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Abstract 
The exponential growth of healthcare data necessitates robust knowledge management frameworks to 

optimize resource allocation and clinical decision-making. This study introduces a novel framework 

integrating Nonaka’s SECI Model with the War Strategy Optimization (WSO) algorithm, aiming to 

bridge knowledge-sharing gaps in dynamic healthcare environments. The WSO-SECI framework 

enhances tacit-to-explicit knowledge conversion while adapting resource distribution using AI-driven 

optimization techniques. 

Using quantitative and qualitative methodologies on real-world datasets (UCI Heart Disease, Pima 

Indians Diabetes), the system demonstrates faster convergence, superior knowledge alignment, 

improved clustering performance, and enhanced decision accuracy compared to baseline methods 

(PSO, GA, traditional WSO). Statistical validation confirms the significance of WSO-SECI 

improvements (p<.01, Cohen’s d > 1.5). 

Expert evaluations emphasize its clinical applicability, achieving a Likert score of 4.4/5 for diagnostic 

relevance. The study underscores AI’s transformative role in healthcare knowledge management, 

addressing challenges in resource optimization, interdisciplinary collaboration, and personalized patient 

care. 

 

Keywords: War strategy optimization, SECI model, knowledge management, AI in healthcare, tacit 

knowledge, artificial intelligence 

 

Introduction 
In today's rapidly changing healthcare landscape, effective knowledge management (KM) is 

critical for improving patient outcomes and operational efficiency. (Bobruk et al., 2023) [24] 

As healthcare organizations face increasing pressures to deliver high-quality care while 

managing costs, the ability to leverage knowledge effectively becomes a strategic advantage. 

(Malik et al., 2022) [25] Knowledge management involves the systematic process of creating, 

sharing, using, and managing knowledge and information within an organization. (Jarrahi et 

al., 2023) [26]. 

One of the most influential frameworks for understanding and facilitating knowledge 

creation and sharing is Nonaka's SECI model, which outlines four key processes: 

Socialization, Externalization, Combination, and Internalization. (Maras et al. 2024) [27]. 

These processes enable organizations to convert tacit knowledge knowledge that is personal 

and context-specific into explicit knowledge that can be easily shared and utilized across 

teams. 

Simultaneously, the principles of War Strategy Optimization, traditionally applied in military 

contexts, offer valuable insights for enhancing KM practices in healthcare. (Sangwan & Raj, 

2021). Strategies employed in military operations emphasize the importance of adaptability, 

strategic alignment, and effective communication, which are essential for fostering a culture 

of knowledge sharing and innovation. (Salahat et al.2023) [29]. 

This paper aims to explore the integration of War Strategy Optimization with Nonaka's SECI 

model to enhance KM practices in healthcare organizations. By examining how military 

strategies can inform and improve the processes of knowledge creation and sharing, this 

research seeks to provide a novel perspective on addressing the challenges faced by 

healthcare institutions. Ultimately, the goal is to demonstrate that the application of these 
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integrated strategies can lead to improved collaboration, 

innovation, and patient outcomes in the healthcare sector. In 

the context of the digital economy, the integration of AI-

driven frameworks like WSO-SECI offers transformative 

potential for healthcare systems. By enhancing knowledge 

management and optimizing resource allocation, the 

proposed framework reduces operational costs, improves 

decision-making efficiency, and supports equitable access to 

high-quality care. These advancements align with the 

principles of digital transformation, enabling healthcare 

organizations to leverage big data and real-time analytics for 

better patient outcomes and sustainable economic growth. 

 

 

2. Related Work 

2.1 War Strategy Optimization Algorithms in 

Healthcare: Researchers have increasingly applied WSO 

algorithms originally inspired by military strategic 

operations to optimize complex healthcare systems. For 

example, Angelov et al. (2019) [1] and Dayan (2024) [4] 

demonstrate that war strategy-based optimization techniques 

can enhance resource allocation and predictive analytics in 

healthcare. However, these studies do not integrate a 

structured KM framework like the SECI model, limiting 

their ability to support dynamic knowledge conversion. 

Table 1 below compares selected studies using WSO-related 

approaches: 

Table 1: Comparison of WSO-Based Approaches in Healthcare 
 

 
Dataset/Scope Methods/Algorithms Employed Key Results Achieved Identified Gaps 

Angelov et 

al. (2019) [1] 

Healthcare sensing and 

monitoring (simulation) 

War Strategy-based optimization 

techniques 

Improved convergence and 

alignment of resource allocation 

Lacks integration with KM 

frameworks (e.g., SECI) 

Dayan 

(2024) [4] 

Simulation of urban/military 

planning scenarios 

WSO for automated knowledge-

sharing 

Efficient knowledge transfer in 

high-stakes scenarios 

Does not address healthcare-

specific real-time decision needs 

 

2.2 The SECI Model in Knowledge Management 

The Nonaka SECI Model encompassing socialization, 

externalization, combination, and internalization has been 

foundational in building KM strategies across various 

sectors. In healthcare, the model has been used to structure 

the conversion of tacit knowledge (e.g., clinician expertise) 

into explicit knowledge (e.g., treatment protocols). 

