International Journal of Engineering

in Computer Science 2025; 7(2): 176-179

International Journal of

Engineering in Computer Science

E-ISSN: 2663-3590

P-ISSN: 2663-3582

Impact Factor (RJIF): 5.52
www.computersciencejournals.c

om/ijecs
LJECS 2025; 7(2): 176-179

Received: 24-07-2025
Accepted: 27-08-2025

Bogutskii Aleksandr
Bachelor's degree, ITMO
University, St Petersburg,
Russia

Corresponding Author:
Bogutskii Aleksandr
Bachelor's degree, ITMO
University, St Petersburg,
Russia

Engineering approaches to building high-performance
real-time services: The case of antifraud services

Bogutskii Aleksandr

DOI: https://doi.org/10.33545/26633582.2025.v7.i2b.214

Abstract

In this article, engineering approaches to building high-performance real-time services are considered
using the example of antifraud services. It examines the experience of creating distributed high-load
solutions applied in industry for processing billions of events in real time with minimal latency.
Engineering solutions aimed at detecting suspicious activities are investigated, including data filtering,
cleansing, deduplication, and normalization, as well as information aggregation using window
functions, hierarchical aggregation, and approximate computing. Architectural patterns and practices
for implementing correct processing semantics are described. Approaches to ensuring system stability
and performance are also examined.

Keywords: Stream processing, distributed systems, anti-fraud, information aggregation, high-load
services, Apache Kafka, auto-scaling

Introduction

Present-day digital services generate and process vast volumes of events in real time. These
may include data from online platforms, sensor networks, financial systems, or advertising
services, where even minor processing delays can significantly affect user experience and
analytical accuracy. The growing scale of such systems are often coupled with the increasing
intensity of data streams. They create a demand for new engineering solutions that can set
the seal on stable operation under high load.

Conventional approaches to information processing are based on batch computation and are
unable to meet these specifications. Their high latency and limited scalability frequently
render them unsuitable for tasks involving even millions of events per second. In response to
this, architectures oriented exclusively toward stream processing have become apparent,
since they enable reduced latency and greater resilience in distributed environments.
Alongside architectural advances, engineering practices for system optimization have also
evolved. Modern real-time services require right mechanisms for fraud detection. Equally
important are stability factors such as fault tolerance, load control, and predictable behavior
under traffic spikes. These challenges have driven the rapid development of streaming
analytics technologies and the associated engineering practices in recent years. The purpose
of this article is to analyze the engineering approaches applied in the design of high-
performance real-time services, with particular emphasis on antifraud services.

Main part. Engineering solutions for antifraud services under high load

Preventing fraud and summarizing user activity are crucial for any high-loaded service with
a lot of customers. It is at these stages that decisions are made regarding which data will
proceed to subsequent processing and how metrics and analytics will be generated. Well-
structured preprocessing can reduce the load on computational nodes several-fold while
simultaneously improving the accuracy of final results [!1.

The first step of the antifraud process involves filtering and normalization of the incoming
stream. This includes removing duplicate events, for example, repeated clicks or sensor
signals, in order to prevent distortions in subsequent aggregation. To address this task,
systems employ schemes for message identification based on unique keys or combinations of
timestamps and hashes, as well as windowed deduplication, which is implemented in modern
stream processing engines such as Apache Flink or Apache Beam.

~176 "~

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://doi.org/10.33545/26633582.2025.v7.i2b.214

International Journal of Engineering in Computer Science

A second key element of anti-fraud is stream cleansing from
noise and anomalies. Invalid messages, such as telemetry
with corrupted values, are discarded at an early stage. For
this purpose, validation rules and lightweight anomaly
detection algorithms are applied directly within the
streaming pipelines. An equally important component is
data format normalization 2. Experimental studies confirm
the effectiveness of this approach. For instance, the SPinDP
(Stream Purifier in Distributed Platform) study
demonstrated that the introduction of a distributed cleansing
layer based on Apache Storm and Kafka, leveraging an
RDMA network, increased system throughput by more than
28 times and reduced average processing latency by 2473
times compared to a non-optimized system [*],

Event aggregation holds a central place in antifraud
services. In real-time environments, aggregation is typically

https://www.computersciencejournals.com/ijecs

implemented through windowing functions, which group
data into temporal intervals. This enables the computation of
metrics such as the number of events occurring within a
given period. For more complex scenarios, Complex Event
Processing (CEP) is employed to detect patterns in the
stream, for example, identifying a sequence of three
transaction failures within a ten-second interval.

