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Abstract 
The identification of handwritten prescriptions is increasingly regarded as an important task during the 

digitization process occurring within healthcare. Written prescriptions are estimated to account for 

more than 13% of prescription errors. This research proposes a convolutional neural network (CNN)-

based classification approach for the automatic classification of handwritten prescription drug images 

to a total of 78 classes. The dataset contains 60 images per class, 20 of which were used to train the 

network, 10 of which were used for validation, and the remaining 10 were used for testing. All images 

were resized to 64 × 64 pixels and converted to grayscale to provide input into the model. The CNN 

configuration achieved 80.38% validation accuracy and 69.74% testing accuracy. In order to interpret 

model outputs, Gradient-weighted Class Activation Mapping (Grad-CAM) was employed to highlight 

class-relevant areas of the images. The last component of this work evaluated and analyzed the model 

using confusion matrix analysis, accuracy per class, and misclassification patterns. Ultimately, this 

work indicates that the proposed method is feasible for the recognition of handwritten prescription and 

provides new information for the future practical application of this task in medical systems. This 

initial work is an important contribution to the growing area of AI-assisted medicine, providing an 

interpretable and scalable solution to drug identification. 

 

Keywords: Handwritten prescription classification, convolutional neural network (CNN), deep 

learning, Grad-CAM visualization, multi-class image recognition 

 

1. Introduction 

1.1 Background 

Digital technologies have brought changes to the healthcare system over the last few decades 

in three predominant modes: medical records, readings (measures), and drugs [1-4]. 

Legitimately reading handwritten medical prescriptions remains a contemporary challenge, 

which has immediate implications for the safety and productivity of pharmacies [5]. 

Handwritten prescriptions are still prevalent in many areas of practice, and the illegibility of 

handwriting, obscure names of drugs, and interpretations of abbreviations or symbols can all 

be sources for errors in reading the prescription [6]. These now are the basis for medication 

errors that contribute to preventable harm [7]. 

As health care infrastructure improves, there is an increasing demand for automation 

solutions able to accurately process prescription data and, in particular, prescription 

medication names [8]. In addition to consuming an exorbitant quantity of time, human manual 

data entry is also inherently error prone. For these reasons, academics and professionals have 

begun to turn towards artificial intelligence (AI), more generally deep learning, to alleviate 

some of these issues [9]. Convolutional Neural Networks, which are a type of deep learning 

structures by nature well-suited in design for image analysis tasks, enjoy exceptional 

performance in application scenarios including handwriting recognition, object detection, 

and medical imaging. CNNs are capable of automatically learning spatial hierarchies and 

features from image data, making them ideal candidates for interpreting complex 

handwritten inputs without extensive manual feature engineering [10]. 

Success in application of CNNs in postal code detection, number plate detection, and even in 

pathological image classification has paved a way for likely application in pharmaceutical 

cases as well [11]. While applying CNNs on prescription data in handwriting comes with a 
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variety of domain-specific issues, they encompass intra-

class variability (e.g., differential handwriting of same name 

for a medicine), classes that are similar in appearance (e.g., 

almost identical looking medicine names), background 

noise, as well as non-uniform illumination conditions in 

scanned or photographed images. Also, a great number of 

medicines have prefix/suffix appearances that are highly 

similar, which is likely going to lead to misclassifications by 

poorly discriminative models [12]. 

Also, several works examined optical character recognition 

(OCR) technology for distinguishing text in prescriptions, 

but, as a solo effort, OCR fails when it encounters 

unstructured writing or cursive writing [13]. To address this 

constraint, the field has shifted toward image-based deep 

learning methods. By treating the entire drug name as a 

visual pattern rather than characters to be accurately 

segmented, CNNs focus on overall visual characteristics 

that are most robust for classification [14]. 

Concurrently, interpretability and trust in AI models have 

become important demands in medical applications. High 

accuracy of a model is insufficient; healthcare professionals 

and regulators want to know how the model reaches a 

decision. Grad-CAM (Gradient-weighted Class Activation 

Mapping) and other mechanisms have been proposed as 

solutions. Grad-CAM provides visual explanations for 

predictions by highlighting the regions in an image that are 

most influential for the model’s decision. Such 

visualizations can help pharmacists and clinicians validate 

the correctness of a model’s output, thereby increasing 

confidence in the system [15, 16]. 

