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Abstract 
Wearable technologies are increasingly central to real-time decision support across healthcare, 

occupational safety, sports, defense, and emergency response. By continuously capturing physiological, 

behavioral, and environmental data, these devices provide actionable insights that enhance both 

individual care and organizational performance. Their value lies in four domains: personalization of 

decisions, predictive analytics for early intervention, population-level intelligence to inform policy, and 

hybrid intelligence that augments human judgment. Despite these opportunities, unresolved challenges 

persist, including variable data accuracy, privacy risks, limited interoperability, and barriers to 

sustained user adoption. Addressing these issues requires stronger ethical frameworks, reliable 

integration standards, and attention to socio-technical factors influencing uptake. Advances in edge 

computing, multimodal data fusion, and governance mechanisms further underscore the field’s 

trajectory. This article argues that realizing the transformative potential of wearable technologies 

depends on interdisciplinary collaboration that bridges engineering, healthcare, ethics, and policy to 

create trustworthy decision-support ecosystems. 

 

Keywords: Ethical governance, occupational safety, predictive analytics, precision healthcare, real-

time decision support, wearable technology 

 

1. Introduction 
Decision-making under conditions of uncertainty is central to many domains of human 
activity, from clinical medicine and emergency response to industrial operations and defense. 
The quality and timeliness of decisions often determine not only efficiency and economic 
outcomes but also human lives. Conventional decision support systems (DSS) emerged in 
the mid-twentieth century as tools to assist managers and professionals in processing large 
amounts of structured information for improved judgment (Di Matteo et al., 2020) [18]. 
However, these systems were typically retrospective, relying on historical or static data and 
designed for settings where decisions could be planned rather than executed in real time. In 
environments where the situation evolves rapidly, such as acute patient care, disaster 
management, or hazardous industrial operations, static decision inputs are insufficient. What 
is required is real-time decision support, underpinned by continuous data streams and 
adaptive analytics capable of guiding users as events unfold (Gathright et al., 2024) [50]. 
The emergence of wearable technology has provided an important pathway toward such real-
time systems. Broadly defined, wearables are sensor-equipped devices worn on or close to 
the human body that capture physiological, behavioral, and environmental parameters (Patel 
et al., 2012; Dias & Cunha, 2018) [36, 19]. Early generations of wearable devices, such as 
pedometers and consumer-grade activity trackers, primarily served lifestyle and fitness 
markets (Piwek et al., 2016) [38]. More recently, rapid advances in miniaturized sensors, 
wireless communication (including Bluetooth Low Energy and 5G), edge computing, and 
artificial intelligence have transformed wearables into highly sophisticated platforms. These 
systems are now capable of not only recording data but also transmitting, processing, and 
analyzing it in ways that yield actionable insights within seconds (Mu et al., 2025) [51]. 
The healthcare sector illustrates the profound implications of this technological shift. For 
instance, continuous glucose monitors (CGMs) allow patients with diabetes to receive alerts 
on impending hypoglycemia or hyperglycemia, enabling immediate corrective action rather 
than relying solely on periodic blood tests (Bergenstal et al., 2013) [9]. Similarly, continuous 
ECG patches can detect paroxysmal atrial fibrillation that might otherwise go unnoticed 
during intermittent clinical examinations, thereby reducing stroke risk (Steinhubl et al., 

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://www.doi.org/10.33545/26633582.2025.v7.i2b.210


International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs 

~ 144 ~ 

2018) [44]. In critical care settings, wearable sensors 

integrated with early warning systems have been shown to 

improve recognition of patient deterioration (Gluck et al., 

2017) [23]. These examples demonstrate how wearables 

extend decision-making capacity by reducing temporal gaps 

between physiological events and interventions, a 

cornerstone of real-time decision support. 

Beyond healthcare, wearables are increasingly relevant in 

occupational safety and industry. In construction, mining, 

and chemical manufacturing, smart helmets and sensor-

embedded garments monitor worker fatigue, exposure to 

harmful substances, and ergonomics in real time (Jacobs et 

al., 2019) [26]. By alerting workers and supervisors to 

hazards before incidents occur, these devices contribute to 

preventive safety strategies and align with the principles of 

proactive risk management. In transportation, wearable 

fatigue-detection systems for drivers and pilots can prevent 

catastrophic accidents by triggering alerts when biometric 

signals indicate reduced alertness (Chang et al., 2023) [12]. 

The sports and performance sector has also embraced 

wearable-enabled decision support. Professional athletes 

and coaches rely on real-time monitoring of heart rate 

variability, acceleration, oxygen saturation, and other 

parameters to optimize training loads and reduce the 

likelihood of overtraining injuries (Li, et al., 2015) [28]. 

These data streams are increasingly integrated with video 

analytics and environmental sensors, providing coaches with 

multidimensional insights that inform in-game tactical 

decisions as well as long-term performance planning (Windt 

& Gabbett, 2017) [49]. 

