

~ 176 ~

International Journal of Engineering in Computer Science 2025; 7(2): 176-179

E-ISSN: 2663-3590

P-ISSN: 2663-3582

Impact Factor (RJIF): 5.52

www.computersciencejournals.c

om/ijecs
IJECS 2025; 7(2): 176-179

Received: 24-07-2025

Accepted: 27-08-2025

Bogutskii Aleksandr

Bachelor's degree, ITMO

University, St Petersburg,

Russia

Corresponding Author:

Bogutskii Aleksandr

Bachelor's degree, ITMO

University, St Petersburg,

Russia

Engineering approaches to building high-performance

real-time services: The case of antifraud services

Bogutskii Aleksandr

DOI: https://doi.org/10.33545/26633582.2025.v7.i2b.214

Abstract
In this article, engineering approaches to building high-performance real-time services are considered

using the example of antifraud services. It examines the experience of creating distributed high-load

solutions applied in industry for processing billions of events in real time with minimal latency.

Engineering solutions aimed at detecting suspicious activities are investigated, including data filtering,

cleansing, deduplication, and normalization, as well as information aggregation using window

functions, hierarchical aggregation, and approximate computing. Architectural patterns and practices

for implementing correct processing semantics are described. Approaches to ensuring system stability

and performance are also examined.

Keywords: Stream processing, distributed systems, anti-fraud, information aggregation, high-load

services, Apache Kafka, auto-scaling

Introduction

Present-day digital services generate and process vast volumes of events in real time. These

may include data from online platforms, sensor networks, financial systems, or advertising

services, where even minor processing delays can significantly affect user experience and

analytical accuracy. The growing scale of such systems are often coupled with the increasing

intensity of data streams. They create a demand for new engineering solutions that can set

the seal on stable operation under high load.

Conventional approaches to information processing are based on batch computation and are

unable to meet these specifications. Their high latency and limited scalability frequently

render them unsuitable for tasks involving even millions of events per second. In response to

this, architectures oriented exclusively toward stream processing have become apparent,

since they enable reduced latency and greater resilience in distributed environments.

Alongside architectural advances, engineering practices for system optimization have also

evolved. Modern real-time services require right mechanisms for fraud detection. Equally

important are stability factors such as fault tolerance, load control, and predictable behavior

under traffic spikes. These challenges have driven the rapid development of streaming

analytics technologies and the associated engineering practices in recent years. The purpose

of this article is to analyze the engineering approaches applied in the design of high-

performance real-time services, with particular emphasis on antifraud services.

Main part. Engineering solutions for antifraud services under high load

Preventing fraud and summarizing user activity are crucial for any high-loaded service with

a lot of customers. It is at these stages that decisions are made regarding which data will

proceed to subsequent processing and how metrics and analytics will be generated. Well-

structured preprocessing can reduce the load on computational nodes several-fold while

simultaneously improving the accuracy of final results [1].

The first step of the antifraud process involves filtering and normalization of the incoming

stream. This includes removing duplicate events, for example, repeated clicks or sensor

signals, in order to prevent distortions in subsequent aggregation. To address this task,

systems employ schemes for message identification based on unique keys or combinations of

timestamps and hashes, as well as windowed deduplication, which is implemented in modern

stream processing engines such as Apache Flink or Apache Beam.

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://doi.org/10.33545/26633582.2025.v7.i2b.214

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 177 ~

A second key element of anti-fraud is stream cleansing from

noise and anomalies. Invalid messages, such as telemetry

with corrupted values, are discarded at an early stage. For

this purpose, validation rules and lightweight anomaly

detection algorithms are applied directly within the

streaming pipelines. An equally important component is

data format normalization [2]. Experimental studies confirm

the effectiveness of this approach. For instance, the SPinDP

(Stream Purifier in Distributed Platform) study

demonstrated that the introduction of a distributed cleansing

layer based on Apache Storm and Kafka, leveraging an

RDMA network, increased system throughput by more than

28 times and reduced average processing latency by 2473

times compared to a non-optimized system [3].

Event aggregation holds a central place in antifraud

services. In real-time environments, aggregation is typically

implemented through windowing functions, which group

data into temporal intervals. This enables the computation of

metrics such as the number of events occurring within a

given period. For more complex scenarios, Complex Event

Processing (CEP) is employed to detect patterns in the

stream, for example, identifying a sequence of three

transaction failures within a ten-second interval.

A hierarchical approach to aggregation has proven effective.

Data are first aggregated locally at edge nodes or shards,

and then combined into global aggregates. The choice of a

specific streaming platform directly determines how

antifraud service is implemented.The most commonly

adopted solutions include Apache Kafka, AWS Kinesis, and

Google Cloud Pub/Sub, each of which demonstrates

different approaches to scalability, delivery guarantees, and

event ordering (table 1).

