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Abstract

The number of devices using the Internet, as well as the tasks performed through it, increases every
day. So do the attacks against the availability, integrity and confidentiality of the information they
handle. Intrusion Detection Systems (IDS) are one of the most effective security mechanisms to protect
network systems against computer attacks, whether or not there is prior knowledge of them. The
application of Artificial Intelligence and, more specifically, of automatic learning in this type of
program stands out. Most of these IDS analyse network traffic and its normal behaviour so that they
can activate an alarm when part of said traffic differs from the usual. In this way, some types of attacks
can be detected even if they have never been carried out before. The study investigates ensemble
learning for detecting network security attacks, intending to improve machine learning algorithm
performance by combining their results. This study evaluates the efficacy of different machine learning
algorithms in intrusion detection utilizing the NSL KDD dataset, employing Recursive Feature
Elimination (RFE) for feature selection. Results indicate that Random Forest (RF) and Gradient
Boosting Machine (GBM) are the foremost performers, while Decision Tree (DT) also demonstrates
commendable balanced accuracy and precision. Although Support Vector Machine (SVM) has
demonstrated favourable outcomes in previous studies, the research indicates that multiple classifiers
ought to be evaluated for forthcoming intrusion detection system (IDS) implementations.

Keywords: Intrusion Detection Systems, IDS, Security, Intrusion Detection Systems, Ensembling
Techniques

1. Introduction

Identifying malware and attacks through network traffic analysis continues to pose a
significant challenge for network security and incident management professionals. Despite
the existence of advanced detection technologies capable of distinguishing between
malicious and benign behaviour, effective detection continues to pose a challenge .

One of the best ways to protect a network, whether against known attacks or those that are
not yet known, is the use of Intrusion Detection Systems (IDS). IDS can monitor information
about an entire network or just about a computer. Those that monitor only the device on
which they are installed are called Host-based Intrusion Detection Systems (HIDS). HIDS
can monitor, in addition to the packets that arrive at a certain network interface, very
different elements, such as log files or running processes, so they are quite dependent on the
veracity of this information 2. On the other hand, Network-based IDS (NIDS) analyze
information about an entire network. They are generally installed on different computers
located at certain points of the same computer network to have a global view of what is
happening in the network. These systems can analyze such traffic using a variety of
techniques to determine whether its purpose is illegitimate 1. When the IDS detects a packet
or set of packets that may correspond to a computer attack, it generates an alarm, which
typically has to be attended to by a security technician. It would be desirable for the program
to react only to packets that correspond to an attack, but this is impossible. The IDS will
never know for sure whether a packet corresponds to an attack or not; the purpose of this
document is to determine to what extent machine learning algorithms can be applied to
intrusion detection and which algorithms are most appropriate for detecting which types of
attacks based on certain metrics. To do this, a practical study will be carried out by applying
a series of machine learning algorithms to a dataset containing information corresponding to
a set of network packets. Part of these will correspond to legitimate network use and part to
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computer attacks . The packets corresponding to attacks
will be marked in advance to evaluate the effectiveness of
each algorithm. The aim is to determine which algorithms
are most suitable based on which metrics are considered
most important (false positive rate, false negative rate,
precision, etc.) and which types of attacks are a priority to
detect [,

Numerous types of attacks can affect networked systems
and there are many different ways to classify them.
Probing/Scanning are attacks that attempt to scan a network
or machine for information and possible vulnerabilities [,
User to Root (U2R) attacks in which the attacker already
has access to a resource on a system and tries to exploit a
vulnerability at the application or operating system level to
obtain higher privileges. Remote to Local (R2L) are attacks
in which an attempt is made to exploit vulnerabilities in a
system remotely in an attempt to obtain local user
privileges. They are generally preceded by a scan of
network resources. Denial of Service (DoS) are attacks that
seek to compromise the availability of a system's data. They
generally block a machine or network resource by saturating
it with illegitimate requests so that its legitimate users do
not have access to it [7],

There are many other more exhaustive classifications for
computer attacks. From the point of view of network
security, one of the most widely used is the one proposed by
The Mitre Corporation, which classifies the different
techniques used by attackers into 12 groups based on their
objectives [l This classification is public and is currently
used by companies and organizations around the world to
evaluate their degree of protection against the different
types of known computer attacks. It is therefore important to
keep in mind at all times that not all attacks are detectable
and that an IDS should always be part of a broader network
security infrastructure, which includes other security
mechanisms that can prevent other types of attacks.