In defense and emergency response, wearables are 

becoming critical for situational awareness in extreme 

environments. Soldiers equipped with biometric monitoring 

systems can be assessed for hydration, thermal strain, and 

stress levels, which informs command-level decisions about 

deployment and rotation (Bonato, 2010) [10]. Firefighters and 

disaster-response teams benefit from location-tracking 

wearables combined with environmental sensors that 

provide real-time alerts on toxic exposures or structural 

risks (Huhn et al., 2022) [25]. In these high-stakes contexts, 

decision support is inseparable from survival, making the 

reliability of wearable technologies a matter of strategic 

importance. 

Despite the potential, adoption of wearable-based decision 

support systems faces several barriers and unresolved 

questions. First, the accuracy and reliability of data remain 

inconsistent across devices. Studies have shown that motion 

artifacts, sensor placement, and environmental interference 

can significantly distort readings, especially for optical 

heart-rate sensors and consumer-grade accelerometers (Bent 

et al., 2020) [8]. Inaccurate data not only undermines trust 

but may also lead to harmful decisions if false positives or 

negatives go unchecked. Second, privacy and ethical 

concerns are significant, as wearable devices generate some 

of the most intimate categories of personal data. The 

potential misuse of biometric information for surveillance or 

commercial exploitation raises questions about autonomy, 

consent, and data governance (Sharon, 2017; Mittelstadt, 

2017) [43, 32]. Third, the lack of interoperability between 

devices and platforms limits the integration of wearables 

into broader decision support ecosystems, such as electronic 

health records or enterprise safety dashboards (Ghadi et al., 

2025) [21]. Finally, human and organizational factors, 

including user comfort, compliance, digital literacy, and 

institutional readiness, strongly influence whether wearable 

systems realize their full potential (Chung et al., 2017) [15]. 

These trends suggest that wearable technology represents 

both a transformative opportunity and a complex challenge 

for the future of real-time decision support. On one hand, 

wearables extend decision-making capacity by providing 

continuous, personalized, and context-rich data that can be 

translated into timely interventions. On the other hand, 

without attention to accuracy, ethics, interoperability, and 

usability, the same technologies may exacerbate risks or 

entrench inequalities in access to decision-support tools. 

 

2. Literature Review 

Scholarship on wearable technologies has developed 

rapidly, ranging from technical reviews to evaluations of 

clinical and organizational applications. Early work focused 

on medical monitoring and rehabilitation. Pantelopoulos and 

Bourbakis (2010) [35] surveyed sensor-based health systems, 

highlighting their diagnostic potential but also reliability and 

integration challenges. Patel et al. (2012) [36] discussed 

rehabilitation uses, stressing technical feasibility without 

addressing decision-support contexts. 

As consumer adoption expanded, attention shifted to fitness 

and lifestyle monitoring. Piwek et al. (2016) [38] critically 

assessed consumer-grade devices, noting problems of 

accuracy, adherence, and privacy. Dias and Cunha (2018) [9] 

classified wearable health devices but offered largely 

descriptive accounts with limited engagement on how 

continuous data streams support real-time decision-making. 

Recent reviews recognize convergence with mobile health 

and artificial intelligence. Huhn et al. (2022) [25] identified 

opportunities for personalized monitoring but emphasized 

methodological inconsistencies across studies. Ghadi et al. 

(2025) [21] examined AI-enabled remote patient care, 

acknowledging predictive potential while pointing to 

unresolved interoperability and governance issues. 

Importantly, most reviews treat ethical questions as 

peripheral. Sharon (2017) and Mittelstadt (2017) [43, 32] argue 

that self-tracking raises concerns about autonomy, fairness, 

and surveillance, yet these issues remain underexplored in 

technical analyses. 

Cross-domain comparisons are also scarce. Occupational 

safety research emphasizes proactive risk detection through 

smart helmets and fatigue monitors (Jacobs et al., 2019; 

Chen et al., 2022) [13], while sports medicine literature 

highlights performance optimization and injury prevention 

(Akenhead & Nassis, 2016; Tamura, 2024) [1, 45]. Defense 

studies focus on situational awareness in extreme 

environments (Bonato, 2010; Hossain & Muhammad, 2016) 

[10, 24]. Despite these advances, few reviews synthesize 

insights across sectors or critically link wearables to 

decision science frameworks such as Decision Support 

Systems (DSS), Internet of Things (IoT), or the Data-

Information-Knowledge-Wisdom (DIKW) hierarchy. This 

article addresses these gaps by integrating theoretical 

models with empirical evidence across healthcare, 

occupational safety, sports, and defense. By foregrounding 

debates on accuracy, interoperability, ethics, and equity, it 

contributes a cross-sectoral critique of how wearables shape 

real-time decision support ecosystems. 

 

3. Theoretical and Conceptual Framework 

The integration of wearable technologies into real-time 

decision support can be explained through established 
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theories in decision sciences and information systems. 

