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Abstract

Wearable technologies are increasingly central to real-time decision support across healthcare,
occupational safety, sports, defense, and emergency response. By continuously capturing physiological,
behavioral, and environmental data, these devices provide actionable insights that enhance both
individual care and organizational performance. Their value lies in four domains: personalization of
decisions, predictive analytics for early intervention, population-level intelligence to inform policy, and
hybrid intelligence that augments human judgment. Despite these opportunities, unresolved challenges
persist, including variable data accuracy, privacy risks, limited interoperability, and barriers to
sustained user adoption. Addressing these issues requires stronger ethical frameworks, reliable
integration standards, and attention to socio-technical factors influencing uptake. Advances in edge
computing, multimodal data fusion, and governance mechanisms further underscore the field’s
trajectory. This article argues that realizing the transformative potential of wearable technologies
depends on interdisciplinary collaboration that bridges engineering, healthcare, ethics, and policy to
create trustworthy decision-support ecosystems.

Keywords: Ethical governance, occupational safety, predictive analytics, precision healthcare, real-
time decision support, wearable technology

1. Introduction

Decision-making under conditions of uncertainty is central to many domains of human
activity, from clinical medicine and emergency response to industrial operations and defense.
The quality and timeliness of decisions often determine not only efficiency and economic
outcomes but also human lives. Conventional decision support systems (DSS) emerged in
the mid-twentieth century as tools to assist managers and professionals in processing large
amounts of structured information for improved judgment (Di Matteo et al., 2020) [8],
However, these systems were typically retrospective, relying on historical or static data and
designed for settings where decisions could be planned rather than executed in real time. In
environments where the situation evolves rapidly, such as acute patient care, disaster
management, or hazardous industrial operations, static decision inputs are insufficient. What
is required is real-time decision support, underpinned by continuous data streams and
adaptive analytics capable of guiding users as events unfold (Gathright et al., 2024) [501,

The emergence of wearable technology has provided an important pathway toward such real-
time systems. Broadly defined, wearables are sensor-equipped devices worn on or close to
the human body that capture physiological, behavioral, and environmental parameters (Patel
et al., 2012; Dias & Cunha, 2018) 36 191 Early generations of wearable devices, such as
pedometers and consumer-grade activity trackers, primarily served lifestyle and fitness
markets (Piwek et al., 2016) [, More recently, rapid advances in miniaturized sensors,
wireless communication (including Bluetooth Low Energy and 5G), edge computing, and
artificial intelligence have transformed wearables into highly sophisticated platforms. These
systems are now capable of not only recording data but also transmitting, processing, and
analyzing it in ways that yield actionable insights within seconds (Mu et al., 2025) 511,

The healthcare sector illustrates the profound implications of this technological shift. For
instance, continuous glucose monitors (CGMs) allow patients with diabetes to receive alerts
on impending hypoglycemia or hyperglycemia, enabling immediate corrective action rather
than relying solely on periodic blood tests (Bergenstal et al., 2013) I, Similarly, continuous
ECG patches can detect paroxysmal atrial fibrillation that might otherwise go unnoticed
during intermittent clinical examinations, thereby reducing stroke risk (Steinhubl et al.,
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2018) 4. In critical care settings, wearable sensors
integrated with early warning systems have been shown to
improve recognition of patient deterioration (Gluck et al.,
2017) 1. These examples demonstrate how wearables
extend decision-making capacity by reducing temporal gaps
between physiological events and interventions, a
cornerstone of real-time decision support.

Beyond healthcare, wearables are increasingly relevant in
occupational safety and industry. In construction, mining,
and chemical manufacturing, smart helmets and sensor-
embedded garments monitor worker fatigue, exposure to
harmful substances, and ergonomics in real time (Jacobs et
al., 2019) I, By alerting workers and supervisors to
hazards before incidents occur, these devices contribute to
preventive safety strategies and align with the principles of
proactive risk management. In transportation, wearable
fatigue-detection systems for drivers and pilots can prevent
catastrophic accidents by triggering alerts when biometric
signals indicate reduced alertness (Chang et al., 2023) [*2,
The sports and performance sector has also embraced
wearable-enabled decision support. Professional athletes
and coaches rely on real-time monitoring of heart rate
variability, acceleration, oxygen saturation, and other
parameters to optimize training loads and reduce the
likelihood of overtraining injuries (Li, et al., 2015) [,
These data streams are increasingly integrated with video
analytics and environmental sensors, providing coaches with
multidimensional insights that inform in-game tactical
decisions as well as long-term performance planning (Windt
& Gabbett, 2017) 41,

In defense and emergency response, wearables are
becoming critical for situational awareness in extreme
environments. Soldiers equipped with biometric monitoring
systems can be assessed for hydration, thermal strain, and
stress levels, which informs command-level decisions about
deployment and rotation (Bonato, 2010) 1'%, Firefighters and
disaster-response teams benefit from location-tracking
wearables combined with environmental sensors that
provide real-time alerts on toxic exposures or structural
risks (Huhn et al., 2022) 1, In these high-stakes contexts,
decision support is inseparable from survival, making the
reliability of wearable technologies a matter of strategic
importance.