Table 1: Event processing platform performance characteristics [4, 5]

Platform feature Apache Kafka AWS Kinesis YTSaurus dynamic tables

Maximum throughput 1M+ messages/second 1MB/shard/second input, 2MB/shard/second output 1M+ messages/second

Latency Sub-10ms Milliseconds range Milliseconds range

Scaling model Horizontal partitioning Sharding Horizontal partitioning

Delivery guarantee At-least-once Exactly-once Exactly-once

Event ordering Strict (within partition) Per shard Strict (within partition)

Processing model Pull-based Pull-based Pull-based

In practice, a variety of architectural patterns are employed

for event aggregation. For a long time, the Lambda

architecture remained a popular choice. However, it has

largely been supplanted by the Kappa architecture, which

relies exclusively onstream processing and log replay from

Kafka. Another widely adopted pattern is the combination

of CQRS (Command Query Responsibility Segregation) and

Event Sourcing, where all state changes are recorded as a

sequence of events. Aggregates are also built by subscribing

to this event stream.

Special attention should be given to the question of

correctness and processing semantics. Under heavy load, it

is critical for a system to adhere to consistent guarantees. In

practice, two primary semantics are distinguished: at-least-

once, which is simple and inexpensive but may result in

event duplication, and exactly-once, which is more costly

but indispensable in financial and advertising services. Flink

and Beam implement the latter through checkpoints and

transactional sinks. An important engineering practice in

this context is the design of idempotent operations, where

repeated processing of the same event does not alter the

final outcome. Current problems emphasize the necessity of

efficient aggregation algorithms. Increasingly, methods of

approximate computing, such as HyperLogLog or Count-

Min Sketch, are being adopted.

Practice of building high-load real-time event processing

services

Modern event-driven architectures and streaming platforms

provide high scalability, low-latency capabilities, and

system resilience. A prominent technological example of

industrial real-time stream processing can be found in

Uber’s experience. The company has undertaken extensive

work to deploy Apache Flink in combination with Apache

Kafka and Apache Pinot, building efficient and reliable

event-processing pipelines.

Uber leverages Flink for near-real-time advertising data

processing: from ingesting events (impressions, clicks),

through cleansing, aggregation, and order attribution, to the

delivery of summary data for reporting and analytics. The

system guarantees exactly-once processing semantics and

high reliability, which is critical in the context of advertising

events tied to financial transactions. In addition, to further

improve resilience and manageability of data streams, Uber

developed a Consumer Proxy layer integrated with Kafka

(fig. 1).

Fig 1: High level consumer proxy architecture [6]

Uber further continues to develop and maintain Flink as the

foundation of its streaming infrastructure for petabyte-scale

data processing. Main engineering enhancements include

the introduction of the FlinkSQL layer, that simplifies the

expression of analytics in SQL, as well as mechanisms both

for resource estimation and automatic scaling All of them

guarantee stable and scalable execution of streaming

workloads. One of the core components of Uber’s

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 178 ~

ecosystem has also become the auto-scaling of Kafka consumers (fig. 2).

Fig 2: The layers of the Unified Flink architecture at Uber [7]

LinkedIn developed Apache Samza as a solution for stateful

stream processing tightly integrated with Kafka. While

Samza laid the groundwork for fault-tolerant architectures,

there has been a shift towards more universal frameworks

such as Apache Beam. This service provides a unified

programming model across multiple runners and has been

adopted by organizations including Google and Spotify for

large-scale real-time analytics pipelines. The company

processes millions of events per second on individual tasks,

utilizing tens of terabytes of local state [8].

Netflix has built a real-time streaming infrastructure that

processed 1 trillion events per day in 2017, scaling this

volume twenty-fold by 2021. Its foundation consists of

managed versions of Kafka and Flink, the in-house platform

Mantis, and data at petabyte scale. This architecture

supports both analytical and operational streaming

scenarios, delivering low latency, resilience, and

organization-wide scalability. As highlighted in official

resources, Netflix also employs single-stage Samza jobs to

route more than 700 billion events and approximately 1 PB

of data per day from fronting Kafka clusters into S3/Hive [9].

The experience of these leading companies illustrates that

the successful adoption of real-time stream processing

depends on a combination of carefully designed

architectural strategies and specialized engineering

practices. The cases of Uber, LinkedIn, and Netflix

demonstrate that such approaches enable the processing of

data at the scale of trillions of events while maintaining

resilience and low latency.

Approaches to ensuring stability and performance in

high-load systems

Even a well-designed streaming architecture requires

dedicated measures to maintain stability and high

performance under increasing load. One of the most critical

strategies is the design of systems with resilience to failures

and overloads. In practice, this is achieved through

component isolation and the introduction of protective

mechanisms. For example, in microservice-based distributed

systems, the Circuit Breaker pattern is commonly employed

to prevent cascading failures: when a service becomes

overloaded or fails, the automatic “breaker” interrupts the

chain of calls, thereby preventing the malfunction from

propagating throughout the entire system [10].

Another fundamental principle is load control. Various

systems must be able to regulate the rate of incoming

requests or events in accordance with their current

processing capacity. In case, when the incoming flow

exceeds this threshold, mechanisms such as backpressure or

input-level load shedding can be used to ward off queue

overflow and performance deterioration. Without such

shields, IT structures risk entering an unstable operational

regime. Research has identified a class of phenomena

known as metastable failures, in which surpassing a critical

load threshold triggers a self-reinforcing performance

collapse [11]. The system falls into a “stall” characterized by

runaway queue growth and diminishing efficiency, from

which recovery is impossible without external intervention.