Traditional Decision Support Systems (DSS) emphasize the 

interaction between data, models, and user interfaces to aid 

decision-making under uncertainty (Di Matteo et al., 2020) 

[18]. Wearables extend this paradigm by acting as continuous 

sensing devices that feed dynamic and individualized data 

streams into adaptive DSS, enabling real-time analytics and 

context-aware decision-making. Within the Internet of 

Things (IoT) framework, wearables are situated as nodes in 

interconnected networks where information is exchanged 

across sensors, mobile devices, and cloud-based platforms. 

This aligns with socio-technical systems theory, which 

stresses that decision support effectiveness depends not only 

on technology but also on the organizational and human 

factors that govern its use (Baxter & Sommerville, 2011) [7]. 

Complementary frameworks further illustrate how raw 

wearable data become actionable knowledge. Complex 

Event Processing (CEP) explains the transformation of 

continuous sensor signals into meaningful events, such as 

detecting arrhythmias from ECG patches or identifying falls 

from accelerometers. In healthcare, Clinical Decision 

Support (CDS) models show how wearable-derived datasets 

enhance diagnostic precision and personalize treatment 

recommendations. The data-information-knowledge-

wisdom (DIKW) hierarchy adds a conceptual layer by 

clarifying how sensor data evolve into higher-order insights 

that guide decision-making. Together, these perspectives 

frame wearables as integral components of decision-making 

ecosystems where technical, clinical, and organizational 

elements converge. Figure 1 provides a conceptual 

illustration of this process. It depicts how wearable sensors 

capture physiological signals, transmit them through patient-

mobile and patient-clinician interactions, and feed into 

cloud-based data analysis. The output generates diagnostic 

results and integrates user feedback, showing how 

wearables function as intermediaries between individuals, 

healthcare providers, and computational infrastructures (Liu 

et al., 2024). This schematic exemplifies the theoretical 

principles of DSS, IoT, and DIKW in practice, situating 

wearables as both technical devices and enablers of socio-

technical decision-making systems. Importantly, this 

framework also underpins the central purpose of this article: 

to critically assess how wearable technologies can be 

integrated into real-time decision-support ecosystems across 

healthcare, occupational safety, sports, and defense. By 

linking theory to application, the analysis moves beyond 

descriptive accounts to evaluate how continuous data 

streams are transformed into actionable, reliable, and 

ethically governed decisions. DSS, IoT, and DIKW justify 

the central research question of this article: how can 

wearable technologies be integrated to provide reliable, 

ethical, and actionable real-time decision support? 

 

 
 

Fig 1: Conceptual Representation of Patient-Wearable-Clinician Interaction in Real-Time Decision Support 

 

4. Applications of Wearable Tech in Real-Time Decision 

Support 

Wearable technologies have advanced far beyond their 

initial role as consumer wellness tools, becoming central to 

real-time decision support in healthcare, occupational 

safety, sports, and defense. By continuously collecting 

physiological, behavioral, and environmental data, 

wearables generate insights that support timely 

interventions. Their contribution lies not only in 

personalization but also in enabling predictive and 

preventive decisions in high-stakes environments. 

 

4.1 Healthcare 

Healthcare is the most mature domain for wearable-enabled 

decision support. Continuous glucose monitors (CGMs) 

alert patients and clinicians to hypoglycemia or 

hyperglycemia in real time, improving insulin management 

and reducing complications (Shah & Garg, 2019) [41]. 

Cardiac patches and smartwatch-based ECG sensors detect 

arrhythmias, allowing early interventions that prevent 

strokes (Steinhubl et al., 2018; Perez et al., 2019) [44, 37]. 

During the COVID-19 pandemic, smart rings and 

wristbands that monitored oxygen saturation supported 

remote patient monitoring, reducing hospital congestion 

while maintaining clinical oversight (Annis et al., 2020). 

These examples illustrate how wearables extend care 

beyond hospital walls, aligning with precision medicine and 

proactive disease management. 
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4.2 Occupational Safety and Industry 

Wearables are increasingly deployed to prevent accidents 

and protect worker health in industrial settings. Fatigue-

detection devices in mining and transport measure blink 

duration, head movement, and heart rate variability to issue 

early alerts that reduce accident risks (Chang et al., 2023; 

Choi et al., 2018) [12, 34]. Gas-detection wearables in 

chemical industries provide continuous monitoring of toxic 

exposures, enabling evacuation before thresholds are 

exceeded (Chen et al., 2022) [13]. Construction workers use 

posture-monitoring exoskeletons and inertial sensors to 

prevent musculoskeletal injuries by detecting unsafe lifting 

patterns (Antwi-Afari et al., 2017) [4]. Figure 2 illustrates 

selected wearable systems designed for industrial safety, 

highlighting their integration into broader occupational 

health and risk management strategies. 