Despite the potential, adoption of wearable-based decision
support systems faces several barriers and unresolved
questions. First, the accuracy and reliability of data remain
inconsistent across devices. Studies have shown that motion
artifacts, sensor placement, and environmental interference
can significantly distort readings, especially for optical
heart-rate sensors and consumer-grade accelerometers (Bent
et al., 2020) Bl Inaccurate data not only undermines trust
but may also lead to harmful decisions if false positives or
negatives go unchecked. Second, privacy and ethical
concerns are significant, as wearable devices generate some
of the most intimate categories of personal data. The
potential misuse of biometric information for surveillance or
commercial exploitation raises questions about autonomy,
consent, and data governance (Sharon, 2017; Mittelstadt,
2017) 43 32 Third, the lack of interoperability between
devices and platforms limits the integration of wearables
into broader decision support ecosystems, such as electronic
health records or enterprise safety dashboards (Ghadi et al.,
2025) P4 Finally, human and organizational factors,
including user comfort, compliance, digital literacy, and
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institutional readiness, strongly influence whether wearable
systems realize their full potential (Chung et al., 2017) %],
These trends suggest that wearable technology represents
both a transformative opportunity and a complex challenge
for the future of real-time decision support. On one hand,
wearables extend decision-making capacity by providing
continuous, personalized, and context-rich data that can be
translated into timely interventions. On the other hand,
without attention to accuracy, ethics, interoperability, and
usability, the same technologies may exacerbate risks or
entrench inequalities in access to decision-support tools.

2. Literature Review

Scholarship on wearable technologies has developed
rapidly, ranging from technical reviews to evaluations of
clinical and organizational applications. Early work focused
on medical monitoring and rehabilitation. Pantelopoulos and
Bourbakis (2010) 1 surveyed sensor-based health systems,
highlighting their diagnostic potential but also reliability and
integration challenges. Patel et al. (2012) 3¢ discussed
rehabilitation uses, stressing technical feasibility without
addressing decision-support contexts.

As consumer adoption expanded, attention shifted to fitness
and lifestyle monitoring. Piwek et al. (2016) 8 critically
assessed consumer-grade devices, noting problems of
accuracy, adherence, and privacy. Dias and Cunha (2018) [
classified wearable health devices but offered largely
descriptive accounts with limited engagement on how
continuous data streams support real-time decision-making.
Recent reviews recognize convergence with mobile health
and artificial intelligence. Huhn et al. (2022) ! identified
opportunities for personalized monitoring but emphasized
methodological inconsistencies across studies. Ghadi et al.
(2025) U examined Al-enabled remote patient care,
acknowledging predictive potential while pointing to
unresolved interoperability and governance issues.
Importantly, most reviews treat ethical questions as
peripheral. Sharon (2017) and Mittelstadt (2017) (4332 argue
that self-tracking raises concerns about autonomy, fairness,
and surveillance, yet these issues remain underexplored in
technical analyses.

Cross-domain comparisons are also scarce. Occupational
safety research emphasizes proactive risk detection through
smart helmets and fatigue monitors (Jacobs et al., 2019;
Chen et al., 2022) 31, while sports medicine literature
highlights performance optimization and injury prevention
(Akenhead & Nassis, 2016; Tamura, 2024) [ %31, Defense
studies focus on situational awareness in extreme
environments (Bonato, 2010; Hossain & Muhammad, 2016)
[10. 241 Despite these advances, few reviews synthesize
insights across sectors or critically link wearables to
decision science frameworks such as Decision Support
Systems (DSS), Internet of Things (loT), or the Data-
Information-Knowledge-Wisdom (DIKW) hierarchy. This
article addresses these gaps by integrating theoretical
models with empirical evidence across healthcare,
occupational safety, sports, and defense. By foregrounding
debates on accuracy, interoperability, ethics, and equity, it
contributes a cross-sectoral critique of how wearables shape
real-time decision support ecosystems.

