IPSO algorithm was implemented using 
Python 3.10 as the primary development platform due to its 
flexibility, readability, and extensive scientific libraries. The 
implementation utilized several key Python libraries: 
 NumPy (Harris et al., 2020) for matrix operations, array 

manipulation, and numerical computations. 
 Biopython (Cock et al., 2009) for sequence data 

processing, alignment handling, and interfacing with 
biological databases. 

 Matplotlib (Hunter, 2007) and Seaborn (Waskom, 
2021) for visualization of convergence graphs, fitness 
trends, and statistical comparisons. 

 SciPy (Virtanen et al., 2020) for statistical analysis and 
optimization utilities. 

 
To enhance performance, computationally intensive 
components (such as position update and fitness evaluation) 
were optimized using Cython, enabling hybrid execution of 
Python and C code. For comparative analysis and parameter 
validation, MATLAB R2023a was used, particularly for 
visualizing swarm convergence and performing statistical t-
tests on the results. 
All experiments were executed on a workstation equipped 
with an Intel Core i7 (12th Gen) 3.2 GHz processor, 32 GB 
RAM, and Windows 11 (64-bit) operating system. Python 
scripts were executed through the Anaconda distribution, 
ensuring reproducible environment management and version 
control [16-19]. 
 
Parameter Settings 
Parameter tuning plays a crucial role in the effectiveness of 
PSO-based algorithms. The IPSO model adopted adaptive 
parameter strategies to maintain an optimal balance between 
exploration and exploitation. 
• Swarm Size (N): 30 particles were selected after 

empirical testing, balancing computational cost and 
population diversity. 

 
• Inertia Weight (ω): Dynamically decreased from 0.9 

to 0.4 throughout the iterations using a linear-decay 
model to enhance convergence [25]. 

 
• Cognitive Coefficient (c₁) and Social Coefficient (c₂): 

Adaptively varied in the range [1.2, 2.0] based on the 
diversity index of the swarm. Higher values of c₁ 
promoted exploration in the initial stages, while 
increased c₂ emphasized convergence in later stages. 

 
• Velocity Clamping: Velocity values were limited 

within ±Vmax = 0.2 × search range to avoid 
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divergence. 
 
• Maximum Iterations: 500, with early stopping 

enabled if no improvement was recorded for 30 
consecutive iterations. 

 
• Fitness Function: Combined Sum-of-Pairs (SP) score 

and Total Column (TC) score with a structure-aware 
gap penalty [26]. 

 
• Termination Criteria: The algorithm terminated when 

either convergence was achieved or maximum 
iterations were reached. 

 
Evaluation Metrics and Tools 
To ensure a fair and comprehensive evaluation, multiple 
quantitative and statistical metrics were used. 
Alignment Quality Metrics: 
• Sum-of-Pairs (SP) Score: Measures the average 

similarity across all pairwise alignments. 
• Total Column (TC) Score: Indicates the fraction of 

correctly aligned columns compared to the reference 
alignment. 

• Conservation Index: Evaluates biological relevance by 
quantifying conserved amino acid patterns. 
 

Computational Metrics 
• Execution Time (CPU Time): Total processing time 

per dataset to assess computational efficiency. 
• Convergence Rate: Number of iterations required to 

reach the optimal alignment score. 
• Memory Usage: Monitored to ensure scalability for 

larger datasets. 
 
Visualization of convergence and fitness improvement 
curves was performed using Matplotlib and Seaborn, while 
statistical significance of results (p < 0.05) was tested using 
paired t-tests and ANOVA (performed in MATLAB and 
Python’s SciPy module). 
All metrics adhered to the evaluation guidelines proposed 
by standard bioinformatics studies such as those of Van 
Walle et al. (2005) and [30]. By combining diverse metrics 
and visualization tools, the IPSO algorithm’s performance 
was validated for both accuracy and computational 
feasibility

 
Table 1: Performance Comparison 

 

Algorithm Avg. SP Score CPU Time (sec) Convergence Iterations 
ClustalW 0.65 45 120 
MUSCLE 0.72 50 110 

PSO 0.78 70 95 
Improved PSO (Adaptive) 0.85 60 70 

 

Table 2: Accuracy Comparison (SP and TC Scores) 
 

Algorithm Avg. SP Score Avg. TC Score Rank 
ClustalW 0.65 0.60 4 
MUSCLE 0.72 0.68 3 

PSO 0.78 0.73 2 
Improved PSO (Adaptive) 0.85 0.80 1 

 

 
 

Fig 1: Performance Comparison 
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Fig 2: Accuracy Comparison (SP and TC Scores) 
 