1.1 Machine learning and IDS Classification algorithms
Detecting intrusions in NIDS using anomaly detection is
often considered a classification problem, and several very
different approaches to it have been studied in recent years
o1

When detecting intrusions, one may try to determine a
binary classification of the detected events, classifying them
as malicious or legitimate. Since typically the events
classified as malicious will trigger an alarm and will require
subsequent review by a security technician, this distinction
is not sufficient. It is necessary to be able to classify the
event as belonging to a computer attack family whenever
possible. So that the technician can correctly review the
security incident and determine if an attack has occurred. It
will be necessary to know at least the type of attack for this
system to be applied in practice and to be able to determine
if the attack has had an impact, if it was a false positive, etc.
Without this characteristic, the detection of anomalies could
not be implemented effectively in real Intrusion Detection
Systems.

In addition to classification techniques, the use of clustering
techniques ™ for intrusion detection is also quite common.
With this in mind, different approaches can be used when
applying machine learning algorithms in a NIDS. Simple
classifiers. A single ML algorithm can be used to try to
group the different events analysed as legitimate or
malicious and, in the latter case, to determine the type of
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attack. Hybrid classifiers. Another option that is widely used
in the literature [% is to combine several different
algorithms, applying one to the result of the previous one. A
common option is to apply a clustering algorithm before
applying a classifier. Several classifiers are also often
applied (either different algorithms or the same one several
times) to carry out successive classifications on each type of
attack. In this way, each classifier only has to make a binary
classification.

Ensemble classifiers: This technique consists of applying
several classifiers on the same dataset and combining the
results of all of them. The most common way of doing this
is to classify each element by the category chosen by most
algorithms.

Similarly, as already mentioned, the detection of anomalies
by an IDS can be carried out both in isolation and in
conjunction with signature-based detection. The specific
techniques that will be implemented for the study will be
described later. The dataset will be selected from among
those available on the Internet for this purpose. With a focus
on Random Forest (RF) and Gradient Boosting Machine
(GBM) as the best-performing machine learning algorithms
for intrusion detection on the NSL KDD dataset, this
work novelty resides in its thorough evaluation of
competing algorithms.

2. Methodology

The first step will be to select the metrics that will be taken
into account to determine the suitability of a machine
learning algorithm for classifying a packet or packet flow
into the five categories that interest us: Legitimate, Probe,
U2R, R2L or DoS.

Secondly, a dataset will be selected with a capture of the
traffic of a certain network, in which each packet appears
marked with the category to which it corresponds, to apply
supervised learning techniques. There are datasets available
on the Internet that meet these characteristics. They will be
studied and one will be selected based on the format of its
data, the amount of information it contains, the variety of
attacks it shows and how recent its data is. An analysis and
presentation of the main relevant characteristics of the
dataset will also be carried out, the distribution of attacks for
the total number of entries, etc. Next, the attributes of said
dataset that are to be taken into account for the detection of
attacks will be selected. This selection will be made
automatically using certain algorithms designed for this
purpose. The experiment will be used to study the
effectiveness of the classification algorithms based on the
chosen characteristics.

Thirdly, a set of classification algorithms will be selected to
be considered in the experiment. They will be selected
based on their effectiveness as general classification
algorithms and their use in other similar studies, after a
review of the available literature. Many of these algorithms
will have parameters that will need to be determined before
applying them to the data.