A hierarchical approach to aggregation has proven effective.
Data are first aggregated locally at edge nodes or shards,
and then combined into global aggregates. The choice of a
specific streaming platform directly determines how
antifraud service is implemented.The most commonly
adopted solutions include Apache Kafka, AWS Kinesis, and
Google Cloud Pub/Sub, each of which demonstrates
different approaches to scalability, delivery guarantees, and
event ordering (table 1).

Table 1: Event processing platform performance characteristics [3]

Platform feature Apache Kafka AWS Kinesis YTSaurus dynamic tables
Maximum throughput | 1M+ messages/second 1MB/shard/second input, 2MB/shard/second output 1M+ messages/second
Latency Sub-10ms Milliseconds range Milliseconds range

Scaling model Horizontal partitioning Sharding Horizontal partitioning
Delivery guarantee At-least-once Exactly-once Exactly-once

Event ordering Strict (within partition) Per shard Strict (within partition)
Processing model Pull-based Pull-based Pull-based

In practice, a variety of architectural patterns are employed
for event aggregation. For a long time, the Lambda
architecture remained a popular choice. However, it has
largely been supplanted by the Kappa architecture, which
relies exclusively onstream processing and log replay from
Kafka. Another widely adopted pattern is the combination
of CQRS (Command Query Responsibility Segregation) and
Event Sourcing, where all state changes are recorded as a
sequence of events. Aggregates are also built by subscribing
to this event stream.

Special attention should be given to the question of
correctness and processing semantics. Under heavy load, it
is critical for a system to adhere to consistent guarantees. In
practice, two primary semantics are distinguished: at-least-
once, which is simple and inexpensive but may result in
event duplication, and exactly-once, which is more costly
but indispensable in financial and advertising services. Flink
and Beam implement the latter through checkpoints and
transactional sinks. An important engineering practice in
this context is the design of idempotent operations, where
repeated processing of the same event does not alter the
final outcome. Current problems emphasize the necessity of
efficient aggregation algorithms. Increasingly, methods of

approximate computing, such as HyperLoglLog or Count-
Min Sketch, are being adopted.

Practice of building high-load real-time event processing
services

Modern event-driven architectures and streaming platforms
provide high scalability, low-latency capabilities, and
system resilience. A prominent technological example of
industrial real-time stream processing can be found in
Uber’s experience. The company has undertaken extensive
work to deploy Apache Flink in combination with Apache
Kafka and Apache Pinot, building efficient and reliable
event-processing pipelines.

Uber leverages Flink for near-real-time advertising data
processing: from ingesting events (impressions, clicks),
through cleansing, aggregation, and order attribution, to the
delivery of summary data for reporting and analytics. The
system guarantees exactly-once processing semantics and
high reliability, which is critical in the context of advertising
events tied to financial transactions. In addition, to further
improve resilience and manageability of data streams, Uber
developed a Consumer Proxy layer integrated with Kafka

(fig. 1).

Consumer Proxy Cluster Consumer Service
Send gRPC
Fetch Messages Consumer request
Kafka Proxy l
CommitOffets Consumer
Cluster Mode Receive gRPC i Instance
status code '
@ Aggregate processing @ @ Process each message
results separately
Fig 1: High level consumer proxy architecture (¢!