Furthermore, the advancement of open-source libraries, 

availability of GPU computing, and accessible deep learning 

frameworks like TensorFlow and PyTorch have 

democratized the development and deployment of CNN 

models. Due to these tools, it is now possible for large 

training, real-time inference, and rapid prototyping, enabling 

real-world deployment in mobile devices, point-of-care 

devices, and in pharmacy systems [17, 18]. 

As a part of this, our investigation presents a solution for 

identifying handwritten medication name using a CNN, 

applied across a multi-class dataset of 78 commonly 

prescribed medication images. The problem is not only 

addressed for obtaining high-accuracy classification but is 

approached with a further goal of enabling visual 

interpretation of output, thus creating a reliable aid for 

assisting pharmacists and healthcare professionals in 

prescription verification and digitization. 

Despite advancements in optical character recognition 

(OCR) and image processing, existing systems are not 

capable of accurately categorizing handwritten drug names 

due to diverse writing styles, class imbalance, and low-

resolution images. Drug name misclassifications have 

traditionally serious patient safety implications in addition 

to compromising reliability in automated prescription 

systems. Furthermore, a great proportion of existing models 

have high precision but are not interpretable, which is not 

useful in clinical practice where it is necessary for clinicians 

to be aware of decisions made by models. 

 

1.2 Problem Statement 

Despite the advances in OCR and image processing, current 

systems still face challenges in recognizing handwritten 

drug names accurately because of the variations of 

handwritten patterns, imbalance of different drug classes, 

and low resolution of input images. Mislabeling drugs is 

very dangerous for the patients and reduces the reliability 

of the automatic prescription systems. Moreover, some of 

the models available today are highly accurate but not 

interpretable; this will not be acceptable for a clinical 

background where it is necessary to understand the potential 

decisions of a model. 

 

1.3 Research Objective 

The objective of this study is to create a strong and 

understandable CNN-based model for sorting handwritten 

drug names taken from prescription images. The main goals 

are 

 Preprocessing and standardizing the prescription image 

dataset to enable effective CNN training. 

 Designing and evaluating a deep learning model 

capable of classifying 78 distinct drug classes with high 

accuracy. 

 Applying Grad-CAM (Gradient-weighted Class 

Activation Mapping) to visualize and interpret model 

decisions, enhancing trust and transparency in medical 

AI systems. 

 Delivering comparative performance assessment and 

confounding effects to showcase the model's 

opportunities and constraints in practice. 

 

Literature Review  

In recent years, there has been remarkable progress in deep 

learning in detecting and interpreting handwritten 

prescriptions in medicine. Researchers have experimented 

with numerous neural network architectures, including 

CNN, Bidirectional Long Short-Term Memory (Bi-LSTM), 

and hybrid models of CNN with LSTM or Recurrent Neural 

Network (RNN) layers in an effort to address the issues of 

illegible writing and to support multiple languages [19]. To 

enhance the accuracy and resilience of these models, the 

deep learning models have been trained using multiple 

datasets and fine-tuned using methods like data 

augmentation, transfer learning, and lexicon based decoding 
[20]. Attention mechanism, fuzzy search algorithms, and 

multilingualism also feature, that makes these systems more 

usable in practice-based health care. This comparison is 

summarized in Table 1. 
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Table 1: Summary of Recent Deep Learning Approaches for Handwritten Medical Prescription Recognition. 
 

Reference Year Model Used Dataset/Technique Accuracy/Results Contribution 

Jain et al. [21] 2021 CNN-BiLSTM + CTC 
Prescription dataset; string 

matching 

Improved recognition of 

medical terms 

Used CNN-BiLSTM for 

structured text extraction 

Tabassum et al. 
[22] 

2021 
Bidirectional LSTM + SRP 

Augmentation 

Handwritten Medical Term 

Corpus 
89.5% accuracy 

SRP data augmentation boosted 

accuracy 

Shaw et al. [23] 2021 Neural Network Extended MNIST Efficient recognition 
Converted illegible handwriting 

to digital text 

Malbog et al. [24] 2022 SSD Mobilenet v2 
Doctor samples 

(handwritten) 