Finally, each of the algorithms will be applied to the data in
the dataset. The dataset will be divided into two parts. A
majority of this data will be used to train the classification
algorithm, i.e. to allow it to form a model of legitimate
network traffic from the labels of each packet. The
remaining fraction will be used to see the effectiveness of
this algorithm when classifying once the model has been
created. For each algorithm, the results will be collected and
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the performance metrics mentioned above will be
calculated. These metrics will also be calculated for each of
the main types of attack marked in the dataset. This
information will be compared between the different
algorithms and conclusions will be drawn about the
effectiveness of these in each case.

2.1 Technology used

Execution of a Python script that applies the machine
learning algorithm to the dataset for each of the algorithms.
Initially, train the model, followed by evaluating its
efficacy. A validation phase between the two parties will be
undertaken. This script will utilise the Scikit-Learn and
Plotly libraries. Scikit-Learn (Sklearn) is an open-source
machine-learning library for Python. This library
encompasses the primary machine learning algorithms,
along with tools for the preliminary and subsequent
processing of data. These tools encompass utilities for
dataset partitioning and the extraction and analysis of data
derived from a test. Plotly is a library for graphical data
representation that we will utilise to depict the test results.

2.2 Metric selection

Various metrics may be evaluated to ascertain the
appropriateness of a classification algorithm. We must
evaluate the algorithm's efficacy in classifying the analysed
elements [, We will employ the subsequent metrics for
measurement (121:

True Positive (TP) denotes the quantity of malicious packets
accurately identified as such. True Negative (TN) denotes
the number of legitimate packets accurately identified as
such. False Negative (FN) denotes the quantity of malicious
packets erroneously identified as legitimate. False Positive
(FP) denotes the quantity of legitimate packets erroneously
identified as malicious.

Accuracy: Represents the fraction of correctly classified
packets compared to total classified packets. It is also
sometimes known as precision, not to be confused with
accuracy which we will discuss later. It is one of the most
basic performance metrics in a classification algorithm. It is
calculated using the following formula:

TP+TN
TP+ TN+ FP+FN

Accuracy = (Eq 1) 112

Precision (P, precision or positive predictive valug) [
Represents the percentage of positives that correspond to an
attack. High precision means few false positives.

TP
TP +FP

Precision (Eg 2) 1112

Sensitivity (S, True Positive Rate or recall): Represents the
percentage of attacks that have been correctly detected.
High FFN means few false negatives.

TP
TP +FN

Sensitivity = (Eq 3) 112

F-score: Harmonic mean of precision and sensitivity. Like
accuracy, it serves to get a general idea of how good a
classifier is. It may not be the best metric for intrusion
detection, since it assumes that precision and sensitivity are
equally important. In our case, this is not the case and for
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this reason, we will first look at each one separately, giving
special importance to precision. It consists of a beta
parameter to regulate the importance of each one, although
in this case, we will leave it at 1 so that both have the same.
In this way, the F-score would be calculated as:

2P w5}
F+5

F —score = (Eq 3) 1112

A classification algorithm that maximizes the values of
accuracy, precision and sensitivity will therefore be desired.
The importance of each of these metrics will depend on the
type of system being considered. In general, in an IDS,
maximizing precision will be prioritized, because a high rate
of false positives can imply an excess of work for security
technicians when checking alarms. Therefore, the relative
priority of one or another metric will also depend on how
critical the security of the system is. In our case, and with
the main objective being the integration of anomaly
detection with the signature-based techniques already used,
the main objective will be to maximize precision, so that
when security technicians receive an alert generated by Al,
they know that it is most likely a real alert and examine it
carefully.

For multi-class classification (3 or more), which we will
attempt in this study, these metrics will be calculated for
each of the classes. Only in the case of accuracy will we try
to approximate its value for the classifier as a whole. Since
the proportion of network traffic generated by the different
types of attacks is very different, we will use balanced
accuracy, which gives a different weight to the examples of
each of the classes depending on the presence of that type of
examples in the dataset. In this way, the classes that appear
in a lower proportion will have a greater weight, so that the
fact that the IDS can classify them or not will consequently
affect the value of the metric. We are not interested in an
IDS that can perfectly classify Probe and DoS attacks,
which generate a much larger amount of traffic if it is not
also able to classify R2L and U2R attacks.