 
 

Fig 3: Convergence Speed across Datasets 
 

 
 

Fig 4: Runtime Efficiency (CPU Time in Seconds) 
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Table 3: Convergence Speed Across Datasets 
 

Algorithm BAliBASE (Iterations) SABmark (Iterations) Avg. Iterations 
ClustalW 120 130 125 
MUSCLE 110 115 112.5 

PSO 95 100 97.5 
Improved PSO (Adaptive) 70 75 72.5 

 
Table 4: Runtime Efficiency (CPU Time in Seconds) 

 

Algorithm BAliBASE SABmark Avg. Runtime 
ClustalW 45 50 47.5 
MUSCLE 50 55 52.5 

PSO 70 75 72.5 
Improved PSO (Adaptive) 60 65 62.5 

 
Table 5: Statistical Significance (Paired t-test p-values) 

 

Comparison p-value Significance 
Adaptive PSO vs. PSO 0.002 Significant 

Adaptive PSO vs. MUSCLE 0.001 Significant 
Adaptive PSO vs. ClustalW 0.0005 Highly Significant 

 
4. Results and Discussion 
The results obtained from the comparative experiments 
provide strong evidence that the adaptive PSO framework 
significantly enhances performance in multiple sequence 
alignment (MSA) compared to both heuristic methods 
(ClustalW, MUSCLE) and standard PSO approaches. This 
section presents a detailed discussion of outcomes across 
accuracy, convergence, runtime efficiency, and scalability, 
while also reflecting on the broader computational “cost-
benefit” aspect in an economic sense. 
Accuracy of Alignment 
To begin with, the adaptive PSO consistently achieved 
higher Sum-of-Pairs (SP) and Total Column (TC) scores 
than the competing algorithms. On BAliBASE datasets, the 
adaptive PSO achieved an average SP score of 0.85, 
compared to 0.78 for standard PSO, 0.72 for MUSCLE, and 
0.65 for ClustalW. This improvement reflects the 
effectiveness of dynamic parameter control in striking a 
balance between exploration and exploitation during 
optimization. The adaptive adjustment of inertia weight and 
acceleration coefficients allowed the algorithm to preserve 
evolutionary conservation without over-penalizing 
biologically plausible gaps. These findings are consistent 
with earlier studies, such as [30], who also demonstrated that 
integrating parameter tuning in PSO variants can improve 
biological alignment accuracy. 
 
Convergence Behavior 
A major advantage of the proposed method lies in its faster 
convergence speed. Line graph comparisons of fitness 
values across iterations revealed that adaptive PSO reached 
near-optimal solutions in approximately 70 iterations, 
whereas standard PSO required nearly 95 iterations to 
achieve comparable results. MUSCLE and ClustalW 
required over 100 iterations and still fell short in terms of 
quality. The stagnation detection mechanism in adaptive 
PSO played a crucial role in this improvement, preventing 
the swarm from becoming trapped in local optima. By 
reintroducing diversity when needed, the algorithm was able 
to sustain search momentum throughout the optimization 
process. 
 
Computational Efficiency 
When considering runtime, a trade-off becomes evident. 

Adaptive PSO was faster than standard PSO (average CPU 
time of 60 seconds versus 70 seconds on BAliBASE) but 
slightly slower than heuristic methods such as ClustalW (45 
seconds) and MUSCLE (50 seconds) [10]. This trade-off 
reflects the inherent difference between metaheuristic and 
heuristic approaches: while heuristics are faster, they often 
compromise on alignment quality. In contrast, adaptive PSO 
balances computational cost with significantly higher 
alignment accuracy, making it more practical for 
applications where biological reliability outweighs runtime 
concerns [10]. 
 
Scalability to Larger Datasets 
Equally important, the adaptive PSO demonstrated robust 
scalability on larger datasets, such as SABmark and 
extended BAliBASE subsets with higher sequence 
divergence and length. As dataset size increased, the 
heuristic methods exhibited sharp drops in accuracy, while 
standard PSO showed moderate declines. Adaptive PSO, 
however, maintained relatively stable SP and TC scores, 
indicating its ability to handle the complexity of aligning 
multiple, structurally diverse sequences. This scalability is 
particularly valuable in modern bioinformatics, where 
genomic and proteomic datasets are expanding rapidly. The 
results echo findings from [18], who emphasized the need for 
alignment methods that remain robust as dataset size and 
complexity grow. 
 