Apart from the components of architectural design, the

operations procedure is instrumental in ensuring stability.

The application of real-time observability and monitoring

systems allows immediate identification of anomalies.

Accurately calibrated metrics and alerting allow engineers

to detect rising latencies or excessive resource consumption

before such issues become serious enough to have the

potential of causing a total system collapse. Logging and

metric storage solutions like Prometheus, Grafana, and ELK

stack, along with distributed request tracing, allow deep

visibility into activity of a system.

Regular load testing and profiling under conditions

approximating real peak traffic are equally necessary.

Another key strategy is automatic resource scaling under

load. Modern cloud platforms natively support auto-scaling,

where the number of service instances dynamically expands

or contracts in response to the volume of incoming events

(fig. 3).

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 179 ~

Fig 3: Kafka autoscaling architecture [12]

Optimally tuned auto-scaling mechanisms are instrumental

in providing steady service, especially during peak traffic,

while at the same time avoiding service degradation and

wasteful utilization of resources during off-peak traffic.

Additionally, one needs to ensure the integrity of storage of

data and the effectiveness of communication mechanisms.

Utilization of replicated log-based queuing mechanisms

guarantees the persistence and security of messages even

with failures of individual nodes.

Taken together, these practices create the operational

ground for keeping the stability and performance of large-

scale systems. When applied systematically, they provide

platforms to remain predictable and resilient, securing

uninterrupted service quality even under sudden traffic

surges or partial component failures.

Conclusion

The development of real-time distributed systems

demonstrates that efficiency and resilience are largely

determined by the quality of engineering decisions at the

stages of anti-fraud. The application of filtering, cleansing,

and deduplication reduces redundant load and improves data

reliability, while the use of window functions, hierarchical

aggregation, and approximate computing enables a balance

between performance and accuracy.

Stability of a system is achieved through the adoption of

architectural patterns, load management strategies, and also

correct processing semantics. The integration of fault-

tolerance mechanisms, monitoring, and automatic scaling

ensures that streaming services remain predictable and

resilient under heavy load. Industrial experience confirms

that the combination of architectural strategies and

optimization practices makes it possible to design real-time,

high-load services that meet modern requirements for

scalability and data processing quality.

References

1. Makhtibekov A. Effectiveness of multichannel

marketing in the context of digital transformation.

Universum: economics and law: electronic scientific

journal. 2025;4(126):15–19.

2. Dudak A. Virtualization and rendering of large data

lists. Cold Science. 2024;9:17–25. EDN: QUGQBQ.

3. Gil MS, Moon YS. SPinDP: A High-Speed Distributed

Processing Platform for Sampling and Filtering Data

Streams. Appl Sci. 2023;13(24):12998.

doi:10.3390/app132412998. EDN: NDFWZE.

4. Choudhary SK. Implementing Event-Driven

Architecture for Real-Time Data Integration in Cloud

Environments. Int J Comput Eng Technol.

2025;16(1):1535–52. doi:10.34218/ijcet_16_01_113.

EDN: PNXBGY.

5. Garifullin R. Integration of WebAssembly for high-

performance web applications. Int J Latest Eng Manag

Res. 2025;10(3):28–31.

6. Uber. Enabling Seamless Kafka Async Queuing with

Consumer Proxy [Internet]. Available from:

https://www.uber.com/blog/kafka-async-queuing-with-

consumer-proxy/ [cited 2025 Sep 14].

7. Fu Y, Soman C. Real-time data infrastructure at Uber.

In: Proceedings of the 2021 International Conference

on Management of Data. 2021. p. 2503–16.

doi:10.1145/3448016.3457552.

8. Apache Beam. Revolutionizing Real-Time Stream

Processing: 4 Trillion Events Daily at LinkedIn

[Internet]. Available from:

https://beam.apache.org/case-studies/linkedin/ [cited

2025 Sep 15].

9. Apache Samza. Powered By [Internet]. Available from:

https://samza.apache.org/powered-by/ [cited 2025 Sep

16].

10. Argakoesoemah MD, Candra MZ. Development of

Cascading Circuit Breaker System Using Event-Driven

Approach in Microservices. In: 2024 IEEE

International Conference on Data and Software

Engineering (ICoDSE). 2024. p. 102–7.

doi:10.1109/ICoDSE63307.2024.10829897.

11. Bronson N, Aghayev A, Charapko A, Zhu T.

Metastable failures in distributed systems. In:

Proceedings of the Workshop on Hot Topics in

Operating Systems. 2021. p. 221–7.

doi:10.1145/3458336.3465286.

12. Google Cloud. Autoscale your Kafka consumer

workloads [Internet]. Available from:

https://cloud.google.com/run/docs/configuring/workerp

ools/kafka-autoscaler [cited 2025 Sep 22].

https://www.computersciencejournals.com/ijecs