3. Theoretical and Conceptual Framework
The integration of wearable technologies into real-time
decision support can be explained through established
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theories in decision sciences and information systems.
Traditional Decision Support Systems (DSS) emphasize the
interaction between data, models, and user interfaces to aid
decision-making under uncertainty (Di Matteo et al., 2020)
1181, Wearables extend this paradigm by acting as continuous
sensing devices that feed dynamic and individualized data
streams into adaptive DSS, enabling real-time analytics and
context-aware decision-making. Within the Internet of
Things (loT) framework, wearables are situated as nodes in
interconnected networks where information is exchanged
across sensors, mobile devices, and cloud-based platforms.
This aligns with socio-technical systems theory, which
stresses that decision support effectiveness depends not only
on technology but also on the organizational and human
factors that govern its use (Baxter & Sommerville, 2011) "1,
Complementary frameworks further illustrate how raw
wearable data become actionable knowledge. Complex
Event Processing (CEP) explains the transformation of
continuous sensor signals into meaningful events, such as
detecting arrhythmias from ECG patches or identifying falls
from accelerometers. In healthcare, Clinical Decision
Support (CDS) models show how wearable-derived datasets
enhance diagnostic precision and personalize treatment
recommendations. The  data-information-knowledge-
wisdom (DIKW) hierarchy adds a conceptual layer by
clarifying how sensor data evolve into higher-order insights
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that guide decision-making. Together, these perspectives
frame wearables as integral components of decision-making
ecosystems where technical, clinical, and organizational
elements converge. Figure 1 provides a conceptual
illustration of this process. It depicts how wearable sensors
capture physiological signals, transmit them through patient-
mobile and patient-clinician interactions, and feed into
cloud-based data analysis. The output generates diagnostic
results and integrates user feedback, showing how
wearables function as intermediaries between individuals,
healthcare providers, and computational infrastructures (Liu
et al.,, 2024). This schematic exemplifies the theoretical
principles of DSS, 10T, and DIKW in practice, situating
wearables as both technical devices and enablers of socio-
technical decision-making systems. Importantly, this
framework also underpins the central purpose of this article:
to critically assess how wearable technologies can be
integrated into real-time decision-support ecosystems across
healthcare, occupational safety, sports, and defense. By
linking theory to application, the analysis moves beyond
descriptive accounts to evaluate how continuous data
streams are transformed into actionable, reliable, and
ethically governed decisions. DSS, 10T, and DIKW justify
the central research question of this article: how can
wearable technologies be integrated to provide reliable,
ethical, and actionable real-time decision support?
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Fig 1: Conceptual Representation of Patient-Wearable-Clinician Interaction in Real-Time Decision Support

4. Applications of Wearable Tech in Real-Time Decision
Support

Wearable technologies have advanced far beyond their
initial role as consumer wellness tools, becoming central to
real-time decision support in healthcare, occupational
safety, sports, and defense. By continuously collecting

physiological, behavioral, and environmental data,
wearables generate insights that support timely
interventions. Their contribution lies not only in

personalization but also in enabling predictive and
preventive decisions in high-stakes environments.

4.1 Healthcare
Healthcare is the most mature domain for wearable-enabled

decision support. Continuous glucose monitors (CGMs)
alert patients and clinicians to hypoglycemia or
hyperglycemia in real time, improving insulin management
and reducing complications (Shah & Garg, 2019) 4,
Cardiac patches and smartwatch-based ECG sensors detect
arrhythmias, allowing early interventions that prevent
strokes (Steinhubl et al., 2018; Perez et al., 2019) 4 %7,
During the COVID-19 pandemic, smart rings and
wristbands that monitored oxygen saturation supported
remote patient monitoring, reducing hospital congestion
while maintaining clinical oversight (Annis et al., 2020).
These examples illustrate how wearables extend care
beyond hospital walls, aligning with precision medicine and
proactive disease management.
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4.2 Occupational Safety and Industry

Wearables are increasingly deployed to prevent accidents
and protect worker health in industrial settings. Fatigue-
detection devices in mining and transport measure blink
duration, head movement, and heart rate variability to issue
early alerts that reduce accident risks (Chang et al., 2023;
Choi et al., 2018) > 3  Gas-detection wearables in
chemical industries provide continuous monitoring of toxic

https://www.computersciencejournals.com/ijecs

exposures, enabling evacuation before thresholds are
exceeded (Chen et al., 2022) 31, Construction workers use
posture-monitoring exoskeletons and inertial sensors to
prevent musculoskeletal injuries by detecting unsafe lifting
patterns (Antwi-Afari et al., 2017) (. Figure 2 illustrates
selected wearable systems designed for industrial safety,
highlighting their integration into broader occupational
health and risk management strategies.
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Fig 2: Wearable’s for Industrial Work Safety