 

 
 

Fig 2: Wearable’s for Industrial Work Safety 

 

4.3 Sports and Human Performance 

The sports sector demonstrates how wearable data are used 

to optimize performance and reduce injury risk. GPS-

enabled vests and accelerometers track workload, speed, and 

fatigue, allowing coaches to adjust training intensity and 

avoid overtraining injuries (Akenhead & Nassis, 2016) [1]. 

Hydration sensors and thermoregulation monitors prompt 

interventions to prevent heat-related illnesses (Nuccio et al., 

2017) [33]. In competitive play, coaches rely on real-time 

wearable data to make tactical decisions, such as 

substitutions guided by fatigue indicators (Cummins et al., 

2013) [17]. These applications illustrate the shift from 

intuition-driven to data-informed decision-making in elite 

performance contexts. 

 

4.4 Defense and Emergency Response: Defense and

emergency response contexts demand rapid decisions under 

extreme conditions. Biometric sensors that monitor heart 

rate variability, stress, hydration, and core temperature help 

commanders assess troop readiness and optimize 

deployment cycles (Gao et al., 2016) [20]. For firefighters 

and disaster responders, smart helmets equipped with GPS, 

gas sensors, and thermal imaging provide real-time 

situational awareness, guiding safer navigation in hazardous 

conditions (Hossain & Muhammad, 2016) [24]. During large-

scale emergencies, wearable biosensors transmit patient 

vital signs directly to command centers, enhancing triage 

and resource allocation (Mirjalali et al., 2021) [31]. Figure 3 

illustrates the role of wearable systems in defense and 

emergency operations, where real-time monitoring directly 

translates into survival outcomes. 
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Fig 3: Role of Wearables in Defense/military system 

 
Table 1: Comparative Applications of Wearables in Real-Time Decision Support 

 

Domain 

 
Example Devices Decision Supported Key Benefits Key Challenges 

Healthcare 
CGMs, ECG patches, smart 

rings, wristbands 

Diabetes alerts, arrhythmia 

detection, remote monitoring 

Early intervention, reduced 

hospital burden, precision care 

Accuracy variability, 

interoperability 

Occupational 

Safety 

Fatigue sensors, smart helmets, 

exoskeletons, gas monitors 

Fatigue detection, hazard 

monitoring, ergonomics 

Accident prevention, hazard 

alerts, worker wellbeing 

Compliance, privacy, 

organizational readiness 

Sports 
GPS vests, accelerometers, 

hydration sensors 

Training optimization, injury 

prevention, tactical substitutions 

Enhanced performance, 

reduced injuries, informed 

coaching 

Reliability in high-

intensity settings 

Defense & 

Emergency 

Biosensors, smart helmets, 

triage monitors 

Stress/fatigue monitoring, 

situational awareness, patient 

triage 

Improved readiness, safer 

deployments, faster triage 

Scalability, ethical 

governance, data security 

 

5. Discussion 

The application of wearable technologies across healthcare, 

occupational safety, sports, and defense reveals several 

common patterns. A consistent trend is the movement from 

reactive monitoring toward predictive and preventive 

decision support. In healthcare, for instance, continuous 

glucose monitoring shifts diabetes care from episodic 

measurement to proactive intervention (Shah & Garg, 2019) 

[41]. In industrial safety, fatigue sensors and posture monitors 

provide anticipatory alerts that prevent accidents before they 

occur (Chang et al., 2023; Antwi-Afari et al., 2017) [12, 4]. 

Sports and defense sectors similarly demonstrate the value 

of prediction and personalization, with wearable data 

enabling tailored training, informed substitutions, and early 

detection of physiological stress (Akenhead & Nassis, 2016; 

Gao et al., 2016) [1, 20]. Across domains, the personalization 

of decision-making emerges as a defining feature: data 

streams are increasingly fine-tuned to individual 

physiological baselines, producing insights that are more 

actionable than generic guidelines. 

Despite these advances, significant limitations remain. 

Accuracy and reliability are inconsistent across devices and 

contexts, with motion artifacts, environmental interference, 

and sensor placement affecting readings (Bent et al., 2020). 

This undermines confidence in clinical and industrial 

decision-making where errors carry high risks. Evidence is 

also uneven across domains. Healthcare benefits from large-

scale clinical trials (e.g., Perez et al., 2019), whereas 

occupational safety and defense often rely on pilot studies or 

proprietary industry data that are not peer-reviewed. The 

context-specific nature of performance further complicates 

generalization; a wearable validated in controlled laboratory 

settings may not function with the same reliability in 

unpredictable real-world environments. 

There are also ongoing debates and unresolved challenges. 

