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Abstract 
In this article, engineering approaches to building high-performance real-time services are considered 

using the example of antifraud services. It examines the experience of creating distributed high-load 

solutions applied in industry for processing billions of events in real time with minimal latency. 

Engineering solutions aimed at detecting suspicious activities are investigated, including data filtering, 

cleansing, deduplication, and normalization, as well as information aggregation using window 

functions, hierarchical aggregation, and approximate computing. Architectural patterns and practices 

for implementing correct processing semantics are described. Approaches to ensuring system stability 

and performance are also examined. 

 

Keywords: Stream processing, distributed systems, anti-fraud, information aggregation, high-load 
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Introduction 

Present-day digital services generate and process vast volumes of events in real time. These 

may include data from online platforms, sensor networks, financial systems, or advertising 

services, where even minor processing delays can significantly affect user experience and 

analytical accuracy. The growing scale of such systems are often coupled with the increasing 

intensity of data streams. They create a demand for new engineering solutions that can set 

the seal on stable operation under high load. 

Conventional approaches to information processing are based on batch computation and are 

unable to meet these specifications. Their high latency and limited scalability frequently 

render them unsuitable for tasks involving even millions of events per second. In response to 

this, architectures oriented exclusively toward stream processing have become apparent, 

since they enable reduced latency and greater resilience in distributed environments. 

Alongside architectural advances, engineering practices for system optimization have also 

evolved. Modern real-time services require right mechanisms for fraud detection. Equally 

important are stability factors such as fault tolerance, load control, and predictable behavior 

under traffic spikes. These challenges have driven the rapid development of streaming 

analytics technologies and the associated engineering practices in recent years. The purpose 

of this article is to analyze the engineering approaches applied in the design of high-

performance real-time services, with particular emphasis on antifraud services. 

 

Main part. Engineering solutions for antifraud services under high load 

Preventing fraud and summarizing user activity are crucial for any high-loaded service with 

a lot of customers. It is at these stages that decisions are made regarding which data will 

proceed to subsequent processing and how metrics and analytics will be generated. Well-

structured preprocessing can reduce the load on computational nodes several-fold while 

simultaneously improving the accuracy of final results [1]. 

The first step of the antifraud process involves filtering and normalization of the incoming 

stream. This includes removing duplicate events, for example, repeated clicks or sensor 

signals, in order to prevent distortions in subsequent aggregation. To address this task, 

systems employ schemes for message identification based on unique keys or combinations of 

timestamps and hashes, as well as windowed deduplication, which is implemented in modern 

stream processing engines such as Apache Flink or Apache Beam. 
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A second key element of anti-fraud is stream cleansing from 

noise and anomalies. Invalid messages, such as telemetry 

with corrupted values, are discarded at an early stage. For 

this purpose, validation rules and lightweight anomaly 

detection algorithms are applied directly within the 

streaming pipelines. An equally important component is 

data format normalization [2]. Experimental studies confirm 

the effectiveness of this approach. For instance, the SPinDP 

(Stream Purifier in Distributed Platform) study 

demonstrated that the introduction of a distributed cleansing 

layer based on Apache Storm and Kafka, leveraging an 

RDMA network, increased system throughput by more than 

28 times and reduced average processing latency by 2473 

times compared to a non-optimized system [3]. 

Event aggregation holds a central place in antifraud 

services. In real-time environments, aggregation is typically 

implemented through windowing functions, which group 

data into temporal intervals. This enables the computation of 

metrics such as the number of events occurring within a 

given period. For more complex scenarios, Complex Event 

Processing (CEP) is employed to detect patterns in the 

stream, for example, identifying a sequence of three 

transaction failures within a ten-second interval. 

A hierarchical approach to aggregation has proven effective. 

Data are first aggregated locally at edge nodes or shards, 

and then combined into global aggregates. The choice of a 

specific streaming platform directly determines how 

antifraud service is implemented.The most commonly 

adopted solutions include Apache Kafka, AWS Kinesis, and 

Google Cloud Pub/Sub, each of which demonstrates 

different approaches to scalability, delivery guarantees, and 

event ordering (table 1). 