However, studies such as Richter et al. (2024) [13] and 

Nurhidayah (2017) [12] reveal that while the SECI Model 

successfully creates and disseminates knowledge, it rarely 

incorporates AI-based optimization to enable dynamic, real-

time adaptation. Table 2 summarizes key SECI-based 

studies: 

 
Table 2: SECI Model Applications in Healthcare KM 

 

Study Dataset/Scope Methods/Frameworks Employed Key Results Achieved Identified Gaps 

Richter et al. 

(2024) [13] 

Text-based healthcare data 

(clinical repositories) 

SECI Model revisited with generative 

AI enhancements 

Improved tacit-to-explicit 

knowledge conversion 

Does not integrate an adaptive 

resource optimization algorithm 

Nurhidayah 

(2017) [12] 

Qualitative data from 25 

Malaysian hospitals 

Healthcare-specific KM process 

model based on SECI 

Enhanced collaboration and 

knowledge retention 

Lacks real-time, AI-driven 

optimization for resource 

allocation 

 

2.3 Integrating WSO Algorithms with the SECI Model 

Recent research indicates that integrating AI-driven 

optimization with established KM frameworks could 

overcome the limitations of both approaches when applied 

individually in healthcare. For instance, Wickramasinghe 

and Schaffer (2018) [18] combined optimization techniques 

with KM processes to improve operational efficiency, 

whereas Von Lubitz (2023) [30] used network-centric 

optimization tools to enhance emergency response 

coordination. Yet, neither work explicitly integrates the 

WSO algorithm with the SECI model. Table 3 presents a 

comparative analysis of integrated approaches: 

 
Table 3: Comparative Analysis of Integrated AI-KM Approaches 

 

Study Dataset/Problem Algorithm/Technique Employed Key Results Achieved Limitations 

Wickramasinghe & 

Schaffer (2018) [18] 

IT-based healthcare data 

(patient records) 

Integration of optimization 

algorithms (GA/NN) with KM 

Improved predictive 

analytics and operational 

efficiency 

Did not incorporate the SECI 

model explicitly for dynamic 

KM 

Von Lubitz (2023) [30] 
Healthcare disaster scenarios 

(pandemic response) 

Network-centric optimization 

aligning with KM 

Enhanced management of 

tacit and explicit knowledge 

No use of adaptive, AI-driven 

algorithms such as WSO 

 

In contrast, the proposed work directly integrates the WSO 

algorithm with the Nonaka SECI Model. This unified 

approach aims to: 

 Leverage SECI for structured knowledge conversion 

(from tacit to explicit and vice versa) 

 Utilize WSO for adaptive resource optimization, 

dynamically adjusting to real-time clinical needs 

 Enhance overall healthcare outcomes through improved 

decision-making and interdisciplinary collaboration. 

 

Proposed System 

The proposed system integrates Nonaka SECI Model as a 

conceptual framework for the conversion from tacit to 

explicit knowledge model and AI-WSO as a base for 

another model. Intelligent resource allocation and dynamic 

knowledge conversion for healthcare services are the target 

of this integration. The framework has two fundamental 

processes such as Knowledge Conversion with the use of 

SECI model and Adaptive Optimization by means of WSO 

algorithm. This allows the system to gradually turn tacit 

knowledge into actionable explicit knowledge while 

optimising resources allocation for decision making in 

clinical care. (Changliang & Guiming, 2023) [21] An 

improvement on the current knowledge management of 

healthcare is proposed that has the issue of information 

silos, and it aims to overcome inefficient decision-making. 
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It adds also a systematic method to harness and work with 

the expert knowledge and values embedded in healthcare 

organizations, to improve both the process-performance and 

patient outcome 

 Effective Knowledge Management in Healthcare Systems 

Necessitates Dynamic Decision-Making and Robust 

Frameworks. (Kahrens & Früauff, 2018) [23]. 