Privacy and data governance remain central concerns, as 

wearable devices capture intimate physiological and 

behavioral data that can be misused for surveillance or 

commercial exploitation (Sharon, 2017; Mittelstadt, 2017) 

[43, 32]. Equity is another issue: most large-scale studies are 

conducted in high-resource settings, raising concerns about 

global accessibility and the risk of exacerbating digital 

divides. Governance is contested between industry and 

academia, with technology companies often making 

optimistic claims that outpace the available scientific 

evidence. This tension highlights the need for independent 

validation, standardized regulatory frameworks, and 

interdisciplinary oversight that integrates engineering, 

clinical, ethical, and policy perspectives. 

  

6. Opportunities and Transformative Potential 

The integration of wearable technologies into decision-

making processes presents a set of transformative 

opportunities that extend across healthcare, occupational 

safety, sports, and defense. Their potential lies not simply in 

monitoring, but in reshaping how decisions are informed 

and acted upon at individual, organizational, and population 

levels. 
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Personalization remains one of the strongest opportunities. 

Because wearables generate continuous and multimodal 

data, they allow insights to be tailored to individual 

baselines rather than population averages. In healthcare, 

continuous glucose monitors have enabled more accurate 

insulin dosing and improved glycemic control, while 

rehabilitation programs that incorporate wearable feedback 

achieve better adherence and recovery outcomes (Shah & 

Garg, 2019) [41]. In workplaces, personalization means 

fatigue alerts or ergonomic adjustments can be calibrated to 

each worker’s age, health status, or workload. This 

individualized approach strengthens compliance and 

increases the relevance of decision-support interventions. 

A second opportunity arises from predictive analytics. The 

high-frequency signals captured by wearables can be 

processed through machine learning models to identify early 

warning patterns. In clinical contexts, such models have 

been used to forecast sepsis onset, arrhythmias, and 

respiratory distress, allowing interventions before critical 

deterioration occurs (Ghiasi et al., 2022; Clifford et al., 

2016) [22, 16]. In industrial environments, predictive analysis 

of motion and biosignals provides advance alerts of fatigue 

or cognitive decline, helping to prevent accidents in 

transportation, mining, and construction (Chang et al., 2023) 

[12]. This shift from reactive to anticipatory decision support 

fundamentally alters the timing and effectiveness of 

intervention strategies. 

Wearables also enable population-level intelligence when 

data are aggregated. At this scale, patterns in community 

health, occupational risks, or hazard exposure can be 

identified. Notably, large-scale smart watch studies have 

uncovered previously undiagnosed atrial fibrillation, with 

direct implications for public health planning and resource 

distribution (Perez et al., 2019) [37]. For policymakers, such 

insights could support epidemic surveillance, workforce 

protection, and targeted allocation of healthcare services. 

The challenge is to balance these collective benefits with 

stringent privacy and governance standards. 

Finally, the idea of hybrid intelligence emphasizes that 

wearables are designed to complement, not replace, human 

expertise. Automated alerts and continuous monitoring 

reduce cognitive burden, but decision-making remains 

rooted in professional judgment and ethical reasoning. In 

emergency response, biometric sensors may highlight rising 

physiological strain, yet the critical decisions on evacuation 

or tactical adjustments remain with trained personnel 

(Nuccio et al., 2017) [33]. This model preserves human 

agency while ensuring that complex, real-time data are 

translated into usable insights. 

 

7. Challenges and Limitations 

The opportunities outlined above are tempered by persistent 

and multi-dimensional challenges. A first concern is data 

accuracy and reliability. Industry marketing often promotes 

wearables as seamless and precise, yet empirical evidence 

reveals frequent calibration errors, motion artifacts, and 

physiological variability that undermine trust. Heart-rate 

monitors can misread signals during vigorous exercise, 

while sweat-based biosensors are easily distorted by 

hydration levels (Gao et al., 2016) [20]. In decision-support 

contexts, such inaccuracies translate into false alarms or 

missed detections, creating risks that are rarely 

acknowledged in promotional claims. 

Equally significant are issues of privacy, security, and 

ethics. Wearables generate continuous streams of sensitive 

data, raising questions of ownership, informed consent, and 

surveillance. While marketed as empowering tools, in 

practice they can expose users to coercive oversight by 

employers, insurers, or governments. High-profile data 

breaches underscore these vulnerabilities, while critics have 

warned that without robust ethical frameworks, wearables 

risk undermining the trust required for adoption (Topol, 

2019; Sharon, 2017) [47, 43]. 

A third limitation is interoperability and system integration. 

The wearable ecosystem remains fragmented, with 

proprietary platforms and competing standards limiting 

connectivity with electronic health records, safety platforms, 

and national health databases (Hossain & Muhammad, 

2016) [24]. Industry rhetoric often stresses scalability, but in 

practice integration costs and technical incompatibility slow 

adoption and restrict cumulative learning. 

