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Abstract

Multiple Sequence Alignment (MSA) is a foundational task in bioinformatics, essential for
understanding evolutionary relationships, predicting protein structure, and discovering conserved
functional regions among sequences. Traditional alignment methods (such as progressive or
consistency-based algorithms) often struggle when sequence divergence is high or when there are many
gaps, and heuristic optimization techniques, while useful, may suffer from premature convergence or
slow exploration of the search space. Motivated by these limitations, this work proposes an improved
Particle Swarm Optimization (PSO) algorithm with adaptive parameter control for MSA, aiming to
enhance alignment quality, accelerate convergence, and balance exploration versus exploitation more
effectively. In the proposed method, the key PSO parameters—namely inertia weight, cognitive
coefficient, and social coefficient are dynamically adjusted based on the current swarm performance.
Specifically, inertia weight decays from a high value to a low value as diversity among particles
decreases; cognitive and social coefficients are modulated in response to stagnation detection and
alignment fitness improvement rates. Each particle encodes a candidate alignment using gap insertion,
deletion, and residue matching operations, evaluated using a fitness function combining Sum-of-Pairs
(SP) score and a gap penalty scheme that is both position-sensitive and structure aware. The algorithm
is benchmarked on widely used MSA datasets (e.g. BAIIBASE, SABmark), comparing to standard
PSO, ClustalW, MUSCLE, and other heuristic evolutionary approaches.

Keywords: Multiple sequence alignment, particle swarm optimization, adaptive parameters, sum-of-
pairs score, convergence, benchmark datasets

1. Introduction

Multiple Sequence Alignment (MSA) is a fundamental task in bioinformatics, widely used to
study evolutionary relationships, functional motifs, and structural similarities among DNA,
RNA, or protein sequences ™ Unlike pairwise alignment, MSA is computationally more
demanding, as the search space grows exponentially with the number and length of
sequences. This complexity makes MSA an NP-complete problem, and conventional
alignment methods such as CLUSTAL, MUSCLE, and MAFFT often face challenges when
dealing with large or highly divergent datasets. Error propagation, premature convergence,
and reduced accuracy remain common limitations.

To address these challenges, metaheuristic algorithms have been introduced, including
Genetic Algorithms (GA), Ant Colony Optimization (ACO), and Simulated Annealing.
While these approaches improve alignment in certain scenarios, their performance depends
heavily on static parameter tuning, which reduces adaptability Particle Swarm Optimization
(PS0O), inspired by social behavior in nature, has gained attention due to its collective
learning ability and global search potential. However, traditional PSO methods for MSA still
suffer from fixed parameter settings, leading to poor balance between exploration and
exploitation [ 31, In the proposed method, the key PSO parameters—namely inertia weight,
cognitive coefficient, and social coefficient are dynamically adjusted based on the current
swarm performance

Empirical results show that the adaptive PSO achieves higher SP and Total Column (TC)
scores than compared methods on most benchmark instances, especially for datasets with
high sequence divergence and many indels. Moreover, the proposed adaptive scheme
converges in fewer iterations and shows better robustness—i.e. less variance across repeated
runs.
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Analysis of computational time indicates modest overhead
for parameter adaptation, which is more than offset by faster
convergence and improved alignment quality. The method
scales reasonably with increasing numbers of sequences and
longer sequence lengths, though very large datasets still
present practical computational challenges I,

2. Objective of the Paper

Firstly, the primary objective of this research is to design
and implement an improved Particle Swarm Optimization
(PSO) algorithm with adaptive parameters that can address
the limitations of static parameter settings in traditional PSO
approaches for Multiple Sequence Alignment (MSA) [,
The adaptive mechanism dynamically modifies inertia
weight, cognitive coefficient, and social coefficient in
response to swarm behavior and dataset characteristics,
allowing the algorithm to effectively balance exploration
and exploitation. This dynamic adjustment ensures that the
swarm avoids premature convergence while maintaining
steady progress toward high-quality alignments 2,
Secondly, the study aims to evaluate the proposed adaptive
PSO against existing PSO variants and conventional
heuristic MSA algorithms, including widely used methods
such as Clustalw, MUSCLE, and MAFFT. Benchmark
datasets, such as BAIIBASE and SABmark, are employed to
provide a fair and rigorous comparative framework. The
performance of the adaptive PSO is analyzed using well-
established metrics like the Sum-of-Pairs (SP) score, Total
Column (TC) score, and alignment conservation indexes.
This evaluation is crucial to demonstrate whether the
adaptive strategy can consistently outperform both static
PSO and heuristic alignment approaches across diverse
biological datasets [> 4.,