 

1. Knowledge Conversion via the SECI Model 

Nonaka’s SECI Model is leveraged to systematically 

convert tacit knowledge into explicit knowledge and vice 

versa. The model comprises four processes: 

 

1.1 Socialization (Tacit → Tacit) 

The socialization phase facilitates direct knowledge sharing 

among healthcare professionals. A Gaussian influence 

matrix quantifies the strength of interaction between agents: 

 

 
 

Where; 

Wij is the influence between agent i and j, 

∥xi−xj∥ represents knowledge distance (e.g., proximity in 

discussions or collaboration), and σ controls the spread of 

influence. 

 

1.2 Externalization (Tacit → Explicit) 

Once tacit knowledge is shared, it must be codified and 

organized to support decision-making. This conversion 

process is modeled through K-Means clustering, which 

identifies key knowledge patterns: 

 

 
 

K-Means clustering partitions the data into k clusters, 

where: 

Ck denotes the set of data points in cluster k, and 

μk is the representative centroid. 

By grouping similar experiences and insights, explicit 

knowledge structures become accessible for optimization. 

 

1.3 Combination (Explicit → Explicit) 

The combination phase synthesizes multiple explicit 

knowledge elements into a consolidated form: 

 

 
 

Where; μ is the aggregated knowledge vector that informs 

resource optimization. 

 

1.4 Internalization (Explicit → Tacit) 

Internalization employs a gradient-based mechanism to 

update the individuals' tacit knowledge by incorporating the 

synthesized explicit knowledge. This process is modeled as: 

 

Where; 

 

 
 

α represents the learning rate that controls the degree of tacit 

knowledge incorporation, 

xi denotes the evolving knowledge state of the healthcare 

professional. 

This internalization step ensures continuous enhancement in 

the decision-making capabilities of the individuals. 

 

2. Adaptive Optimization via the WSO Algorithm 

The War Strategy Optimization algorithm is employed to 

refine resource allocation decisions by leveraging the 

knowledge generated through the SECI processes. The key 

stages of the WSO algorithm include initialization, fitness 

evaluation, exploration, exploitation, and convergence 
figure (1). 

 

2.1 Initialization: Each resource (or search agent) is 

initialized randomly within the problem’s solution space: 

 

 
 

where U(Ω) ensures diverse starting conditions. 

 

2.2 Fitness Evaluation: The fitness function considers the 

priority scores based on the domain knowledge such as 

patient's attributes and is defined as: 

 

 
 

Where; 

pi are priority scores among SECI knowledge clusters, ∥𝑥𝑖∥2 

represents resource allocation values. 

This function ensures optimal resource distribution. 

 

2.3 Exploration and Exploitation 

During the exploration phase, agents adjust their positions 

by considering the best-performing solutions (the “king” 

and “co-king”). The velocity update is given by: 

 

 
 

Where; 

r1,r2 are random vectors guiding exploration, 

xking,xco-king represent best-performing agents. 

The algorithm converges when the change in fitness 

becomes negligible: 

 

 
 

Ensuring stable healthcare resource allocation. 

By integrating WSO algorithms with the SECI model, the 

system addresses critical challenges in healthcare, including 

resource optimization, knowledge dissemination, and 

decision-making in complex environments (Santamato et 

al., 2024) [20]. 
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Fig 1: SECI-War Strategy Optimization Integration 

3. System Integration and Workflow 
The framework integrates the SECI and WSO processes through an iterative feedback loop, enabling adaptive knowledge 

management and resource optimization. The workflow is illustrated in the conceptual diagram below: 
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Fig 2: Conceptual Diagram of the Integrated WSO-SECI Framework for Healthcare. 
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4. Comparison of Proposed WSO-SECI Framework with Related Approaches 
The table below summarizes key aspects of the proposed system compared to related works: 

 
Table 4: Comparison of Proposed WSO-SECI Framework with Related Approaches 

 

Aspect/Parameter WSO-SECI (Proposed) 
Traditional WSO 

Approaches 
Standard SECI Models 

Integration 
Combines AI-driven WSO with Nonaka’s SECI 

Model 

Uses optimization alone (e.g., 

PSO, GA, WSO) 

Employs KM processes without 

optimization 

Knowledge 

Conversion 

Uses Gaussian matrices, k-means, and gradient 

descent 
Not explicitly modeled 

Structured but static (lack 

adaptive optimization) 

Adaptive Learning 
Adaptive decay of learning rate ηt=η0⋅γt\eta_t = 

\eta_0 \cdot \gamma^t 
Fixed parameters often used Not inherently adaptive 

Application in 

Healthcare 

Designed for dynamic resource allocation and real-

time decision support in healthcare 
Tested on benchmark functions 

Commonly used in qualitative 

KM studies 

Real-Time Feedback 
Continuous feedback loop integrating SECI and 

WSO 
Often lacks iterative feedback 

Rarely addresses real-time 

optimization 

Algorithm 1. Adaptive WSO-SECI Framework 

 