92.4% accuracy, 57.4 ms 

speed 

Developed a device for drug 

name recognition 

G et al. [25] 2022 CNN, RNN, LSTM 
Multi-language, Unicode 

Matching 
Multilingual capability 

Prescription recognition in any 

language 

Pavithiran et al. 
[26] 

2022 
CNN, RNN, LSTM + 

Fuzzy Search 

Multi-language 

Handwriting 
Structured output 

Used fuzzy search and basket 

analysis 

Shahade et al. [27] 2023 CNN Custom dataset 
89% training, 70% test 

accuracy 

CNN-based text extraction 

from prescriptions 

Honey et al. [28] 2023 AlexNet + SVM Transfer learning 98% accuracy 
Recognition + alternative drug 

suggestions 

Zia et al. [29] 2023 
Transformer-based, GB, 

RF, Ridge 
Custom handwriting dataset 0.85 accuracy 

Sequence-to-sequence for 

medicine extraction 

Sehimi et al. [30] 2023 CNN + BiLSTM + CTC Transfer learning Performance enhanced 
BiLSTM + CTC for sequence 

labeling 

Razdan et al. [31] 2023 
CNN + BiLSTM + Lexicon 

Search 
Handwritten prescriptions Improved recognition 

Lexicon Search improves 

decoding 

Kavinda & 

Fernando [32] 
2024 VGG + BiLSTM Prescription Dataset 83% accuracy, 0.4874 loss 

VGG-based sequence 

recognition 

Khan et al. [33] 2024 CNN + BiLSTM + CTC Handwriting dataset 98.4% accuracy 
Hybrid CNN-BiLSTM for high 

precision 

Ramani et al. [34] 2024 CNN + FLSTM Multilingual prescription High accuracy 
AI-powered decoding and 

safety enhancement 

Dhayanithi et al. 
[35] 

2024 MobileNet Pill recognition images High accuracy 
Automated pill detection 

system 

 

As shown in Table 1, several deep learning models have 

been utilized in available literature, including CNNs, Bi-

LSTMs, and hybrids, for handwritten prescription 

recognition issues. Although many methodologies have 

proved promising in terms of accuracy, they tend to be 

based on elaborate architecture, large numbers of datasets, 

or narrowly focused on a small number of languages or 

predefined word classes. However, this paper contributes by 

offering a lightweight and implementable CNN-based 

scheme specially designed for multiclass handwritten drug 

name classification based on a carefully selected dataset of 

78 classes. With the advantages of high-resolution 

preprocessing, learning rate scheduling adaptation, and 

explainability as Grad-CAM, this design balances accuracy, 

generalizability, and efficiency in a trade-off manner. In 

addition to addressing the need for prescription digitization 

for a variety of medicine labels, the article serves as a 

foundation for real-time healthcare application scenarios in 

settings with limited resources. 

3. Methodology 

3.1 Overview of Methodology 

The methodology in this study is based on a structured 

pipeline for accurate classification of handwritten images of 

drug names. The process begins with the collection of a 

dataset of 78 drug classes containing handwriting samples 

of prescription images. Each handwritten drug name image 

is then pre-processed to ensure a uniform size and bias free 

format. The images will be split into training, validation and 

test subsets. 

A customized CNN is created to learn important visual 

traits, and batch normalization and the dropout technique are 

employed to improve the model's generalization. The model 

is compiled with categorical cross-entropy for loss function 

and Adam as an optimizer. The model is trained for 50 

epochs using learning rate scheduling to avoid over-fitting. 

The model's performances are analyzed using accuracy, loss 

curves, classification reports, and confusion matrices. Grad-

CAM is utilized to visualize which regions are influencing 

the model's decision. 

The complete pipeline is illustrated in the expert workflow 

diagram (Figure 1). 
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Fig 1: Expert workflow showing the complete methodology pipeline for handwritten drug name classification using a CNN-based approach. 

 

3.2 Dataset Description 

The data where this study draws its examples contained 

handwritten prescription images representing 78 different 

drug classes [36]. Each drug class had approximately 60 

grayscale images for a total of 4,680 samples within the 

data. The data was split into training, validation, and test 

subsets, while keeping a balance across each class with the 

purpose of effective model evaluation. All images were 

resized to 64×64 pixels and normalized to the [0, 1] range for 

CNN processing. 