Thirdly, the research is designed to analyze accuracy,
convergence rate, and computational efficiency in detail.
While accuracy is essential for biological interpretability,
convergence speed indicates the practicality of the algorithm
for large-scale applications. Computational efficiency is
equally important, as biological data continues to grow
exponentially. By integrating adaptive parameters, the
expectation is that the proposed method will achieve faster
convergence without sacrificing alignment quality.
Experiments include convergence curves, runtime analysis,
and variance across repeated runs to confirm robustness and
reproducibility.

Lastly, the overarching objective is to develop a scalable
approach that remains effective when applied to large
biological datasets with many sequences and varying
divergence levels. Traditional MSA tools often struggle
with scalability due to exponential growth in complexity,
but optimization-based methods with adaptive controls hold
promise for handling larger datasets. The proposed adaptive
PSO algorithm aims to provide biologists and computational
researchers with a robust tool that not only improves
alignment quality but also scales gracefully with the size
and diversity of input data.

3. Methodology

The proposed approach combines the standard Particle
Swarm Optimization (PSO) framework with adaptive
parameter control to enhance the accuracy and efficiency of
Multiple Sequence Alignment (MSA) El. In this model, each
particle represents a potential alignment, and its position and
velocity are iteratively updated using both personal and
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global best solutions. Unlike traditional PSO with static
parameters, the improved algorithm introduces dynamic
inertia weight and adaptive acceleration coefficients.
Initially, a high inertia weight facilitates exploration across
the solution space, while a gradual reduction over time
promotes exploitation. Simultaneously, the cognitive
coefficient decreases, and the social coefficient increases as
iterations progress—creating a balanced transition between
exploration and convergence.

The fitness function evaluates each candidate alignment
based on a hybrid scoring mechanism that integrates the
Sum-of-Pairs (SP) score with structure-aware gap penalties.
This ensures that biologically relevant gap placements are
favored during optimization. Benchmark datasets, such as
BAIIBASE and SABmark, are utilized to evaluate the
model’s robustness, as these datasets include a wide range
of sequence similarities, divergence levels, and gap
complexities. Comparative experiments are performed
against Clustalw/, MUSCLE, and standard PSO algorithms
to assess performance in terms of accuracy, convergence
rate, and computational efficiency. The results, presented
through performance tables and convergence graphs,
demonstrate that adaptive PSO achieves superior alignment
quality with faster convergence compared to existing
methods B,

3.1 Mathematical Model and Equation of Adaptive
Parameters in PSO

The standard Particle Swarm Optimization (PSO) model is
based on particles updating their positions and velocities
according to both personal and global experience.
Mathematically, the velocity and position update rules are:

vilt+ U = wv; &+ ey (pbestl. —x [ﬂ) + oo (gbest —x [t})

Ht+1)=x®+vit+1)

where =® and «® denote the position and velocity of
particle i at iteration t, pbest is the best solution found by
particle i, and gbest is the global best solution across the

swarm. The parameters @ 1, and £z control inertia, cognitive
learning, and social learning respectively.

The limitation of the static PSO lies in using fixed values for
these parameters. A large inertia weight promotes global
exploration but delays convergence, while a small inertia
weight accelerates convergence but risks trapping the swarm
in local optima. Similarly, static acceleration coefficients
cannot balance the roles of self-exploration and social
cooperation over time 61,

To overcome these issues, an adaptive control mechanism is
introduced. The inertia weight is dynamically adjusted as:

t

w(t) = wWpay — (Wmay — Wmin) X T
max

where®Wmsz and “min are the initial and final inertia

weights, and Trmax is the maximum number of iterations.
This ensures that particles explore more widely at the
beginning and gradually focus on exploitation as the
algorithm proceeds.