Finally, human and organizational factors constrain 

implementation. User compliance often declines over time 

due to discomfort, battery limitations, or information 

overload (Basch et al., 2016) [6]. Digital literacy gaps reduce 

accessibility, particularly in older or underserved 

populations. In workplaces, monitoring may be resisted as 

invasive or punitive. Organizational reluctance also reflects 

uncertainty about liability, workflow disruption, and unclear 

returns on investment. These factors illustrate that adoption 

is not purely a technical issue but one of socio-technical 

alignment. Figure 4 illustrates these multi-dimensional 

challenges, highlighting the interplay of technical, ethical, 

and organizational barriers. 
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Fig 4: Multi-Dimensional Challenges of Wearable Decision Support 

 

8. Future Directions 

Addressing these limitations requires coordinated 

innovation and governance. 

One priority is strengthening policy and regulatory 

frameworks. In the European Union, the General Data 

Protection Regulation (GDPR) provides baseline protections 

for personal data (Voigt & Von dem Bussche, 2017) [48]. In 

healthcare, medical device regulation by the U.S. Food and 

Drug Administration (FDA) and the European Medicines 

Agency (EMA) has set standards for safety and efficacy 

(Rabbitts et al., 2021) [39]. However, current frameworks are 

uneven and underdeveloped in other sectors such as 

occupational safety and defense. Scholars argue that clearer 

standards on fairness, transparency, and accountability are 

essential to prevent misuse and foster trust (Mittelstadt, 

2017) [32]. 

Another direction is fostering interdisciplinary 

collaboration. Research shows that wearable systems are 

most effective when engineers, clinicians, ethicists, and 

social scientists collaborate to address not only technical 

reliability but also ethical and social acceptability (Baxter & 

Sommerville, 2011; Kostkova et al., 2016) [7, 27]. This 

collaborative approach ensures that technological 

innovations are embedded within broader socio-technical 

systems. 

A further priority is expanding the equity and global health 

agenda. Evidence from low- and middle-income countries 

(LMICs) demonstrates the challenges of wearable adoption 

due to infrastructure limitations, affordability constraints, 

and cultural barriers (Byass, 2018; Rawstorn et al., 2016) [11, 

40]. Without deliberate strategies for equitable distribution, 

wearable-enabled decision support may exacerbate rather 

than reduce health and safety disparities. 

Finally, scalability remains critical. Large-scale studies such 

as the Apple Heart Study have demonstrated both feasibility 

and the infrastructure demands of population-level wearable 

deployment for atrial fibrillation detection (Perez et al., 

2019) [37]. Expanding these initiatives will require sustained 

investment and cross-sector partnerships to align technical, 

organizational, and ethical priorities. 

 

8. Conclusion 

Wearables are reshaping decision support by enabling 

personalization, predictive intervention, population-level 

intelligence, and hybrid human-machine collaboration. 

Their potential is evident across healthcare, occupational 

safety, sports, defense, and emergency response. Yet 

persistent challenges, ranging from accuracy failures and 

declining compliance to ethical risks and limited 

interoperability, demonstrate that their integration into 

decision-support ecosystems is far from straightforward. 

The path forward requires balancing technical innovation 

with governance, ethics, and inclusivity. Regulatory 

frameworks such as GDPR and medical device certification 

must be adapted to new applications. Interdisciplinary 

collaboration across engineering, clinical science, ethics, 

and policy is essential to translate pilots into sustainable 

infrastructures. Equally, a focus on equity is needed to 

ensure that wearable-enabled decision support benefits not 

only high-resource environments but also LMICs where 

health and safety burdens are greatest. 

Future research should prioritize large-scale trials, the 

development of governance frameworks, and cross-

disciplinary partnerships to ensure that wearable-enabled 

https://www.computersciencejournals.com/ijecs
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decision support advances responsibly and inclusively. 

 

References  

1. Akenhead R, Nassis GP. Training load and player 

monitoring in high-level football: Current practice and 

perceptions. Int J Sports Physiol Perform. 

2016;11(5):587-593. 

2. Al Rajeh AM, Hurst JR. Monitoring exacerbations in 

COPD: What is the role of wearable devices? Int J 

Chron Obstruct Pulmon Dis. 2016;11:1119-1126. 

3. Annis T, Pleasants S, Hultman G, Lindemann E, 

Thompson JA, Billecke S, et al. Rapid implementation 

of a COVID-19 remote patient monitoring program. J 

Am Med Inform Assoc. 2020;27(8):1326-1330. 

4. Antwi-Afari MF, Li H, Edwards DJ, Pärn EA, Seo J, 

Wong AYL. Critical review of physiological metrics 

for proactive management of construction workers’ 

health and safety. J Constr Eng Manag. 

2017;143(9):04017057. 

5. Anund A, Fors C, Hallvig D, Åkerstedt T, Kecklund G. 

Observer rated sleepiness and real road driving: an 

explorative study. PLoS One. 2013;8(5):e64782. 

6. Basch E, Deal AM, Kris MG, Scher HI, Hudis CA, 

Sabbatini P, et al. Symptom monitoring with patient-

reported outcomes during routine cancer treatment: A 

randomized controlled trial. J Clin Oncol. 