On the other hand, when evaluating an algorithm for its
application in an IDS, it is also necessary to analyze its
computational performance when creating a model of a
network and classifying the events that occur in it. The main
metrics used to determine this are the time taken by the
algorithm to create a model of the system (Training Time,
TRT) and, above all, to classify the packets once the model
has been created (Testing Time, TST) I3 Even if an
algorithm were able to perfectly classify network traffic, a
high processing time could make it useless for application in
an IDS.

2.3 Network traffic datasets

In the case of datasets for evaluating intrusion detection
systems, this translates into whether each packet or packet
flow has the type of traffic associated with it: whether it is
normal traffic, whether it corresponds to an attack, the type
of attack, etc. Only a dataset containing these labels can be
used in a supervised learning process.

There are multiple datasets with network traffic information
that can be used to evaluate the performance of an IDS. Not
all of them are publicly available; for this study, we focus
on analysing some of those that are, and that have been used
in similar experiments [ The characteristics of each
dataset (format and labelling) will determine how the
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machine learning algorithms process them to obtain

information, and the performance of the algorithms when

processing them. These were the datasets considered:

e KDD CUP 1999: KDD CUP 99 contains flow-based
data enriched with data from system logs and network
packets involved in the communication. It contains
more than 20 types of attacks along with normal traffic
and is already divided into a training subset for ML
algorithms and another for testing. It is discarded
because it is outdated, although it has good
characteristics for the experiment.

e NSL KDD: It is an update to KDD CUP 99 that
addresses some of the redundancy issues raised in [,
but it still contains some of the issues raised by
McHugh in [ 1t, like KDD CUP 99, contains data
based on flows that have been enriched with
information from the hosts and packets involved in the
communication. It has the advantage of allowing
comparison of studies conducted on it because its use is
quite standardised.

e CIC-IDS2017: Another of the datasets offered by the
CIC. It contains information based on bidirectional
flows, with more than 80 characteristics in total. It has
been generated in an emulated network and is divided
into different files corresponding to the periods in
which the different types of attacks were emulated.
Contains the most recent and common attack types in
real networks at the time of its publication.

e CSE-CIC-1DS2018: The latest of the datasets offered
by the CIC in collaboration with the Communications
Security Establishment (CSE). It offers both raw data
(network traffic capture and equipment logs) and flow-
based data. It focuses on dividing the dataset into
profiles that can be combined in the desired proportions
to simulate the behaviour of a given network. This can
be quite useful for different entities to experiment with
a dataset similar to their network, although in principle
it does not offer any advantage for our experiment.

https://www.computersciencejournals.com/ijecs

It is preferable to use flow-based datasets that have
been enhanced with additional data and claims €1, The
NSL KDD dataset was chosen for the current study due
to its standard nature and this reason. It is labelled as
well, which is essentially a prerequisite for intrusion
detection.

The NSL KDD dataset: The dataset contains data in a
flow-based format, enriched with data on the packets
and devices involved in the communication. The dataset
has a total of 41 features in addition to the label and the
difficulty level. These features can be divided into 4
large groups. Table 1 shows the basic attributes of a
packet flow. Table 2 shows the attributes related to the
content of the packets that make up the flow, i.e.
information related to the application layer. On the
other hand, tables 3 and 4 show information on other
network packet flows that share some characteristic
with the flow to which the entry corresponds. This
information is of vital importance to detect certain types
of attacks (network scans, DDoS attacks, etc.). In the
case of Table 3, this is information about other
connections temporally related to the given one, while
in Table 4 they are related by IP addresses or port
numbers.

In this way, characteristics can be distinguished in text
string format, others in binary format, and others in
numerical format. Later, it will be necessary to process
the dataset to have a homogeneous type of data with
which to feed the machine learning algorithms.