The acceleration coefficients are also adapted:
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Here, =@ decreases over time to reduce over-reliance on
personal experience, while «® increases to emphasize
global collaboration in later iterations.

This adaptive model allows the swarm to maintain diversity
in the early stages while ensuring convergence toward
optimal solutions in later stages, ultimately enhancing
performance in Multiple Sequence Alignment (MSA).

3.2 New Mathematical Model for PSO in MSA
Improvement

Multiple Sequence Alignment (MSA) is a computationally
intensive problem due to the exponentially growing search
space with the number of sequences and their lengths.
Traditional heuristic algorithms, such as progressive and
iterative approaches, often fail to maintain high accuracy in
the presence of large datasets or highly divergent sequences.
Standard Particle Swarm Optimization (PSO) has been
applied to MSA, but its static parameter settings frequently
result in premature convergence, stagnation, or poor
scalability. To address these shortcomings, a new
mathematical model of PSO with adaptive parameters is
introduced. 7]

In this framework, each particle represents a candidate
alignment encoded as a multidimensional vector. The

position vector *i () defines the alignment configuration of

particle iii at iteration t, while the velocity vector Vi ()
indicates the direction and magnitude of potential changes
in alignment. The new adaptive PSO modifies the
conventional update rules with adaptive coefficients and
hybrid scoring. [ 10

The velocity update equation becomes:

vilt+ 1) = wv () + ¢, () (pbgstl. - x;(t]) +co.ltn {gbgst -% (t]]l + XA f(x (E)

Here, the first three terms retain the classical PSO dynamics
but with adaptive inertia «®, adaptive cognitive coefficient
e:(®), and adaptive social coefficient =, The additional term
*Afe(9 introduces a fitness gradient adjustment, where
4f(x; (8) represents the local improvement direction based on
alignment quality. This component accelerates convergence
toward biologically meaningful solutions by combining
swarm intelligence with domain-specific heuristics.

The position is updated as:

%(t+ 1) =x(t) +vi(t+1)

A critical aspect of this model is its integration with the
MSA fitness function. The hybrid scoring mechanism
combines the Sum-of-Pairs (SP) score with a structural gap
penalty. This is mathematically defined as [*°I:

F(x) = a- 5P(x) — B GP(x;)

where (%)) is computed using substitution matrices such as
BLOSUMS62, and cre) represents the penalty for gaps. The
coefficients o\alphac and p balance the evolutionary
conservation with structural validity.

By embedding adaptive control and gradient-based
adjustment, the new model ensures efficient exploration
during early iterations and stable exploitation during later
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ones. For MSA, this translates into:

1. Faster convergence toward high-quality alignments.

2. Reduced risk of premature stagnation.

3. Better scalability when aligning long or numerous
biological sequences.

Thus, the new mathematical model for adaptive PSO not
only extends the traditional framework but also directly
improves the accuracy, robustness, and efficiency of MSA.

3.3 Fitness
Explanation
The effectiveness of any optimization algorithm depends
heavily on the fitness function used to evaluate candidate
solutions. In Multiple Sequence Alignment (MSA), the
fitness function must balance biological accuracy with
computational efficiency. The proposed adaptive PSO
employs a hybrid fitness function that integrates the Sum-
of-Pairs (SP) score with a gap penalty scheme to ensure
biologically meaningful alignments 1% 121,

Function: Step-by-Step Mathematical

Step 1: Sum-of-Pairs (SP) Score
The SP score measures conservation across all aligned

sequences. For a set of sequences S={*i*z,...,n}, the SP
score is calculated as:

n L

n=-1
SP(x) = Z Z M(sf,sF)

i=1 j=i+1k=1
where L is the alignment length, and MGis/) denotes the
substitution score (e.g., from BLOSUM®62) for the residues
at column k. A higher SP score indicates better evolutionary
conservation.

Step 2: Gap Penalty (GP)

While gaps are biologically necessary, excessive or
misplaced gaps reduce alignment quality. To model this, a
position-sensitive gap penalty is applied:

n L
GPG) = ) D &(sh)

i=L k=1L

where 8Gi) s the penalty function. Structural data, if
available, modifies this penalty by lowering it in regions
where insertions or deletions are biologically justified.