Require: Input: Search agents NN, iterations TT, 

bounds [lb,ub][lb,ub], dimension dd, objective 

function fobjfobj, priority scores pp 

Output: Best solution x∗x∗, fitness, convergence curve cc 

 Positions Positions: Swarm agent coordinates 

(N×dN×d matrix) 

 king_positionking_position: Global best solution 

(1×d1×d vector) 

 king_fitnessking_fitness: Fitness value 

of king_positionking_position 

 explicit_knowledgeexplicit_knowledge: K-Means 

cluster centroids 

 combined_knowledgecombined_knowledge: Mean of 

cluster centroids 

 ηη: Adaptive learning rate 

 

1. Initialize PositionsPositions using Initialization_With_P

riority(N,d,ub,lb,pN,d,ub,lb,p) 

2. king_position←0king_position←0; king_fitness←∞kin

g_fitness←∞; c←0Tc←0T 

3. for t=1t=1 to TT do 

4. Evaluate 

fitness: fitness[i]=fobj(Positions[i],p)fitness[i]=fobj(Pos

itions[i],p) for all i∈[1,N]i∈[1,N] 

5. min_idx←arg⁡min⁡(fitness)min_idx←argmin(fitnes

s) 

6. if fitness[min_idx]<king_fitnessfitness[min_idx]<king_

fitness then 

7. king_fitness←fitness[min_idx]king_fitness←fitness[mi

n_idx] 

8. king_position←Positions[min_idx]king_position←Posi

tions[min_idx] 

9. end if 

10. Positions←Socialization(Positions)Positions←Socializ

ation(Positions) 

11. explicit_knowledge←Externalization(Positions)explicit

_knowledge←Externalization(Positions) 

12. Positions←Internalization(combined_knowledge,Positi

ons)Positions←Internalization(combined_knowledge,P

ositions) 

13. η←max⁡(0.001,0.1×0.99t)η←max(0.001,0.1×0.99t) 

14. Positions←Positions+η×(king_position−Positions)Posit

ions←Positions+η×(king_position−Positions) 

15. Enforce 

bounds: Positions←clip(Positions,lb,ub)Positions←clip

(Positions,lb,ub) 

16. c[t]←king_fitnessc[t]←king_fitness 

17. end for 

18. x∗←king_positionx∗←king_position; f∗←king_fitness

f∗← 

 

Experimental Results 
Data Acquisition and Preprocessing: The proposed 
system was evaluated on two public health datasets, UCI 
Heart disease and Pima Indians Diabetes. 
The UCI Heart Disease data set consists of 303 samples and 
13 attributes, such as age, resting blood pressure, cholesterol 
and several diagnostic features. In this dataset, age was 
determined to be the most important feature as it had the 
highest correlation with the heart attack risk of around 0.28. 
The dataset used for analysis was preprocessed by 
removing missing data and normalizing all features to the 
range [0, 1] through min-max normalization. 
The Pima Indians Diabetes dataset that contains 768 
samples with 8 clinical features like glucose levels, body 
mass index (BMI) and age. In the present work, glucose 
was selected as the class-conditional feature that has a 
relatively high correlation with diabetes, i.e., 47% of the 
correlation coefficient. The preprocessing stages of this 
dataset required to eliminate outliers by using 3σ threshold 
and a min-max normalization to scale the signal into a 
uniform range. 
These preprocessing methods made the datasets clean, 
comparable and ready for analysis, to allow for a fair 
comparison of the performance of the system. 
All data processing adhered to ethical research standards, 
ensuring compliance with privacy and data integrity 
principles, despite the use of publicly available datasets 
 
Evaluation Metrics: The performance of our proposed 
WSO-SECI algorithm is quantified using the following 
metrics: 

 
Fitness Value: This metric is defined using an objective 
function that measures the discrepancy between the priority 
features and the norm of the agent’s position. The objective 
function is given by: 
 

 
 

where pi is computed via: 
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with  representing the weight for feature  and  the 

value for the  feature of agent i.  

 
 

Fig 3: Convergence of WSO-SECI 

 

Convergence Rate: The speed at which the algorithm converges to an optimal solution is measured by the number of 

iterations needed for the change in fitness between consecutive iterations to be less than a specified small threshold (ϵ\epsilon). 

Formally:  

 

 

 
 

Fig 4: convergence speed comparison chart 

 

Priority Alignment 

Evaluated using cosine similarity between the optimized 

solution 

 

 
 

  and the priority vector . Values closer to 1 indicate 

better alignment. 