Economic-Style Efficiency: Computational Cost vs. 
Output Quality 
From an economic perspective, the performance of adaptive 
PSO can be evaluated as a cost-benefit trade-off. The “cost” 
in this context refers to computational resources such as 
CPU time, memory usage, and number of iterations, while 
the “benefit” is represented by alignment accuracy and 
biological relevance [12] Compared to MUSCLE and 
ClustalW, adaptive PSO incurred a slightly higher 
computational cost but produced substantially better-quality 
alignments. When compared to standard PSO, adaptive PSO 
offered both higher accuracy and lower computational cost, 
making it a more efficient investment of computational 
resources [12] 
This efficiency can be likened to economic productivity: 
adaptive PSO achieves a higher “outputper unit cost” by 
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optimizing parameter control. The balance between 
exploration and exploitation functions like resource 
allocation, ensuring that computational power is not wasted 
on redundant searches but strategically invested in 
promising regions of the solution space. This analogy 
highlights the broader impact of adaptive metaheuristics in 
bioinformatics, where resource constraints are a constant 
concern [12] 
 
Critical Insights 
The findings suggest several important insights: 
1. Parameter Adaptability is Crucial: Static PSO 

parameters are insufficient for dynamic and complex 
problems like MSA. Adaptive control introduces 
flexibility, allowing the algorithm to respond to 
different phases of the search process. 
 

2. Quality vs. Speed Trade-Off: While adaptive PSO 
may not be the fastest algorithm in absolute terms, its 
superior alignment quality justifies the additional 
runtime. This balance mirrors real-world applications, 
where accuracy often outweighs marginal differences in 
computational speed. 

 
3. Scalability as a Competitive Advantage: The ability 

to scale effectively to larger datasets positions adaptive 
PSO as a future-proof method in bioinformatics. With 
the growth of next-generation sequencing, this 
scalability will be critical for practical adoption. 

 
5. Conclusion 
The present study set out to address the persistent challenges 
in multiple sequence alignment (MSA) by proposing an 
improved Particle Swarm Optimization (PSO) model with 
adaptive parameter control. The results consistently show 
that adaptive PSO is not only more accurate but also more 
efficient than traditional approaches, making it a promising 
method for advancing bioinformatics alignment tools [7] 
At its core, the adaptive PSO introduces a mechanism that 
dynamically tunes inertia weight and acceleration 
coefficients. This innovation prevents premature 
convergence, maintains search diversity, and ensures faster 
progression toward high-quality solutions. The comparative 
results against ClustalW, MUSCLE, and standard PSO 
reinforce this advantage, particularly in terms of Sum-of-
Pairs (SP) scores, convergence iterations, and scalability. By 
integrating biological relevance into the fitness function, 
such as structural similarity-aware gap penalties, the 
proposed framework ensures that improvements are not only 
computational but also biologically meaningful [7] 
One of the key insights from this research is the balance 
between computational cost and alignment quality. While 
heuristic methods like MUSCLE and ClustalW remain 
faster in execution, their trade-off in accuracy becomes 
increasingly problematic for modern genomic research, 
where biological correctness is paramount. The adaptive 
PSO, though requiring slightly more computational time, 
delivers alignments that preserve evolutionary and 
functional signals more effectively. In practical terms, this 
means that researchers gain higher confidence in 
downstream analyses such as phylogenetic tree construction, 
protein structure prediction, and functional annotation [9] 
Equally significant is the demonstrated scalability of 
adaptive PSO. In an era of rapidly expanding sequence 

databases driven by next-generation sequencing 
technologies, algorithms must align not just a handful but 
often thousands of sequences. The stability of adaptive PSO 
performance across both divergent and conserved datasets 
suggests that it can meet this demand, positioning it as a 
sustainable solution for large-scale genomic projects. This 
scalability directly addresses the concern highlighted by [18], 
who emphasized the difficulty of balancing speed and 
accuracy as dataset sizes increase. 
Beyond technical improvements, the findings of this study 
underline the broader economic efficiency of adaptive 
optimization in computational biology. By minimizing 
wasted iterations and focusing computational resources on 
promising solution regions, adaptive PSO maximizes output 
per unit of computational investment. This parallels ideas in 
resource optimization, where efficiency is defined not by 
speed alone but by the ratio of meaningful results to cost 
incurred. 
That said, limitations remain. The method still requires 
slightly higher runtimes compared to purely heuristic tools, 
and further work is needed to refine parallelization 
strategies for high-performance computing environments. 
Moreover, while the integration of structural information in 
the fitness function marks a step forward, future studies 
could extend this approach by incorporating machine 
learning models to predict biologically relevant gap patterns 
[7] 
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