Step 3: Weighted Hybrid Fitness Function
The final fitness function integrates both measures:

F(x) = a-SP(x) — B GP(x)

Here, o [ are weighting coefficients that balance
evolutionary conservation and structural validity. For
example, o may be set higher when sequence similarity is
the primary objective, while B may dominate when
structural information is critical.

Step 4: Normalization
To ensure comparability across datasets of varying sizes, the
fitness values are normalized:
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F':xj - Fﬂ;l’n

This guarantees that all candidate alignments are evaluated
on a standardized scale.

3.4 Comparative Evaluation Framework

Finally, to validate the effectiveness of the improved PSO

with adaptive parameters, a structured comparative

evaluation framework is implemented. This framework

benchmarks the proposed approach against well-established

MSA tools Clustalw, MUSCLE, standard PSO, and the

newly developed adaptive PSO. The goal is to assess not

only alignment quality but also the scalability and efficiency

of the algorithm.

The evaluation is conducted across three primary

dimensions:

1. Accuracy
Alignment accuracy is measured using Sum-of-Pairs
(SP) and Total Column (TC) scores, two widely
accepted metrics in bioinformatics. SP captures
pairwise evolutionary conservation, while TC measures
the fraction of correctly aligned columns compared to
reference alignments.

2. Convergence Rate
The speed of convergence is assessed by recording the
number of iterations required to achieve a near-optimal
solution. Faster convergence is desirable, as it reduces
computational overhead while maintaining quality.

3. Computational Efficiency
Efficiency is measured through the average runtime on
benchmark datasets (e.g., and SABmark). Algorithms
that strike a balance between high accuracy and low
runtime are considered more practical for large-scale
datasets.

3.5 Dataset and Tools

Benchmark Datasets

The evaluation of the proposed Improved Particle Swarm
Optimization (IPSO) algorithm for Multiple Sequence
Alignment (MSA) was conducted using three widely
recognized benchmark datasets: BAIIBASE, OXBench, and
SABmark. These datasets are internationally accepted
standards for evaluating alignment accuracy and robustness
in bioinformatics research.

The BAIIBASE 3.0 dataset (Thompson et al., 2005) is
among the most comprehensive and reliable benchmarks for
MSA algorithms. It includes multiple subsets of protein
families characterized by different degrees of sequence
similarity, insertions, deletions, and variable lengths. Each
subset targets a specific alignment challenge—such as
divergent sequences, internal gaps, or terminal extensions—
making BAIIBASE ideal for testing the adaptability of
optimization-based approaches. Its reference alignments,
validated by structural and expert annotations, serve as a
gold standard for performance comparison [*31,

The OXBench dataset (Raghava et al., 2003) focuses on
structure-based validation. It contains protein sequences
with  experimentally  determined  three-dimensional
structures. This allows for the assessment of how well an
algorithm preserves secondary and tertiary structure
information during alignment. Evaluating the IPSO
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algorithm on OXBench ensured that improvements in
optimization did not compromise biologically meaningful
structure conservation.

The SABmark dataset (Van Walle et al., 2005) was also
used to assess algorithm robustness against distant
homology detection. SABmark includes groups of
homologous proteins with low pairwise sequence identities
(as low as 20%), challenging alignment algorithms to
correctly detect weak evolutionary signals. Its inclusion
provided a stringent test of the proposed adaptive PSO’s
capacity to handle high sequence divergence and noisy
alignment spaces [4 %1,

Implementation Environment

The proposed IPSO algorithm was implemented using

Python 3.10 as the primary development platform due to its

flexibility, readability, and extensive scientific libraries. The

implementation utilized several key Python libraries:

= NumPy (Harris et al., 2020) for matrix operations, array
manipulation, and numerical computations.

= Biopython (Cock et al., 2009) for sequence data
processing, alignment handling, and interfacing with
biological databases.

= Matplotlib (Hunter, 2007) and Seaborn (Waskom,
2021) for visualization of convergence graphs, fitness
trends, and statistical comparisons.