4.3 Sports and Human Performance

The sports sector demonstrates how wearable data are used
to optimize performance and reduce injury risk. GPS-
enabled vests and accelerometers track workload, speed, and
fatigue, allowing coaches to adjust training intensity and
avoid overtraining injuries (Akenhead & Nassis, 2016) 4.
Hydration sensors and thermoregulation monitors prompt
interventions to prevent heat-related illnesses (Nuccio et al.,
2017) B3 In competitive play, coaches rely on real-time
wearable data to make tactical decisions, such as
substitutions guided by fatigue indicators (Cummins et al.,
2013) 1. These applications illustrate the shift from
intuition-driven to data-informed decision-making in elite
performance contexts.

4.4 Defense and Emergency Response: Defense and

emergency response contexts demand rapid decisions under
extreme conditions. Biometric sensors that monitor heart
rate variability, stress, hydration, and core temperature help
commanders assess troop readiness and optimize
deployment cycles (Gao et al., 2016) 2. For firefighters
and disaster responders, smart helmets equipped with GPS,
gas sensors, and thermal imaging provide real-time
situational awareness, guiding safer navigation in hazardous
conditions (Hossain & Muhammad, 2016) 24, During large-
scale emergencies, wearable biosensors transmit patient
vital signs directly to command centers, enhancing triage
and resource allocation (Mirjalali et al., 2021) B4, Figure 3
illustrates the role of wearable systems in defense and
emergency operations, where real-time monitoring directly
translates into survival outcomes.
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Table 1: Comparative Applications of Wearables in Real-Time Decision Support

Domain .
Example Devices

Decision Supported

Key Benefits Key Challenges

CGMs, ECG patches, smart

Healthcare rings, wristbands

Diabetes alerts, arrhythmia
detection, remote monitoring

Early intervention, reduced
hospital burden, precision care

Accuracy variability,
interoperability

Occupational |Fatigue sensors, smart helmets,

Fatigue detection, hazard

Accident prevention, hazard Compliance, privacy,

Safety exoskeletons, gas monitors monitoring, ergonomics alerts, worker wellbeing organizational readiness
GPS vests, accelerometers, | Training optimization, injury |  C/nanced performance, Reliability in high-
Sports . X . L0 reduced injuries, informed . . .
hydration sensors prevention, tactical substitutions| coaching intensity settings
Defense & Biosensors, smart helmets, _Stre_ss/ fatigue monltorln_g, Improved readiness, safer Scalability, ethical
> . situational awareness, patient - .
Emergency triage monitors triage deployments, faster triage | governance, data security
5. Discussion proprietary industry data that are not peer-reviewed. The

The application of wearable technologies across healthcare,
occupational safety, sports, and defense reveals several
common patterns. A consistent trend is the movement from
reactive monitoring toward predictive and preventive
decision support. In healthcare, for instance, continuous
glucose monitoring shifts diabetes care from episodic
measurement to proactive intervention (Shah & Garg, 2019)
(41, In industrial safety, fatigue sensors and posture monitors
provide anticipatory alerts that prevent accidents before they
occur (Chang et al., 2023; Antwi-Afari et al., 2017) 112 4,
Sports and defense sectors similarly demonstrate the value
of prediction and personalization, with wearable data
enabling tailored training, informed substitutions, and early
detection of physiological stress (Akenhead & Nassis, 2016;
Gao et al., 2016) [ 290, Across domains, the personalization
of decision-making emerges as a defining feature: data
streams are increasingly fine-tuned to individual
physiological baselines, producing insights that are more
actionable than generic guidelines.

Despite these advances, significant limitations remain.
Accuracy and reliability are inconsistent across devices and
contexts, with motion artifacts, environmental interference,
and sensor placement affecting readings (Bent et al., 2020).
This undermines confidence in clinical and industrial
decision-making where errors carry high risks. Evidence is
also uneven across domains. Healthcare benefits from large-
scale clinical trials (e.g., Perez et al., 2019), whereas
occupational safety and defense often rely on pilot studies or

context-specific nature of performance further complicates
generalization; a wearable validated in controlled laboratory
settings may not function with the same reliability in
unpredictable real-world environments.

There are also ongoing debates and unresolved challenges.
Privacy and data governance remain central concerns, as
wearable devices capture intimate physiological and
behavioral data that can be misused for surveillance or
commercial exploitation (Sharon, 2017; Mittelstadt, 2017)
[43. 321 Equity is another issue: most large-scale studies are
conducted in high-resource settings, raising concerns about
global accessibility and the risk of exacerbating digital
divides. Governance is contested between industry and
academia, with technology companies often making
optimistic claims that outpace the available scientific
evidence. This tension highlights the need for independent
validation, standardized regulatory frameworks, and
interdisciplinary oversight that integrates engineering,
clinical, ethical, and policy perspectives.