Uber further continues to develop and maintain Flink as the
foundation of its streaming infrastructure for petabyte-scale
data processing. Main engineering enhancements include
the introduction of the FlinkSQL layer, that simplifies the

expression of analytics in SQL, as well as mechanisms both
for resource estimation and automatic scaling All of them
guarantee stable and scalable execution of streaming
workloads. One of the core components of Uber’s

~177 ~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

ecosystem has also become the auto-scaling of Kafka

https://www.computersciencejournals.com/ijecs

consumers (fig. 2).

saL Ul ML Platform Workflow Metrics Platform
| Manager
v y v
FlinkSQL ML Feature Workflow Real-time
Platiorm Service Service Service Metrics Service
| |
Job Job Validator Job Manager [«——> Job Monitor
Management
Infrastructure Yarn + HDFS Yarn + S3 Yarn + GCS
Clusters Clusters Clusters

Fig 2: The layers of the Unified Flink architecture at Uber 7]

LinkedIn developed Apache Samza as a solution for stateful
stream processing tightly integrated with Kafka. While
Samza laid the groundwork for fault-tolerant architectures,
there has been a shift towards more universal frameworks
such as Apache Beam. This service provides a unified
programming model across multiple runners and has been
adopted by organizations including Google and Spotify for
large-scale real-time analytics pipelines. The company
processes millions of events per second on individual tasks,
utilizing tens of terabytes of local state [31.

Netflix has built a real-time streaming infrastructure that
processed 1 trillion events per day in 2017, scaling this
volume twenty-fold by 2021. Its foundation consists of
managed versions of Kafka and Flink, the in-house platform
Mantis, and data at petabyte scale. This architecture
supports both analytical and operational streaming
scenarios, delivering low latency, resilience, and
organization-wide scalability. As highlighted in official
resources, Netflix also employs single-stage Samza jobs to
route more than 700 billion events and approximately 1 PB
of data per day from fronting Kafka clusters into S3/Hive U1,
The experience of these leading companies illustrates that
the successful adoption of real-time stream processing
depends on a combination of carefully designed
architectural strategies and specialized engineering
practices. The cases of Uber, LinkedIn, and Netflix
demonstrate that such approaches enable the processing of
data at the scale of trillions of events while maintaining
resilience and low latency.

Approaches to ensuring stability and performance in
high-load systems

Even a well-designed streaming architecture requires
dedicated measures to maintain stability and high
performance under increasing load. One of the most critical
strategies is the design of systems with resilience to failures
and overloads. In practice, this is achieved through
component isolation and the introduction of protective

mechanisms. For example, in microservice-based distributed
systems, the Circuit Breaker pattern is commonly employed
to prevent cascading failures: when a service becomes
overloaded or fails, the automatic “breaker” interrupts the
chain of calls, thereby preventing the malfunction from
propagating throughout the entire system 1.

Another fundamental principle is load control. Various
systems must be able to regulate the rate of incoming
requests or events in accordance with their current
processing capacity. In case, when the incoming flow
exceeds this threshold, mechanisms such as backpressure or
input-level load shedding can be used to ward off queue
overflow and performance deterioration. Without such
shields, IT structures risk entering an unstable operational
regime. Research has identified a class of phenomena
known as metastable failures, in which surpassing a critical
load threshold triggers a self-reinforcing performance
collapse 1. The system falls into a “stall” characterized by
runaway queue growth and diminishing efficiency, from
which recovery is impossible without external intervention.
Apart from the components of architectural design, the
operations procedure is instrumental in ensuring stability.
The application of real-time observability and monitoring
systems allows immediate identification of anomalies.
Accurately calibrated metrics and alerting allow engineers
to detect rising latencies or excessive resource consumption
before such issues become serious enough to have the
potential of causing a total system collapse. Logging and
metric storage solutions like Prometheus, Grafana, and ELK
stack, along with distributed request tracing, allow deep
visibility into activity of a system.

Regular load testing and profiling under conditions
approximating real peak traffic are equally necessary.
Another key strategy is automatic resource scaling under
load. Modern cloud platforms natively support auto-scaling,
where the number of service instances dynamically expands
or contracts in response to the volume of incoming events

(fig. 3).