= SciPy (Virtanen et al., 2020) for statistical analysis and
optimization utilities.

To enhance performance, computationally intensive
components (such as position update and fitness evaluation)
were optimized using Cython, enabling hybrid execution of
Python and C code. For comparative analysis and parameter
validation, MATLAB R2023a was used, particularly for
visualizing swarm convergence and performing statistical t-
tests on the results.

All experiments were executed on a workstation equipped
with an Intel Core i7 (12th Gen) 3.2 GHz processor, 32 GB
RAM, and Windows 11 (64-bit) operating system. Python
scripts were executed through the Anaconda distribution,
ensuring reproducible environment management and version
control (16191,

Parameter Settings

Parameter tuning plays a crucial role in the effectiveness of

PSO-based algorithms. The IPSO model adopted adaptive

parameter strategies to maintain an optimal balance between

exploration and exploitation.

e Swarm Size (N): 30 particles were selected after
empirical testing, balancing computational cost and
population diversity.

o Inertia Weight (®): Dynamically decreased from 0.9
to 0.4 throughout the iterations using a linear-decay
model to enhance convergence 2],

e Cognitive Coefficient (c1) and Social Coefficient (c2):
Adaptively varied in the range .2, 2.% based on the
diversity index of the swarm. Higher values of c:
promoted exploration in the initial stages, while
increased c2 emphasized convergence in later stages.

e Velocity Clamping: Velocity values were limited
within £Vmax = 0.2 x search range to avoid
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divergence.

e Maximum Iterations: 500, with early stopping
enabled if no improvement was recorded for 30
consecutive iterations.

e Fitness Function: Combined Sum-of-Pairs (SP) score
and Total Column (TC) score with a structure-aware
gap penalty [261,

e Termination Criteria: The algorithm terminated when
either convergence was achieved or maximum
iterations were reached.

Evaluation Metrics and Tools

To ensure a fair and comprehensive evaluation, multiple

quantitative and statistical metrics were used.

Alignment Quality Metrics:

e Sum-of-Pairs (SP) Score: Measures the average
similarity across all pairwise alignments.

e Total Column (TC) Score: Indicates the fraction of
correctly aligned columns compared to the reference

https://www.computersciencejournals.com/ijecs

e Conservation Index: Evaluates biological relevance by
quantifying conserved amino acid patterns.

Computational Metrics

e Execution Time (CPU Time): Total processing time
per dataset to assess computational efficiency.

e Convergence Rate: Number of iterations required to
reach the optimal alignment score.

e Memory Usage: Monitored to ensure scalability for
larger datasets.

Visualization of convergence and fitness improvement
curves was performed using Matplotlib and Seaborn, while
statistical significance of results (p < 0.05) was tested using
paired t-tests and ANOVA (performed in MATLAB and
Python’s SciPy module).

All metrics adhered to the evaluation guidelines proposed
by standard bioinformatics studies such as those of Van
Walle et al. (2005) and [, By combining diverse metrics
and visualization tools, the IPSO algorithm’s performance
was validated for both accuracy and computational

. feasibili
alignment. v
Table 1: Performance Comparison
Algorithm Avg. SP Score CPU Time (sec) Convergence lterations
Clustalw 0.65 45 120
MUSCLE 0.72 50 110
PSO 0.78 70 95
Improved PSO (Adaptive) 0.85 60 70
Table 2: Accuracy Comparison (SP and TC Scores)
Algorithm Avg. SP Score Avg. TC Score Rank
ClustalWw 0.65 0.60 4
MUSCLE 0.72 0.68 3
PSO 0.78 0.73 2
Improved PSO (Adaptive) 0.85 0.80 1

—3

ClustalWv MUSCLE

mAvg. SP Score

m CPU Time (sec)

0.85

PSO Improved PSO (Adaptive)

m Convergence lterations

Fig 1: Performance Comparison
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Fig 2: Accuracy Comparison (SP and TC Scores)
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Fig 4: Runtime Efficiency (CPU Time in Seconds)
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Table 3: Convergence Speed Across Datasets