2016;34(6):557-565. 

7. Baxter G, Sommerville I. Socio-technical systems: 

From design methods to systems engineering. Interact 

Comput. 2011;23(1):4-17. 

8. Bent B, Goldstein BA, Kibbe WA, Dunn JP, et al. 

Investigating sources of inaccuracy in wearable optical 

heart rate sensors. NPJ Digit Med. 2020;3(1):18. 

9. Bergenstal RM, Klonoff DC, Garg SK, Bode BW, 

Meredith M, Slover RH, et al. Threshold-based insulin-

pump interruption for reduction of hypoglycemia. N 

Engl J Med. 2018;369(3):224-232. 

10. Bonato P. Wearable sensors and systems. IEEE Eng 

Med Biol Mag. 2010;29(3):25-36. 

11. Byass P. The unequal world of health data. PLoS Med. 

2018;15(7):e1002676. 

12. Chang W, Nie W, Lv R, Zheng L, Lu J, Yan G. Fatigue 

Driving State Detection Based on Spatial 

Characteristics of EEG Signals. Electronics. 

2023;13(18):3742. 

13. Chen H, Mao Y, Xu Y, Wang R. The Impact of 

Wearable Devices on the Construction Safety of 

Building Workers: A Systematic Review. 

Sustainability. 2022;15(14):11165. 

14. Chen S, Liaw J, Chan H, Chang Y, Ku C. A Real-Time 

Fatigue Monitoring and Analysis System for Lower 

Extremity Muscles with Cycling Movement. Sensors. 

2014;14(7):12410-12424. 

15. Chung AE, Skinner AC, Hasty SE, Perrin EM. 

Tweeting to Health: A Novel mHealth Intervention 

Using Fitbits and Twitter to Foster Healthy Lifestyles. 

Clin Pediatr. 2017;56(1):26-32. 

16. Clifford GD, Clifton D, Xu L, Watkinson P, Tarassenko 

L. Machine learning for vital sign monitoring in critical 

care. Proc IEEE. 2016;104(2):444-466. 

17. Cummins C, Orr R, O’Connor H, West C. Global 

positioning systems (GPS) and microtechnology 

sensors in team sports: A systematic review. Sports 

Med. 2013;43(10):1025-1042. 

18. Di Matteo E, Roma P, Zafonte S, Panniello U, Abbate 

L. Development of a Decision Support System 

Framework for Cultural Heritage Management. 

Sustainability. 2020;13(13):7070. 

19. Dias D, Cunha JPS. Wearable health devices—vital 

sign monitoring, systems and technologies. Sensors. 

2018;18(8):2414. 

20. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, 

Peck A, et al. Fully integrated wearable sensor arrays 

for multiplexed in situ perspiration analysis. Nature. 

2016;529(7587):509-514. 

21. Ghadi YY, Shah SF, Waheed W, Mazhar T, Ahmad W, 

Saeed MM, et al. Integration of wearable technology 

and artificial intelligence in digital health for remote 

patient care. J Cloud Comput. 2025;14(1):1-25. 

22. Ghiasi S, Zhu T, Lu P, Hagenah J, Quoc Khanh PN, 

Hao NV, et al. Sepsis Mortality Prediction Using 

Wearable Monitoring in Low-Middle Income 

Countries. Sensors (Basel). 2022;22(10):3866. 

23. Gluck S, Chapple LS, Chapman MJ, Iwashyna TJ, 

Deane AM. A scoping review of use of wearable 

devices to evaluate outcomes in survivors of critical 

illness. Crit Care Resusc. 2017;19(3):197-204. 

24. Hossain MS, Muhammad G. Cloud-assisted industrial 

internet of things (IIoT)-enabled framework for health 

monitoring. Comput Netw. 2016;101:192-202. 

25. Huhn S, Axt M, Gunga C, Maggioni MA, Munga S, 

Obor D, et al. The Impact of Wearable Technologies in 

Health Research: Scoping Review. JMIR MHealth 

UHealth. 2022;10(1):e34384. 

26. Jacobs JV, Hettinger LJ, Huang YH, Jeffries S, Lesch 

MF, Simmons LA, et al. Employee acceptance of 

wearable technology in the workplace. Appl Ergon. 

2019;78:148-156. 

27. Kostkova P, Brewer H, de Lusignan S, Fottrell E, 

Goldacre B, Hart G, et al. Who owns the data? Open 

data for healthcare. Front Public Health. 2016;4:7. 

28. Li RT, Kling SR, Salata MJ, Cupp SA, Sheehan J, Voos 

JE. Wearable performance devices in sports medicine. 

Sports Health. 2015;8(1):74-78. 

29. Li X, Dunn J, Salins D, Zhou G, Zhou W, Schüssler-

Fiorenza Rose SM, et al. Digital health: Tracking 

physiomes and activity using wearable biosensors 

reveals useful health-related information. PLoS Biol. 