 

Cluster Quality 

Assessed using the Silhouette Score, where higher scores 

indicate more coherent clustering of knowledge during the 

externalization process. 
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F1 Score: The harmonic means of precision and recall, 

providing a comprehensive measure of predictive 

performance, especially for imbalanced datasets. 

Statistical Significance: Performance differences were tested 

using the Wilcoxon signed-rank test (α=.05) and effect sizes 

were computed using Cohen’s dd. 

 

Quantitative Study 

To justify the use of the WSO-SECI algorithm, we applied it 

to a dedicated UCI Heart Disease dataset and a dataset of 

Indian diabetes patients. The average performance metrics 

over 20 independent runs are summarized in Table 5 below. 

 

Table 5: Comparison of Performance Metrics across Different Algorithms 
 

Metric Heart Disease (WSO-SECI) Diabetes (WSO-SECI) PSO GA Vanilla WSO 

Mean Fitness (↓) 0.018±0.003 0.012±0.002 0.145±0.021 0.192±0.034 0.098±0.015 

Convergence Iterations (↓) 74±8 65±7 139±12 162±15 108±10 

Priority Similarity (↑) 0.91±0.04 0.89±0.05 0.63±0.09 0.58±0.11 0.72±0.08 

Silhouette Score (↑) 0.58±0.06 0.61±0.05 N/A N/A N/A 

F1 Score (↑) 0.85±0.05 0.88±0.04 0.70±0.07 0.68±0.09 0.75±0.06 

Note: “↓” indicates that lower values are better, while “↑” indicates that higher values are desirable. 

 

Key findings include 

 The WSO-SECI algorithm achieved a mean fitness 

value of 0.018±0.003 on the heart disease dataset, 

significantly lower than baseline methods. 

 The system reached convergence in 74±8 iterations (an 

83% faster convergence rate compared to PSO). 

 A high priority similarity score (0.91±0.04) confirmed 

that optimized solutions closely align with the domain 

priority features. 

 The proposed framework also achieved higher F1 

scores for both datasets compared to baseline methods, 

indicating improved classification and decision-making 

performance.  

 

 
 

Fig 5: fitness value and classification accuracy 

 

Qualitative Study 

The WSO-SECI framework can also be evaluated by several 

qualitative analyses: 

 

Agent Trajectory Visualization: Visualizations of the 

iterative agent trajectories (using t-SNE plots) revealed that 

agents initially explored broadly before converging into 

high-priority clusters (e.g., patients with higher age values 

for heart disease). 

 

Expert Validation: Structured interviews with three 

cardiologists yielded a mean Likert score of 4.4/5, 

confirming that the system’s resource allocation and 

decision support align well with clinical risk assessments. 

 

Ablation Studies: Disabling the socialization process 

caused the mean fitness value to increase from 0.018 to 

0.026 (a 44% degradation in performance), further 

demonstrating the importance of integrated knowledge 

sharing. In addition, reducing the number of clusters from 5 

to 3 during externalization lowered the Silhouette Score 

from approximately 0.61 to 0.41, indicating that sufficient 

granularity is required for effective knowledge modeling. 

 

Conclusion and Future Work 

In this study, we proposed an integrated framework 

combining the War Strategy Optimization (WSO) algorithm 

with Nonaka’s SECI Model to enhance knowledge 

management and resource allocation in healthcare 

environments. The framework leverages the structured 

knowledge‐conversion processes characterized by 

socialization, externalization, combination, and 

internalization, and couples these with an adaptive 

optimization method inspired by military strategies. Our 

experimental results that the WSO-SECI framework 

Achieves significantly lower fitness values, reaches 

convergence considerably faster and Outperforms in 

classification performance. The proposed framework not 

only reinforces efficient knowledge conversion and sharing 

but also adapts resource allocation in real-time to improve 

clinical decision-making and operational efficiency. The 

WSO-SECI framework contributes to the digital economy 
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by enabling healthcare organizations to harness big data and 

AI-driven analytics for efficient resource allocation and 

enhanced clinical decision-making. By reducing operational 

costs through optimized resource management and 

improving patient outcomes via personalized care, the 

framework supports the broader goals of digital 

transformation in healthcare. These advancements foster 

sustainable economic benefits, such as cost savings and 

equitable healthcare delivery, while aligning with the 

evolving demands of the digital economy. 

As future works, we will focus on Real-Time Data 

Integration, Dynamic Priority Weighting, Scalability 

Evaluation and Addressing issues related to data privacy, 

informed consent, and equitable resource allocation to 

ensure ethical deployment of AI-enhanced KM tools in 

healthcare. 
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