Finally, each entry in the dataset includes a label with
the flow classification. The flows are classified as
normal or as corresponding to a computer attack. The
dataset includes flows corresponding to 40 different
types of attacks, each of which can be classified into
one of the categories. This correspondence is shown in
Table 5. On the other hand, a final characteristic is
included that indicates the degree of difficulty when
classifying each entry. For this study, we will ignore
this characteristic.

Table 1: Basic flow attributes

No. Name Description
1| Duration Duration of the communication
2 Prpe Transport layer protocol used in the communication (text string)
3 Service Network service used by the client (text string)
4 Flag State of the connection (text string)
5 | 5rcbytes Number of bytes sent from the source to the destination during the connection.
6 | Dst bytes Number of bytes sent from the destination to the source during the connection.
7 Land Indicates whether the source and destination IP addresses and port numbers are equal (1) or not (0)
8 Wrong fragment Number of erroneous fragments counted in the connection
9 Urgent The number of packets with the urgent bit activated counted in the connection.
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Table 2: Attributes related to package content

No. Name Description
10 Hot A number of compromise indicato.rs detected in the packet content, such as:
“entering a system’

11 Num_failed logins Number of failed login attempts

12 Logged_in Indicates whether a login was successful (1) or not (0)

13 Num_compromised Number of possible compromise indicators detected in the packet content

14 root_shell Indicates whether an administrator console was obtained (1) or not (0)

15 You_att empte d Indicates whether élljfr:i ;grﬁ\rgirgdn r;zlétrigﬁt,( :B/zé)sr z:]t(t:)cttl?é))ted to be executed

16 Root_number Number of accesses and operations performed as root during the connection

17 Num_file_creations Number of file creation operations performed during the connection

18 Num_shells Number of command interpreters used during the connection

19 Num_access_files Number of control file access operations

20 Num_soutbound_cmds Number of external connections made in a session FTP

a|  Ishotlogm e o (o0

22 Is_guest_login Indicates whether the login is as a guest (1) or not (0)

Table 3: Attributes about traffic temporally related to the flow

No. Name Description

23 Count Number of connections to the same destination host as the current one in the last 2 seconds

24 Srv_count Number of connections to the same service (destination port) as the current one in the last 2 seconds

25 Serror_rate Percentage of connections with the flag (4) s0, s1, s2 or s3 activated among those counted in count (23)
26| Srv_serror_rate | Percentage of connections with the flag (4) s0, s1, s2 or s3 activated among those counted in srv count (24)
27 Rerror_rate Percentage of connections with the flag (4) REJ activated among those counted in count (23)

28| Srv_rerror_rate | Percentage of connections with the flag (4) REJ activated among those counted in count (23) srv count (24)
20| Same_srv_rate Percentage of connections against the same servii(;e C(glj:;ii ?Zaléi)on port) as the current one, among those counted
30| Diff_srv_rate Percentage of connections against different services (destination port) than the current one, among those

counted in count (23)

3

s

Srv_diff_host_rate

Percentage of connections against different destination host than the current one, among those counted in srv

count (24)
Table 4: Host-Related Traffic Attributes
No. Name Description
32 dst_host_count Number of connections with the same destination IP address as the current one
33 dst_host_srv_count Number of connections with the same port number as the current one
I Percentage of connections to the same destination port, among those counted in dst host count
34| dst_host_same_srv_rate (32)
35 dst_host_dif f_srv_rate Percentage of connections to different destination ports, among those counted in dst host count
- - - - (32)
36|dst_host same_src_port_ratd Percentage of connections from the same source port, among those counted in dst host srv count
- - B - (33)
37|dst_host_srv_diff_host_rate Percentage of connections to different destination hosts, among those counted in dst host srv
count (33)
38 dst host serror rate Percentage of connections with flags (4) sO, s1, s2 or s3 enabled, among those counted in dst
B B B host count (32)
3| dst host . Percentage of connections with flags (4) s0, s1, s2 or s3 enabled s3 enabled, among those
st_host_srv_serror_rate
B -7 B counted in tisxhost srv count (33)
40 7 Percentage of connections with the (4) REJ flag enabled, among those counted in dst host count|
32)
41| dst host srv rerror rate Percentage of connections with the (4) REJ flag enabled, among those counted in dst host