6. Opportunities and Transformative Potential

The integration of wearable technologies into decision-
making processes presents a set of transformative
opportunities that extend across healthcare, occupational
safety, sports, and defense. Their potential lies not simply in
monitoring, but in reshaping how decisions are informed
and acted upon at individual, organizational, and population
levels.
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Personalization remains one of the strongest opportunities.
Because wearables generate continuous and multimodal
data, they allow insights to be tailored to individual
baselines rather than population averages. In healthcare,
continuous glucose monitors have enabled more accurate
insulin dosing and improved glycemic control, while
rehabilitation programs that incorporate wearable feedback
achieve better adherence and recovery outcomes (Shah &
Garg, 2019) M1 In workplaces, personalization means
fatigue alerts or ergonomic adjustments can be calibrated to
each worker’s age, health status, or workload. This
individualized approach strengthens compliance and
increases the relevance of decision-support interventions.

A second opportunity arises from predictive analytics. The
high-frequency signals captured by wearables can be
processed through machine learning models to identify early
warning patterns. In clinical contexts, such models have
been used to forecast sepsis onset, arrhythmias, and
respiratory distress, allowing interventions before critical
deterioration occurs (Ghiasi et al., 2022; Clifford et al.,
2016) [?2 181 In industrial environments, predictive analysis
of motion and biosignals provides advance alerts of fatigue
or cognitive decline, helping to prevent accidents in
transportation, mining, and construction (Chang et al., 2023)
(12 This shift from reactive to anticipatory decision support
fundamentally alters the timing and effectiveness of
intervention strategies.

Wearables also enable population-level intelligence when
data are aggregated. At this scale, patterns in community
health, occupational risks, or hazard exposure can be
identified. Notably, large-scale smart watch studies have
uncovered previously undiagnosed atrial fibrillation, with
direct implications for public health planning and resource
distribution (Perez et al., 2019) 7, For policymakers, such
insights could support epidemic surveillance, workforce
protection, and targeted allocation of healthcare services.
The challenge is to balance these collective benefits with
stringent privacy and governance standards.

Finally, the idea of hybrid intelligence emphasizes that
wearables are designed to complement, not replace, human
expertise. Automated alerts and continuous monitoring
reduce cognitive burden, but decision-making remains
rooted in professional judgment and ethical reasoning. In
emergency response, biometric sensors may highlight rising
physiological strain, yet the critical decisions on evacuation
or tactical adjustments remain with trained personnel
(Nuccio et al.,, 2017) B8, This model preserves human
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agency while ensuring that complex, real-time data are
translated into usable insights.

7. Challenges and Limitations

The opportunities outlined above are tempered by persistent
and multi-dimensional challenges. A first concern is data
accuracy and reliability. Industry marketing often promotes
wearables as seamless and precise, yet empirical evidence
reveals frequent calibration errors, motion artifacts, and
physiological variability that undermine trust. Heart-rate
monitors can misread signals during vigorous exercise,
while sweat-based biosensors are easily distorted by
hydration levels (Gao et al., 2016) 2, In decision-support
contexts, such inaccuracies translate into false alarms or
missed detections, creating risks that are rarely
acknowledged in promotional claims.

Equally significant are issues of privacy, security, and
ethics. Wearables generate continuous streams of sensitive
data, raising questions of ownership, informed consent, and
surveillance. While marketed as empowering tools, in
practice they can expose users to coercive oversight by
employers, insurers, or governments. High-profile data
breaches underscore these vulnerabilities, while critics have
warned that without robust ethical frameworks, wearables
risk undermining the trust required for adoption (Topol,
2019; Sharon, 2017) 47- 431,

A third limitation is interoperability and system integration.
The wearable ecosystem remains fragmented, with
proprietary platforms and competing standards limiting
connectivity with electronic health records, safety platforms,
and national health databases (Hossain & Muhammad,
2016) 4. Industry rhetoric often stresses scalability, but in
practice integration costs and technical incompatibility slow
adoption and restrict cumulative learning.