Algorithm BAIIBASE (lterations) SABmark (lterations) Avg. Iterations
Clustalw 120 130 125
MUSCLE 110 115 1125

PSO 95 100 97.5
Improved PSO (Adaptive) 70 75 725

Table 4: Runtime Efficiency (CPU Time in Seconds)

Algorithm BAIIBASE SABmark Avg. Runtime
Clustalw 45 50 475
MUSCLE 50 55 52.5

PSO 70 75 72.5
Improved PSO (Adaptive) 60 65 62.5

Table 5: Statistical Significance (Paired t-test p-values)

Comparison p-value Significance
Adaptive PSO vs. PSO 0.002 Significant
Adaptive PSO vs. MUSCLE 0.001 Significant
Adaptive PSO vs. ClustalW 0.0005 Highly Significant

4. Results and Discussion

The results obtained from the comparative experiments
provide strong evidence that the adaptive PSO framework
significantly enhances performance in multiple sequence
alignment (MSA) compared to both heuristic methods
(ClustalW, MUSCLE) and standard PSO approaches. This
section presents a detailed discussion of outcomes across
accuracy, convergence, runtime efficiency, and scalability,
while also reflecting on the broader computational “cost-
benefit” aspect in an economic sense.

Accuracy of Alignment

To begin with, the adaptive PSO consistently achieved
higher Sum-of-Pairs (SP) and Total Column (TC) scores
than the competing algorithms. On BAIIBASE datasets, the
adaptive PSO achieved an average SP score of 0.85,
compared to 0.78 for standard PSO, 0.72 for MUSCLE, and
0.65 for ClustalW. This improvement reflects the
effectiveness of dynamic parameter control in striking a
balance between exploration and exploitation during
optimization. The adaptive adjustment of inertia weight and
acceleration coefficients allowed the algorithm to preserve
evolutionary  conservation  without  over-penalizing
biologically plausible gaps. These findings are consistent
with earlier studies, such as %, who also demonstrated that
integrating parameter tuning in PSO variants can improve
biological alignment accuracy.

Convergence Behavior

A major advantage of the proposed method lies in its faster
convergence speed. Line graph comparisons of fitness
values across iterations revealed that adaptive PSO reached
near-optimal solutions in approximately 70 iterations,
whereas standard PSO required nearly 95 iterations to
achieve comparable results. MUSCLE and ClustalW
required over 100 iterations and still fell short in terms of
quality. The stagnation detection mechanism in adaptive
PSO played a crucial role in this improvement, preventing
the swarm from becoming trapped in local optima. By
reintroducing diversity when needed, the algorithm was able
to sustain search momentum throughout the optimization
process.

Computational Efficiency
When considering runtime, a trade-off becomes evident.

Adaptive PSO was faster than standard PSO (average CPU
time of 60 seconds versus 70 seconds on BAIIBASE) but
slightly slower than heuristic methods such as ClustalW (45
seconds) and MUSCLE (50 seconds) [1%. This trade-off
reflects the inherent difference between metaheuristic and
heuristic approaches: while heuristics are faster, they often
compromise on alignment quality. In contrast, adaptive PSO
balances computational cost with significantly higher
alignment accuracy, making it more practical for
applications where biological reliability outweighs runtime
concerns [,

Scalability to Larger Datasets

Equally important, the adaptive PSO demonstrated robust
scalability on larger datasets, such as SABmark and
extended BAIIBASE subsets with higher sequence
divergence and length. As dataset size increased, the
heuristic methods exhibited sharp drops in accuracy, while
standard PSO showed moderate declines. Adaptive PSO,
however, maintained relatively stable SP and TC scores,
indicating its ability to handle the complexity of aligning
multiple, structurally diverse sequences. This scalability is
particularly valuable in modern bioinformatics, where
genomic and proteomic datasets are expanding rapidly. The
results echo findings from 8, who emphasized the need for
alignment methods that remain robust as dataset size and
complexity grow.