STV count (33)
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Table 5: Correspondence between attacks collected in NSL KDD and their category

Category

Attacks

Probe

Satan, Ipsweep, portsweep, ipsweep, mscan Nmap, Portsweep, Mscan, Saint

Guess Password, Ftp write, imap, xsnoop, named, Phf, Multihop, Warezmas ter, Warezclient, Spy, X_lock, X_snoop, Snmpguess,

R2L Snmpge attack, Httptunnel, Sendmail,

U2R sglattack, perl, xterm, Buffer overflow, Loadmodule, Rootkit, Perl, Sglattack, Xterm, Ps

DoS teardrop, winnuke, syndrop, newtear, bonk, Land, Neptune, Pod, Smurf, Teardrop, Apache2, Ud storm, Process table, Worm,
Mailbomb

2.4 Dataset processing

2.4.1. Dataset splitting: Training Set and Test Set: Scikit-
Learn provides tools to automatically split a dataset into two
random subsets for learning and testing. By default, the
Training Set will comprise 75% of the total, with the
remaining 25% used to evaluate the classifier's
effectiveness. Table 6 shows the number of instances of
each class in both the Training Set and the Test Set using
this configuration.

Table 6: Number of instances in the split NSL KDD dataset

Class | Instancesin Training Set | Instances in the test set
Normal 57196 19087

Probe 10423 3514

R2L 2863 978

U2R 89 29

DoS 39702 13151

2.4.2. Feature selection: Not all features offered by the
datasets offer the same information when classifying the
data. Using all the features of the data can negatively impact
both the computational performance and the effectiveness of
the classification algorithms. Before the training phase of a
dataset, it is common to preprocess it to remove redundant
or non-relevant features.

Feature selection is not always performed in the field of
intrusion detection 1, since many datasets offer their data
in formats that show only the features considered relevant
when detecting attacks. Nevertheless, in this paper, we will
consider some methods to remove irrelevant features and
apply some of them if relevant. It has been observed that, in
our case, feature selection significantly improves the
training time (TRT) of some classifiers. Furthermore, if it is
adequate, it also improves the effectiveness in some cases.
Therefore, it is also intended to carry out a study of how the
number of features and the method to select them affect the
effectiveness of the classifiers.

Two automatic methods of feature selection will be applied
that allow processing the labelled dataset and determining
which features of it are less relevant to classify the nature of
the network events. The first method chosen is Recursive
Feature Elimination (RFE). The algorithm performs several
iterations in which it calculates the relevance of the features
of the dataset. It starts by doing so with all of them and
eliminates the least relevant in each iteration. It has two
important parameters: the classification method used to
evaluate the relevance of the features (estimator) and the
desired number of features. In our case, the classification
method will be Decision Trees, since it is one of the fastest
classifiers and many of the composite methods that we are
going to use are based on it (we will see this later). To
determine the optimal number of features, one option would
be to use a variation of RFE that allows this to be done
automatically. RFECV is a version of RFE that performs
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cross-validation using the data in the dataset to determine
the optimal number of features, so it is not necessary to
specify it in advance. However, we want to evaluate the
performance of the classifiers for each feature and selection
method, so this is not useful, we will use RFE for each case.
The other feature selection method is the statistical method
of Principal Component Analysis (PCA). The idea of this
method is to convert the initial set of features, probably
correlated, into a smaller set of features without linear
correlation that preserves as much information as possible
with respect to the original set. It has the advantage that it is
not necessary to select a classifier as an estimator of the
relevance of each feature so that no biases are introduced
when applying it. It has the disadvantage that it does not
take into account the classification problem being addressed
when selecting the features.