~178 ~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

https://www.computersciencejournals.com/ijecs

P |
Kafka
cluster

Pull
messages
gt e
Kafka consumer _ (\5\6“
Cloud Run h
Worker Pool

Autoscaling
schedule
Cloud Scheduler

Worker Pool

Trigger
check

Kafka autoscaler
Cloud Run

Service

Fig 3: Kafka autoscaling architecture [}

Optimally tuned auto-scaling mechanisms are instrumental
in providing steady service, especially during peak traffic,
while at the same time avoiding service degradation and
wasteful utilization of resources during off-peak traffic.
Additionally, one needs to ensure the integrity of storage of
data and the effectiveness of communication mechanisms.
Utilization of replicated log-based queuing mechanisms
guarantees the persistence and security of messages even
with failures of individual nodes.

Taken together, these practices create the operational
ground for keeping the stability and performance of large-
scale systems. When applied systematically, they provide
platforms to remain predictable and resilient, securing
uninterrupted service quality even under sudden traffic
surges or partial component failures.

Conclusion

The development of real-time distributed systems
demonstrates that efficiency and resilience are largely
determined by the quality of engineering decisions at the
stages of anti-fraud. The application of filtering, cleansing,
and deduplication reduces redundant load and improves data
reliability, while the use of window functions, hierarchical
aggregation, and approximate computing enables a balance
between performance and accuracy.

Stability of a system is achieved through the adoption of
architectural patterns, load management strategies, and also
correct processing semantics. The integration of fault-
tolerance mechanisms, monitoring, and automatic scaling
ensures that streaming services remain predictable and
resilient under heavy load. Industrial experience confirms
that the combination of architectural strategies and
optimization practices makes it possible to design real-time,
high-load services that meet modern requirements for
scalability and data processing quality.

References

1. Makhtibekov A. Effectiveness of multichannel
marketing in the context of digital transformation.
Universum: economics and law: electronic scientific
journal. 2025;4(126):15-19.

2. Dudak A. Virtualization and rendering of large data
lists. Cold Science. 2024;9:17-25. EDN: QUGQBQ.

3. Gil MS, Moon YS. SPinDP: A High-Speed Distributed
Processing Platform for Sampling and Filtering Data
Streams. Appl Sci. 2023;13(24):12998.
doi:10.3390/app132412998. EDN: NDFWZE.

4.

10.

11.

12.

~179 ~

Choudhary SK. Implementing Event-Driven
Architecture for Real-Time Data Integration in Cloud
Environments. Int J Comput Eng Technol.
2025;16(1):1535-52. doi:10.34218/ijcet 16 01 113.
EDN: PNXBGY.

Garifullin R. Integration of WebAssembly for high-
performance web applications. Int J Latest Eng Manag
Res. 2025;10(3):28-31.

Uber. Enabling Seamless Kafka Async Queuing with
Consumer Proxy [Internet]. Available from:
https://www.uber.com/blog/kafka-async-queuing-with-
consumer-proxy/ [cited 2025 Sep 14].

Fu Y, Soman C. Real-time data infrastructure at Uber.
In: Proceedings of the 2021 International Conference
on Management of Data. 2021. p. 2503-16.
doi:10.1145/3448016.3457552.

Apache Beam. Revolutionizing Real-Time Stream
Processing: 4 Trillion Events Daily at LinkedIn
[Internet]. Available from:
https://beam.apache.org/case-studies/linkedin/ [cited
2025 Sep 15].

Apache Samza. Powered By [Internet]. Available from:
https://samza.apache.org/powered-by/ [cited 2025 Sep
16].

Argakoesoemah MD, Candra MZ. Development of
Cascading Circuit Breaker System Using Event-Driven
Approach in Microservices. In: 2024 IEEE
International Conference on Data and Software
Engineering (ICoDSE). 2024. p. 102-7.
doi:10.1109/ICoDSE63307.2024.10829897.

Bronson N, Aghayev A, Charapko A, Zhu T.
Metastable failures in distributed systems. In:
Proceedings of the Workshop on Hot Topics in
Operating Systems. 2021. p. 221-17.
doi:10.1145/3458336.3465286.

Google Cloud. Autoscale your Kafka consumer
workloads [Internet]. Available from:
https://cloud.google.com/run/docs/configuring/workerp
ools/kafka-autoscaler [cited 2025 Sep 22].

https://www.computersciencejournals.com/ijecs