 
Table 1: Event processing platform performance characteristics [4, 5] 

 

Platform feature Apache Kafka AWS Kinesis YTSaurus dynamic tables 

Maximum throughput 1M+ messages/second 1MB/shard/second input, 2MB/shard/second output 1M+ messages/second 

Latency Sub-10ms Milliseconds range Milliseconds range 

Scaling model Horizontal partitioning Sharding Horizontal partitioning 

Delivery guarantee At-least-once Exactly-once Exactly-once 

Event ordering Strict (within partition) Per shard Strict (within partition) 

Processing model Pull-based Pull-based Pull-based 

 

In practice, a variety of architectural patterns are employed 

for event aggregation. For a long time, the Lambda 

architecture remained a popular choice. However, it has 

largely been supplanted by the Kappa architecture, which 

relies exclusively onstream processing and log replay from 

Kafka. Another widely adopted pattern is the combination 

of CQRS (Command Query Responsibility Segregation) and 

Event Sourcing, where all state changes are recorded as a 

sequence of events. Aggregates are also built by subscribing 

to this event stream. 

Special attention should be given to the question of 

correctness and processing semantics. Under heavy load, it 

is critical for a system to adhere to consistent guarantees. In 

practice, two primary semantics are distinguished: at-least-

once, which is simple and inexpensive but may result in 

event duplication, and exactly-once, which is more costly 

but indispensable in financial and advertising services. Flink 

and Beam implement the latter through checkpoints and 

transactional sinks. An important engineering practice in 

this context is the design of idempotent operations, where 

repeated processing of the same event does not alter the 

final outcome. Current problems emphasize the necessity of 

efficient aggregation algorithms. Increasingly, methods of 

approximate computing, such as HyperLogLog or Count-

Min Sketch, are being adopted. 

 

Practice of building high-load real-time event processing 

services 

Modern event-driven architectures and streaming platforms 

provide high scalability, low-latency capabilities, and 

system resilience. A prominent technological example of 

industrial real-time stream processing can be found in 

Uber’s experience. The company has undertaken extensive 

work to deploy Apache Flink in combination with Apache 

Kafka and Apache Pinot, building efficient and reliable 

event-processing pipelines. 

Uber leverages Flink for near-real-time advertising data 

processing: from ingesting events (impressions, clicks), 

through cleansing, aggregation, and order attribution, to the 

delivery of summary data for reporting and analytics. The 

system guarantees exactly-once processing semantics and 

high reliability, which is critical in the context of advertising 

events tied to financial transactions. In addition, to further 

improve resilience and manageability of data streams, Uber 

developed a Consumer Proxy layer integrated with Kafka 

(fig. 1). 

 

 
 

Fig 1: High level consumer proxy architecture [6] 

 

Uber further continues to develop and maintain Flink as the 

foundation of its streaming infrastructure for petabyte-scale 

data processing. Main engineering enhancements include 

the introduction of the FlinkSQL layer, that simplifies the 

expression of analytics in SQL, as well as mechanisms both 

for resource estimation and automatic scaling All of them 

guarantee stable and scalable execution of streaming 

workloads. One of the core components of Uber’s 
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ecosystem has also become the auto-scaling of Kafka consumers (fig. 2). 

 

 
 

Fig 2: The layers of the Unified Flink architecture at Uber [7] 

 

LinkedIn developed Apache Samza as a solution for stateful 

stream processing tightly integrated with Kafka. While 

Samza laid the groundwork for fault-tolerant architectures, 

there has been a shift towards more universal frameworks 

such as Apache Beam. This service provides a unified 

programming model across multiple runners and has been 

adopted by organizations including Google and Spotify for 

large-scale real-time analytics pipelines. The company 

processes millions of events per second on individual tasks, 

utilizing tens of terabytes of local state [8]. 

Netflix has built a real-time streaming infrastructure that 

processed 1 trillion events per day in 2017, scaling this 

volume twenty-fold by 2021. Its foundation consists of 

managed versions of Kafka and Flink, the in-house platform 

Mantis, and data at petabyte scale. This architecture 

supports both analytical and operational streaming 

scenarios, delivering low latency, resilience, and 

organization-wide scalability. As highlighted in official 

resources, Netflix also employs single-stage Samza jobs to 

route more than 700 billion events and approximately 1 PB 

of data per day from fronting Kafka clusters into S3/Hive [9]. 