The class-wise distribution and partitioning of data have 

been presented in Table 2, and a sample visualization of 

selected images of drug names from class is presented in 

Figure 2. The images are provided to demonstrate the visual 

variations of handwriting, and the variable nature of look-

alike drug names creates a classification problem. 

 
Table 2. Dataset Composition and Split by Class. 

 

Split Type Number of Images per Class Percentage of Total 

Training Set 40 ~67% 

Validation Set 10 ~16.5% 

Test Set 10 ~16.5% 

Total 60 100% 
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Fig 2: Sample images of handwritten drug names across 20 different classes. [36] 

 

3.3 Data Preprocessing 

To facilitate compatibility with the CNN architecture, the 

data also underwent a preprocessing step in which each drug 

names' handwritten images were resized to 64×64 pixels and 

converted to grayscale (see figure 3.) Pixel intensity values 

were then normalized to the range [0, 1] by dividing by 255, 

which facilitates faster and more stable convergence during 

training. 

The corresponding class labels, originally provided as 

textual drug names, were encoded into numerical form using 

a label encoder. Then these numerical labels were encoded 

into a categorical one-hot representation to facilitate multi-

class classification over a total of 78 classes. 

To maintain consistency and avoid bias during training and 

testing of models, stratified sampling was applied in 

partitioning the dataset into training, validation, and test 

sets. This resulted in all subsets having a proportionate and 

uniform distribution of all classes, hence allowing for 

improved generalization of the model on novel data. 

 

 
 

Figure 3. Data Preprocessing Workflow. 

3.4 Model Architecture and Training Configuration 
A custom CNN-driven architecture for precise classification 
of all images of handwritten drug names into 78 distinct 
classes. The network was carefully built for a complex-
generalization strength trade-off, minimizing overfitting as 
much as possible. 
The network consists of three successive convolutional 
blocks. Each block consists of a Conv2D, a subsequent 
batch normalization, and a MaxPooling2D. This serves to 
allow the network to extract hierarchically spatial features in 
a way that stabilizes training as well as helps reduce internal 
covariate shift. 
The resulting 3D output feature maps are passed on to a 
Flatten layer in order to flatten them into a 1D feature 
vector, which serves as input for a fully connected Dense 
layer of 256 units with ReLU activation. A dropout layer is 
included after the dense layer to reduce overfitting by 
randomly deactivating neurons during training. 
The final output layer is a dense layer with 78 units, 
corresponding to the number of drug classes, using the 
softmax activation function to generate probability 
distribution over all classes. 
The complete model comprises approximately 1.29 million 
trainable parameters, all optimized using the Adam 
optimizer with an initial learning rate of 0.0001. 
To optimize the model (Figure 4), the following training 
strategy was employed: 

 Loss Function: Categorical Cross-Entropy, suitable for 
multi-class classification tasks. 

 Optimizer: Adam, selected for its adaptive learning 
capabilities and efficient convergence. 

 Batch Size: 32 samples per batch. 

 Epochs: The model was trained for up to 50 epochs. 

 Learning Rate Scheduling: A ReduceLROnPlateau 
strategy was utilized to decrease the learning rate once 
the validation performance plateaued. 

 Early Stopping: Used to stop the training when the 
validation loss did not improve to avoid overfitting. 

 Checkpointing: The model that performed best based 
on validation loss was saved for final evaluation. 

 
This architecture facilitated the model to converge 
effectively while maintaining generalization on test data it 
had not encountered in the training data. 
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Fig 4: CNN Architecture Overview and Training Configuration. 

 
Performance Evaluation Metrics 
The assessment of the proposed CNN model was rigorously 
undertaken via a range of quantitative and visual metrics, in 
order to achieve a robust assessment and interpretable 
analysis. 
The evaluation components are given below: 

 Accuracy: Calculated for each of the training, 
validation and test datasets, measuring overall 
classification correctness. 

 Loss Analysis: Training and validation loss curves 
were plotted across 50 epochs to track model 
convergence, while detecting signs of over- or under- 
fitting. 