2017;15(1):e2001402. 

30. Liu L, Pu Y, Fan J, Yan Y, Liu W, Luo K, et al. 

Wearable sensors, data processing, and artificial 

intelligence in pregnancy monitoring: A review. 

Sensors. 2023;24(19):6426. 

31. Mirjalali S, Peng S, Fang Z, Wang H, Wu S. Wearable 

sensors for remote health monitoring: Potential 

applications for early diagnosis of COVID-19. Adv 

Mater Technol. 2021;7(1):2100545. 

32. Mittelstadt BD. Ethics of the health-related internet of 

things: A narrative review. Ethics Inf Technol. 

2017;19(3):157-175. 

33. Nuccio RP, Barnes KA, Carter JM, Baker LB. Fluid 

balance in team sport athletes and the effect of 

hypohydration on cognitive, technical, and physical 

performance. Sports Med. 2017;47(10):1951-1982. 

34. Oh Y, Choi S, Shin Y, Jeong Y, Lim J, Kim S. 

Investigating activity recognition for hemiparetic stroke 

patients using wearable sensors: A deep learning 

approach with data augmentation. Sensors. 

https://www.computersciencejournals.com/ijecs


International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs 

~ 151 ~ 

2023;24(1):210. 

35. Pantelopoulos A, Bourbakis NG. A survey on wearable 

sensor-based systems for health monitoring and 

prognosis. IEEE Trans Syst Man Cybern C Appl Rev. 

2010;40(1):1-12. 

36. Patel S, Park H, Bonato P, Chan L, Rodgers M. A 

review of wearable sensors and systems with 

application in rehabilitation. J Neuroeng Rehabil. 

2012;9(1):21. 

37. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, 

Garcia A, Ferris T, et al. Large-scale assessment of a 

smartwatch to identify atrial fibrillation. N Engl J Med. 

2019;381(20):1909-1917. 

38. Piwek L, Ellis DA, Andrews S, Joinson A. The rise of 

consumer health wearables: Promises and barriers. 

PLoS Med. 2016;13(2):e1001953. 

39. Rabbitts JA, Groenewald CB, Palermo TM. Wearables 

in clinical trials: Regulatory considerations. Nat Rev 

Drug Discov. 2021;20(6):387-388. 

40. Rawstorn JC, Gant N, Direito A, Beckmann C, 

Maddison R. Telehealth exercise-based cardiac 

rehabilitation: A systematic review and meta-analysis. 

Heart. 2016;102(15):1183-1192. 

41. Shah VN, Garg SK. Managing diabetes in the digital 

age. Clin Diabetes Endocrinol. 2019;5(1):1-9. 

42. Sharma A, Badea M, Tiwari S, Marty JL. Wearable 

biosensors: An alternative and practical approach in 

healthcare and disease monitoring. Molecules. 

2021;26(3):748. 

43. Sharon T. Self-tracking for health and the quantified 

self: Re-articulating autonomy in the era of big data. 

Philos Technol. 2017;30(1):93-121. 

44. Steinhubl SR, Waalen J, Edwards AM, Ariniello LM, 

Mehta RR, Ebner GS, et al. Effect of a home-based 

wearable continuous ECG monitoring patch on 

detection of undiagnosed atrial fibrillation: The 

mSToPS randomized clinical trial. JAMA. 

2018;320(2):146-155. 

45. Tamura T. Advanced wearable sensors technologies for 

healthcare monitoring. Sensors. 2024;25(2):322. 

46. Tindale LC, Chiu D, Minielly N, Hrincu V, Talhouk A, 

Illes J. Wearable biosensors in the workplace: 

Perceptions and perspectives. Front Digit Health. 

2022;4:800367. 

47. Topol EJ. High-performance medicine: The 

convergence of human and artificial intelligence. Nat 

Med. 2019;25(1):44-56. 

48. Voigt P, Von dem Bussche A. The EU General Data 

Protection Regulation (GDPR): A practical guide. 

Springer; 2017. 

49. Windt J, Gabbett TJ. How do training and competition 

workloads relate to injury? The workload-injury 

aetiology model. Br J Sports Med. 2017;51(5):428-435. 

50. Gathright EC, Hughes JW, Sun S, Storlazzi LE, 

DeCosta J, Balletto BL, et al. Effects of stress 

management interventions on heart rate variability in 

adults with cardiovascular disease: a systematic review 

and meta-analysis. Journal of behavioral medicine. 

2024 Jun;47(3):374-88. 

51. Jiang S, Li H, Zhang L, Mu W, Zhang Y, Chen T, et al. 

Generic Diagramming Platform (GDP): a 

comprehensive database of high-quality biomedical 

graphics. Nucleic acids research. 2025 Jan 

6;53(D1):D1670-6. 

 

https://www.computersciencejournals.com/ijecs