Finally, human and organizational factors constrain
implementation. User compliance often declines over time
due to discomfort, battery limitations, or information
overload (Basch et al., 2016) [°1. Digital literacy gaps reduce
accessibility, particularly in older or underserved
populations. In workplaces, monitoring may be resisted as
invasive or punitive. Organizational reluctance also reflects
uncertainty about liability, workflow disruption, and unclear
returns on investment. These factors illustrate that adoption
is not purely a technical issue but one of socio-technical
alignment. Figure 4 illustrates these multi-dimensional
challenges, highlighting the interplay of technical, ethical,
and organizational barriers.
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8. Future Directions
Addressing these limitations
innovation and governance.
One priority is strengthening policy and regulatory
frameworks. In the European Union, the General Data
Protection Regulation (GDPR) provides baseline protections
for personal data (Voigt & Von dem Bussche, 2017) 81, In
healthcare, medical device regulation by the U.S. Food and
Drug Administration (FDA) and the European Medicines
Agency (EMA) has set standards for safety and efficacy
(Rabbitts et al., 2021) B9, However, current frameworks are
uneven and underdeveloped in other sectors such as
occupational safety and defense. Scholars argue that clearer
standards on fairness, transparency, and accountability are
essential to prevent misuse and foster trust (Mittelstadt,
2017) =21,

Another  direction is  fostering interdisciplinary
collaboration. Research shows that wearable systems are
most effective when engineers, clinicians, ethicists, and
social scientists collaborate to address not only technical
reliability but also ethical and social acceptability (Baxter &
Sommerville, 2011; Kostkova et al., 2016) [ 21, This
collaborative  approach ensures that technological
innovations are embedded within broader socio-technical
systems.

A further priority is expanding the equity and global health
agenda. Evidence from low- and middle-income countries
(LMICs) demonstrates the challenges of wearable adoption
due to infrastructure limitations, affordability constraints,
and cultural barriers (Byass, 2018; Rawstorn et al., 2016) ('
01, Without deliberate strategies for equitable distribution,
wearable-enabled decision support may exacerbate rather

requires coordinated

than reduce health and safety disparities.

Finally, scalability remains critical. Large-scale studies such
as the Apple Heart Study have demonstrated both feasibility
and the infrastructure demands of population-level wearable
deployment for atrial fibrillation detection (Perez et al.,
2019) B, Expanding these initiatives will require sustained
investment and cross-sector partnerships to align technical,
organizational, and ethical priorities.

8. Conclusion

Wearables are reshaping decision support by enabling
personalization, predictive intervention, population-level
intelligence, and hybrid human-machine collaboration.
Their potential is evident across healthcare, occupational
safety, sports, defense, and emergency response. Yet
persistent challenges, ranging from accuracy failures and
declining compliance to ethical risks and limited
interoperability, demonstrate that their integration into
decision-support ecosystems is far from straightforward.
The path forward requires balancing technical innovation
with governance, ethics, and inclusivity. Regulatory
frameworks such as GDPR and medical device certification
must be adapted to new applications. Interdisciplinary
collaboration across engineering, clinical science, ethics,
and policy is essential to translate pilots into sustainable
infrastructures. Equally, a focus on equity is needed to
ensure that wearable-enabled decision support benefits not
only high-resource environments but also LMICs where
health and safety burdens are greatest.

Future research should prioritize large-scale trials, the
development of governance frameworks, and cross-
disciplinary partnerships to ensure that wearable-enabled
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decision support advances responsibly and inclusively.

References

1.

10.

11.

12.

13.

14,

15.

16.

17.

Akenhead R, Nassis GP. Training load and player
monitoring in high-level football: Current practice and
perceptions. Int J Sports Physiol  Perform.
2016;11(5):587-593.

Al Rajeh AM, Hurst JR. Monitoring exacerbations in
COPD: What is the role of wearable devices? Int J
Chron Obstruct Pulmon Dis. 2016;11:1119-1126.
Annis T, Pleasants S, Hultman G, Lindemann E,
Thompson JA, Billecke S, et al. Rapid implementation
of a COVID-19 remote patient monitoring program. J
Am Med Inform Assoc. 2020;27(8):1326-1330.
Antwi-Afari MF, Li H, Edwards DJ, Parn EA, Seo J,
Wong AYL. Critical review of physiological metrics
for proactive management of construction workers’
health and safety. J Constr Eng Manag.
2017;143(9):04017057.

Anund A, Fors C, Hallvig D, Akerstedt T, Kecklund G.
Observer rated sleepiness and real road driving: an
explorative study. PLoS One. 2013;8(5):e64782.

Basch E, Deal AM, Kris MG, Scher HI, Hudis CA,
Sabbatini P, et al. Symptom monitoring with patient-
reported outcomes during routine cancer treatment: A
randomized controlled trial. J Clin  Oncol.
2016;34(6):557-565.