 Classification Report: Precision, recall and F1-score 
were computed for every one of the 78 classes, 
providing detailed insights into the model's 
performance on a per class level. 
 

 Confusion Matrix: Presented in three formats: 

 Raw confusion matrix with actual prediction counts, 

 Normalized confusion matrix to visualize relative error 
distribution. 

 Top 10 class confusion matrix highlighting the most 
misclassified drug names. 

 Per-Class Accuracy: A bar chart displaying the 
accuracy score for each class to identify strengths and 
weaknesses in specific categories. 

 
4. Results and Discussion  
4.1 Training and Validation Performance 
The results indicate that the CNN model showed consistent 
convergence throughout the training, as depicted in the 
accuracy and loss trend throughout the 50 epochs. The 
training accuracy followed a pattern in which it improved 
significantly through the entire training epoch and would 
then appear to plateau after an initial increase. The 
validation accuracy showed a similar pattern but appeared to 
plateau after initially improving. This suggests a reasonable 
level of generalization. 
This was confirmed with the trends in the training and 
validation loss, where the training loss decreased steadily 
and the validation loss plateaued - indicating there was no 
evidence of significant overfitting. 
These patterns are shown in Figures 5 and 6, which show 
the loss curve and accuracy curve, respectively. The model 
was trained to highest capacity prior to the end of the epoch 
due to the early stopping and learning rate scheduling 
strategies employed. 

 

 
 

Fig 5: Training and validation accuracy across epochs. 
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Fig 6: Training and validation loss across epochs. 

 

4.2 Classification Results on the Test Set 

The CNN model presented in this study achieved a test 

accuracy of 69.74% using the unseen dataset. Additionally, 

to general accuracy, a complete classification report was 

generated, providing precision, recall and F1-score for each 

of the 78 drug classes. These metrics provide additional 

insights into model performance, particularly during 

multiclass classification tasks due to the visual similarities 

between classes. 

The macro-average F1-score and the weighted-average F1-

score both reported 0.70, indicating consistent performance 

on both the dominating classes and less represented classes. 

Some classes such as Azyth, Lucan-R, and Tamen had 

perfect or near-perfect F1-scores, whereas Rivotril and 

Renova classes had much lower F1-scores indicating these 

are the classes where the model struggles the most due to 

similarities in written names. 

To help with interpretability and error analysis, Figure 7 

shows the raw confusion matrix, while Figure 8 shows the 

confusion matrix in a normalized manner for ease of 

evaluation. Due to potential error clustering in certain 

classes, Figure 9 shows the top 10 most confused classes 

which highlights specific areas to focus on when improving 

the model. 

 

 
 

Fig 7: Per-Class Accuracy Across All 78 Drug Classes. 
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Fig 8. Normalized Confusion Matrix for Multi-Class Drug Name Classification. 

 

 
 

Fig 9: Confusion Matrix Highlighting the Top 10 Most Confused Drug Classes. 
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4.3 Visual Interpretation Using Grad-CAM 

To increase interpretability of the CNN model’s decisions, 

we applied Grad-CAM (Gradient-weighted Class Activation 

Mapping) technique to a sample of correctly classified and 

misclassified samples. The heatmaps illustrated the most 

contributory areas of the handwritten drug names of the 

CNN model’s predictions. As shown in Figure 10, the CNN 

model consistently focused on individual character strokes 

and more identifiable lettering in correctly predicted 

samples (for example, Ace, Atrizin) while ensuring less 

informative lettering or misleading lettering in mislabeled 

samples (e.g. Axodin mislabeled as Bicozin). 

 

 
 

Fig 10: Grad-CAM visualizations for selected handwritten drug names (correct and incorrect predictions). 

 

4.4 Comparative Evaluation and Discussion 

The performance of the proposed CNN-based model for the 

classification of handwritten drug names achieved a test 

accuracy of 69.74% with a macro- and weighted-average 

F1-scores of 0.70. The testing accuracy of our model is 

encouraging considering the difficulty of classifying 78 drug 

classes, which can significantly vary in style and is often 

unclear in handwritten forms. 

This performance is like those achieved in other work in the 

handwritten prescription recognition domain. For example, 

Shahade et al. [27] used a CNN model for recognizing text in 

medical prescriptions and obtained 70% test accuracy, 

which is similar to the accuracy reported here. Their 

research shows the ability for CNNs to learn aspects of 

spatial relevance in even a noisy handwritten context. 