Economic-Style Efficiency: Computational Cost vs.
Output Quality

From an economic perspective, the performance of adaptive
PSO can be evaluated as a cost-benefit trade-off. The “cost”
in this context refers to computational resources such as
CPU time, memory usage, and number of iterations, while
the “benefit” is represented by alignment accuracy and
biological relevance [2 Compared to MUSCLE and
ClustalW, adaptive PSO incurred a slightly higher
computational cost but produced substantially better-quality
alignments. When compared to standard PSO, adaptive PSO
offered both higher accuracy and lower computational cost,
making it a more efficient investment of computational
resources [*?

This efficiency can be likened to economic productivity:
adaptive PSO achieves a higher “outputper unit cost” by
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optimizing parameter control. The balance between
exploration and exploitation functions like resource
allocation, ensuring that computational power is not wasted
on redundant searches but strategically invested in
promising regions of the solution space. This analogy
highlights the broader impact of adaptive metaheuristics in
bioinformatics, where resource constraints are a constant
concern [12

Critical Insights

The findings suggest several important insights:

1. Parameter Adaptability is Crucial: Static PSO
parameters are insufficient for dynamic and complex
problems like MSA. Adaptive control introduces
flexibility, allowing the algorithm to respond to
different phases of the search process.

2. Quality vs. Speed Trade-Off: While adaptive PSO
may not be the fastest algorithm in absolute terms, its
superior alignment quality justifies the additional
runtime. This balance mirrors real-world applications,
where accuracy often outweighs marginal differences in
computational speed.

3. Scalability as a Competitive Advantage: The ability
to scale effectively to larger datasets positions adaptive
PSO as a future-proof method in bioinformatics. With
the growth of next-generation sequencing, this
scalability will be critical for practical adoption.

5. Conclusion

The present study set out to address the persistent challenges
in multiple sequence alignment (MSA) by proposing an
improved Particle Swarm Optimization (PSO) model with
adaptive parameter control. The results consistently show
that adaptive PSO is not only more accurate but also more
efficient than traditional approaches, making it a promising
method for advancing bioinformatics alignment tools ")

At its core, the adaptive PSO introduces a mechanism that
dynamically tunes inertia weight and acceleration
coefficients.  This  innovation  prevents  premature
convergence, maintains search diversity, and ensures faster
progression toward high-quality solutions. The comparative
results against ClustalwW, MUSCLE, and standard PSO
reinforce this advantage, particularly in terms of Sum-of-
Pairs (SP) scores, convergence iterations, and scalability. By
integrating biological relevance into the fitness function,
such as structural similarity-aware gap penalties, the
proposed framework ensures that improvements are not only
computational but also biologically meaningful [

One of the key insights from this research is the balance
between computational cost and alignment quality. While
heuristic methods like MUSCLE and ClustalW remain
faster in execution, their trade-off in accuracy becomes
increasingly problematic for modern genomic research,
where biological correctness is paramount. The adaptive
PSO, though requiring slightly more computational time,
delivers alignments that preserve evolutionary and
functional signals more effectively. In practical terms, this
means that researchers gain higher confidence in
downstream analyses such as phylogenetic tree construction,
protein structure prediction, and functional annotation [*!
Equally significant is the demonstrated scalability of
adaptive PSO. In an era of rapidly expanding sequence
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databases  driven by  next-generation  sequencing
technologies, algorithms must align not just a handful but
often thousands of sequences. The stability of adaptive PSO
performance across both divergent and conserved datasets
suggests that it can meet this demand, positioning it as a
sustainable solution for large-scale genomic projects. This
scalability directly addresses the concern highlighted by (8],
who emphasized the difficulty of balancing speed and
accuracy as dataset sizes increase.

Beyond technical improvements, the findings of this study
underline the broader economic efficiency of adaptive
optimization in computational biology. By minimizing
wasted iterations and focusing computational resources on
promising solution regions, adaptive PSO maximizes output
per unit of computational investment. This parallels ideas in
resource optimization, where efficiency is defined not by
speed alone but by the ratio of meaningful results to cost
incurred.

That said, limitations remain. The method still requires
slightly higher runtimes compared to purely heuristic tools,
and further work is needed to refine parallelization
strategies for high-performance computing environments.
Moreover, while the integration of structural information in
the fitness function marks a step forward, future studies
could extend this approach by incorporating machine

learning models to predict biologically relevant gap patterns
7]
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