Baxter G, Sommerville 1. Socio-technical systems:
From design methods to systems engineering. Interact
Comput. 2011;23(1):4-17.

Bent B, Goldstein BA, Kibbe WA, Dunn JP, et al.
Investigating sources of inaccuracy in wearable optical
heart rate sensors. NPJ Digit Med. 2020;3(1):18.
Bergenstal RM, Klonoff DC, Garg SK, Bode BW,
Meredith M, Slover RH, et al. Threshold-based insulin-
pump interruption for reduction of hypoglycemia. N
Engl J Med. 2018;369(3):224-232.

Bonato P. Wearable sensors and systems. IEEE Eng
Med Biol Mag. 2010;29(3):25-36.

Byass P. The unequal world of health data. PLoS Med.
2018;15(7):1002676.

Chang W, Nie W, Lv R, Zheng L, Lu J, Yan G. Fatigue
Driving  State  Detection Based on  Spatial
Characteristics of EEG  Signals. Electronics.
2023;13(18):3742.

Chen H, Mao Y, Xu Y, Wang R. The Impact of
Wearable Devices on the Construction Safety of
Building  Workers: A Systematic  Review.
Sustainability. 2022;15(14):11165.

Chen S, Liaw J, Chan H, Chang Y, Ku C. A Real-Time
Fatigue Monitoring and Analysis System for Lower
Extremity Muscles with Cycling Movement. Sensors.
2014;14(7):12410-12424.

Chung AE, Skinner AC, Hasty SE, Perrin EM.
Tweeting to Health: A Novel mHealth Intervention
Using Fitbits and Twitter to Foster Healthy Lifestyles.
Clin Pediatr. 2017;56(1):26-32.

Clifford GD, Clifton D, Xu L, Watkinson P, Tarassenko
L. Machine learning for vital sign monitoring in critical
care. Proc IEEE. 2016;104(2):444-466.

Cummins C, Orr R, O’Connor H, West C. Global
positioning systems (GPS) and microtechnology
sensors in team sports: A systematic review. Sports
Med. 2013;43(10):1025-1042.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

~150 ~

https://www.computersciencejournals.com/ijecs

. Di Matteo E, Roma P, Zafonte S, Panniello U, Abbate

L. Development of a Decision Support System
Framework for Cultural Heritage Management.
Sustainability. 2020;13(13):7070.

Dias D, Cunha JPS. Wearable health devices—vital
sign monitoring, systems and technologies. Sensors.
2018;18(8):2414.

Gao W, Emaminejad S, Nyein HY'Y, Challa S, Chen K,
Peck A, et al. Fully integrated wearable sensor arrays
for multiplexed in situ perspiration analysis. Nature.
2016;529(7587):509-514.

Ghadi YY, Shah SF, Waheed W, Mazhar T, Ahmad W,
Saeed MM, et al. Integration of wearable technology
and artificial intelligence in digital health for remote
patient care. J Cloud Comput. 2025;14(1):1-25.

Ghiasi S, Zhu T, Lu P, Hagenah J, Quoc Khanh PN,
Hao NV, et al. Sepsis Mortality Prediction Using
Wearable Monitoring in  Low-Middle Income
Countries. Sensors (Basel). 2022;22(10):3866.

Gluck S, Chapple LS, Chapman MJ, Iwashyna TJ,
Deane AM. A scoping review of use of wearable
devices to evaluate outcomes in survivors of critical
illness. Crit Care Resusc. 2017;19(3):197-204.

Hossain MS, Muhammad G. Cloud-assisted industrial
internet of things (l1oT)-enabled framework for health
monitoring. Comput Netw. 2016;101:192-202.

Huhn S, Axt M, Gunga C, Maggioni MA, Munga S,
Obor D, et al. The Impact of Wearable Technologies in
Health Research: Scoping Review. JMIR MHealth
UHealth. 2022;10(1):e34384.

Jacobs JV, Hettinger LJ, Huang YH, Jeffries S, Lesch
MF, Simmons LA, et al. Employee acceptance of
wearable technology in the workplace. Appl Ergon.
2019;78:148-156.

Kostkova P, Brewer H, de Lusignan S, Fottrell E,
Goldacre B, Hart G, et al. Who owns the data? Open
data for healthcare. Front Public Health. 2016;4:7.

Li RT, Kling SR, Salata MJ, Cupp SA, Sheehan J, Voos
JE. Wearable performance devices in sports medicine.
Sports Health. 2015;8(1):74-78.

Li X, Dunn J, Salins D, Zhou G, Zhou W, Schussler-
Fiorenza Rose SM, et al. Digital health: Tracking
physiomes and activity using wearable biosensors
reveals useful health-related information. PLoS Biol.
2017;15(1):e2001402.