In another publication, Brian Lobo et al. [37] employed a 

hybrid CNN-LSTM model to evaluate handwriting 

generated by healthcare professionals. In their publication, 

they found that their design yielded an 81.10% accuracy. 

Their architecture achieved a higher performance than our 

architecture; however, they focused on a smaller label set 

than this study and benefited from sequence modeling 

capabilities afforded by LSTM layers. Our effective CNN-

only model, labeled CBRA, provides compelling 

performance for a larger class set, and achieves performance 

differences without temporal modeling [37]. 

Further, Sharma et al. [38] developed and reported DocAssist 

which utilized CNN-based algorithms to identify non-

compound handwritten prescriptions and reported an 81% 

accuracy with their own CBRA experiment. While the 

model was effective, their study targeted a much broader 

outcome related to signature perception and legibility as 

opposed to multi-class identification on drug names. 

In contrast with these studies, the present model is unique in 

terms of scale, with a much higher number of classes (78), 

and consequently offers a finer-grained analysis. 

Furthermore, the specific evaluation - confusion matrices 

(Figures 8 & 9), per class accuracy (Figure 7), and Grad-

CAM heatmaps (Figure 10) respectively - provided 

considerable detail on performance weaknesses and 

potential improvements, or at least performance 

characteristics. Specifically, we clearly identified the classes 

"Azyth" and "Lucan-R" as having strong identification 

while the classes "Rivotril" and "Renova" suffered from 

high visual similarity, or vagueness in writing, respectively. 

 

5. Conclusion  

This research article reports on an effective deep learning 

model based on a CNN for classifying handwritten drug 

names, which represents a critical contribution to mitigating 

deficiencies in clarity and accuracy of medication 

prescriptions. Trained and evaluated on 78 drug classes, the 

CNN was able to achieve a test accuracy of 69.74% with 

macro- and weighted-F1 scores of 0.70, meaning that the 

model was able to generalize to classes that were visually 

different well. These improvements were bolstered with 

high-definition test plots, confusion matrices, and Grad-

CAM visualizations to support the interpretation of the 

reasoning process by the model. The CNN-based 

classification framework offers a new approach to the 

digitization of medication prescriptions, supporting 

enhanced readability of handwritten drug names and efforts 

toward pharmacy automation and patient safety. In the 

context of the breadth and depth of more recent published 

work on healthcare handwriting classification, the model 

demonstrated good performance across a more extensive, 
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granular class distribution. 

Despite the benefits, there are limitations in this research. 

The dataset is relatively homogenous in terms of writing 

styles and image acquiring conditions such as paper quality 

and illumination. These homogeneity issues may impede 

generalizability to real-world applications. The model was 

also trained on grayscale only without considering 

contextual information (e.g. prescription layout and drug 

names shown together). While the CNN architecture was 

effective, it was still relatively simple architecture and did 

not use temporal modeling, such as RNNs of attention 

mechanisms, which could have discerned more detailed 

information in handwriting with more complexity. Finally, 

although stratified splitting was performed, there remained 

minor class imbalance that may have impacted performance 

of underrepresented classes of drugs. 

Building upon these findings, future research could explore 

several enhancements: 

 Hybrid architectural designs: Integrating LSTM 

layer(s) or transformer-based approaches (e.g., TrOCR) 

to better handle recognition of the complicated or 

sequential nature of handwriting.  

 Data augmentation: Using more diverse, and more 

aggressive augmentations such as rotation, noise and 

blurring, to enhance robustness under real-world 

variability. 

 Multimodal input: Using contextual cues, such as a 

prescription format (e.g., name of patient), or 

recognized text from OCR, that could possibly reduce 

ambiguity between visually similar drug names. 

 Transfer learning: Using pre-trained vision models 

(e.g., ResNet, EfficientNet, or Vision Transformers, 

ViT), to expedite model training and improve accuracy. 

 Deployment and real-time testing: Deploying the 

model in a real-world prescription-scanning systems to 

assess actual usability and inform on the potential for 

making improvements towards enhanced efficiency and 

reliability. 
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