The experience of these leading companies illustrates that 

the successful adoption of real-time stream processing 

depends on a combination of carefully designed 

architectural strategies and specialized engineering 

practices. The cases of Uber, LinkedIn, and Netflix 

demonstrate that such approaches enable the processing of 

data at the scale of trillions of events while maintaining 

resilience and low latency. 

 

Approaches to ensuring stability and performance in 

high-load systems 

Even a well-designed streaming architecture requires 

dedicated measures to maintain stability and high 

performance under increasing load. One of the most critical 

strategies is the design of systems with resilience to failures 

and overloads. In practice, this is achieved through 

component isolation and the introduction of protective 

mechanisms. For example, in microservice-based distributed 

systems, the Circuit Breaker pattern is commonly employed 

to prevent cascading failures: when a service becomes 

overloaded or fails, the automatic “breaker” interrupts the 

chain of calls, thereby preventing the malfunction from 

propagating throughout the entire system [10]. 

Another fundamental principle is load control. Various 

systems must be able to regulate the rate of incoming 

requests or events in accordance with their current 

processing capacity. In case, when the incoming flow 

exceeds this threshold, mechanisms such as backpressure or 

input-level load shedding can be used to ward off queue 

overflow and performance deterioration. Without such 

shields, IT structures risk entering an unstable operational 

regime. Research has identified a class of phenomena 

known as metastable failures, in which surpassing a critical 

load threshold triggers a self-reinforcing performance 

collapse [11]. The system falls into a “stall” characterized by 

runaway queue growth and diminishing efficiency, from 

which recovery is impossible without external intervention. 

Apart from the components of architectural design, the 

operations procedure is instrumental in ensuring stability. 

The application of real-time observability and monitoring 

systems allows immediate identification of anomalies. 

Accurately calibrated metrics and alerting allow engineers 

to detect rising latencies or excessive resource consumption 

before such issues become serious enough to have the 

potential of causing a total system collapse. Logging and 

metric storage solutions like Prometheus, Grafana, and ELK 

stack, along with distributed request tracing, allow deep 

visibility into activity of a system. 

Regular load testing and profiling under conditions 

approximating real peak traffic are equally necessary. 

Another key strategy is automatic resource scaling under 

load. Modern cloud platforms natively support auto-scaling, 

where the number of service instances dynamically expands 

or contracts in response to the volume of incoming events 

(fig. 3). 
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Fig 3: Kafka autoscaling architecture [12] 

 

Optimally tuned auto-scaling mechanisms are instrumental 

in providing steady service, especially during peak traffic, 

while at the same time avoiding service degradation and 

wasteful utilization of resources during off-peak traffic. 

Additionally, one needs to ensure the integrity of storage of 

data and the effectiveness of communication mechanisms. 

Utilization of replicated log-based queuing mechanisms 

guarantees the persistence and security of messages even 

with failures of individual nodes. 

Taken together, these practices create the operational 

ground for keeping the stability and performance of large-

scale systems. When applied systematically, they provide 

platforms to remain predictable and resilient, securing 

uninterrupted service quality even under sudden traffic 

surges or partial component failures. 

 

Conclusion 

The development of real-time distributed systems 

demonstrates that efficiency and resilience are largely 

determined by the quality of engineering decisions at the 

stages of anti-fraud. The application of filtering, cleansing, 

and deduplication reduces redundant load and improves data 

reliability, while the use of window functions, hierarchical 

aggregation, and approximate computing enables a balance 

between performance and accuracy. 

Stability of a system is achieved through the adoption of 

architectural patterns, load management strategies, and also 

correct processing semantics. The integration of fault-

tolerance mechanisms, monitoring, and automatic scaling 

ensures that streaming services remain predictable and 

resilient under heavy load. Industrial experience confirms 

that the combination of architectural strategies and 

optimization practices makes it possible to design real-time, 

high-load services that meet modern requirements for 

scalability and data processing quality. 
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