Liu L, Pu Y, Fan J, Yan VY, Liu W, Luo K, et al.
Wearable sensors, data processing, and artificial
intelligence in pregnancy monitoring: A review.
Sensors. 2023;24(19):6426.

Mirjalali S, Peng S, Fang Z, Wang H, Wu S. Wearable
sensors for remote health monitoring: Potential
applications for early diagnosis of COVID-19. Adv
Mater Technol. 2021;7(1):2100545.

Mittelstadt BD. Ethics of the health-related internet of
things: A narrative review. Ethics Inf Technol.
2017;19(3):157-175.

Nuccio RP, Barnes KA, Carter JM, Baker LB. Fluid
balance in team sport athletes and the effect of
hypohydration on cognitive, technical, and physical
performance. Sports Med. 2017;47(10):1951-1982.

Oh Y, Choi S, Shin Y, Jeong Y, Lim J, Kim S.
Investigating activity recognition for hemiparetic stroke
patients using wearable sensors: A deep learning
approach  with  data  augmentation.  Sensors.


https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

2023;24(1):210.

35. Pantelopoulos A, Bourbakis NG. A survey on wearable
sensor-based systems for health monitoring and
prognosis. IEEE Trans Syst Man Cybern C Appl Rev.
2010;40(1):1-12.

36. Patel S, Park H, Bonato P, Chan L, Rodgers M. A
review of wearable sensors and systems with
application in rehabilitation. J Neuroeng Rehabil.
2012;9(1):21.

37. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS,
Garcia A, Ferris T, et al. Large-scale assessment of a
smartwatch to identify atrial fibrillation. N Engl J Med.
2019;381(20):1909-1917.

38. Piwek L, Ellis DA, Andrews S, Joinson A. The rise of
consumer health wearables: Promises and barriers.
PLoS Med. 2016;13(2):1001953.

39. Rabbitts JA, Groenewald CB, Palermo TM. Wearables
in clinical trials: Regulatory considerations. Nat Rev
Drug Discov. 2021;20(6):387-388.

40. Rawstorn JC, Gant N, Direito A, Beckmann C,
Maddison R. Telehealth exercise-based cardiac
rehabilitation; A systematic review and meta-analysis.
Heart. 2016;102(15):1183-1192.

41. Shah VN, Garg SK. Managing diabetes in the digital
age. Clin Diabetes Endocrinol. 2019;5(1):1-9.

42. Sharma A, Badea M, Tiwari S, Marty JL. Wearable
biosensors: An alternative and practical approach in
healthcare and disease monitoring. Molecules.
2021;26(3):748.

43. Sharon T. Self-tracking for health and the quantified
self: Re-articulating autonomy in the era of big data.
Philos Technol. 2017;30(1):93-121.

44, Steinhubl SR, Waalen J, Edwards AM, Ariniello LM,
Mehta RR, Ebner GS, et al. Effect of a home-based
wearable continuous ECG monitoring patch on
detection of undiagnosed atrial fibrillation: The
mSToPS  randomized  clinical trial. JAMA.
2018;320(2):146-155.

45. Tamura T. Advanced wearable sensors technologies for
healthcare monitoring. Sensors. 2024;25(2):322.

46. Tindale LC, Chiu D, Minielly N, Hrincu V, Talhouk A,
Illes J. Wearable biosensors in the workplace:
Perceptions and perspectives. Front Digit Health.
2022;4:800367.

47. Topol EJ. High-performance  medicine:  The
convergence of human and artificial intelligence. Nat
Med. 2019;25(1):44-56.

48. Voigt P, Von dem Bussche A. The EU General Data
Protection Regulation (GDPR): A practical guide.
Springer; 2017.

49. Windt J, Gabbett TJ. How do training and competition
workloads relate to injury? The workload-injury
aetiology model. Br J Sports Med. 2017;51(5):428-435.

50. Gathright EC, Hughes JW, Sun S, Storlazzi LE,
DeCosta J, Balletto BL, et al. Effects of stress
management interventions on heart rate variability in
adults with cardiovascular disease: a systematic review
and meta-analysis. Journal of behavioral medicine.
2024 Jun;47(3):374-88.

51. Jiang S, Li H, Zhang L, Mu W, Zhang Y, Chen T, et al.
Generic  Diagramming  Platform  (GDP): a
comprehensive database of high-quality biomedical
graphics. Nucleic acids research. 2025 Jan
6;53(D1):D1670-6.

~151~


https://www.computersciencejournals.com/ijecs