Both RFE and PCA will be applied to the dataset to select 5,
10, 15, 20 and 25 features. The average effectiveness of the
classifiers will be evaluated in all cases with respect to the
same metric so that the optimal number of features and the
best method to select them are determined. The metric with
respect to which we will compare them will be the average
balanced accuracy of all the classifiers. Once several
features and a selection method have been selected, we will
proceed to evaluate the effectiveness of the classifiers in that
case, taking into account all the metrics described above.

2.4.3. Preprocessing: The classification algorithms
implemented in ScikitLearn need to process numeric data.
Therefore, all the features in the dataset that are in string
format (including the label) will be replaced by a unique
integer for each string. All the features will be stored in 32-
bit float format. In addition, all NaNs that can be found will
be replaced by numbers.

On the other hand, some of the classifiers require that the
data they work with has been scaled or normalized, so the
data will be treated in the appropriate way in each case.

In addition, the labels corresponding to all groups will be
grouped to replace those corresponding to specific attacks
by the family to which they belong, according to the
information collected in Table 5.

2.4.4. ML algorithms to be studied: For this study, only
those algorithms that have obtained the best results in the
studies carried out so far will be considered, for which we
will look at the information collected in [16-17],

2.5 Simple classifiers

2.5.1 Algorithms selected

Decision Trees (DT) [¥: The algorithm implemented
by Scikit-Learn is CART (Classification and
Regression Trees). This is a modified version of the
ID3 and C4.5 algorithms. This algorithm creates a
binary decision tree during the supervised training
phase, which is interpreted as if-then rules. At each
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node, a decision is made based on the value of a certain
attribute. The decisions and their order are determined
based on their relevance to classify the data during the
training phase [,

Support Vector Machines (SVM): SVM is one of the
most widely used approaches in supervised machine
learning °l. To perform the calculation efficiently,
kernel functions are used, which allow obtaining a
measure of the degree of similarity of two points in a
space of greater dimensionality than the given data,
without having to calculate the coordinates of the points
in said space. In the classification using SVM, different
kernel functions can be used (linear, Gaussian,
polynomial...) with different parameters. The suitability
of one or the other will depend largely on the input
data. As for the other parameters of the classifier, the
penalty parameter C or cost is important. C determines
the degree of importance of the misclassified points. A
higher C implies that more importance is given to
correctly classifying all the points in the Training Set
than to leaving space in the models of each class for the
classification of future data. The selection of these
parameters will be done automatically with cross-
validation tools, also looking at the parameters used in
other studies such as 2% and 23, We tested a series of
parameters considered in these studies using the cross-
validation tool Randomized Search CV so that the
optimal ones were Gaussian kernel, C=5000 and
gamma = 0.1. Later on, the selection of features will be
seen in more detail.

Avrtificial Neural Networks (ANN): This is a family of
machine learning algorithms that process information
using units that imitate the behaviour of neurons in the
human brain. Each of these units (called neurons) takes
a set of data as input and produces a single output data,
which can be used as input by other processing units.
We are going to focus on the most widely used
architecture: feedforward neural networks, where the
neural network can be represented as a directed graph
without cycles, such that each node is a neuron and
each link represents that the output of one neuron is the
input of another. For simplicity, it is considered that the
network is made up of layers, such that the neurons in
layer i receive as input the output of those in layer i-1
(except in layer 0) and pass their output to layer i+1
(except in the last layer). The first layer has n+l
neurons, where n is the dimensionality of the input data.
The output of each neuron in the first layer after feeding
it with the vector x is each of the attributes of the
vector, except for the vector n+1 which is always 1. The
neurons in the intermediate layers or hidden layers
receive as input the weighted sum of the outputs of the
neurons in the previous layer that connect to them, and
calculate the output by applying a function (activation
function) to that value. The architecture of a neural
network is called the set of its nodes, its links and the
activation function applied to its neurons. The learning
process is carried out by applying different weights to
the links of a fixed architecture. Each combination of
possible weights in the links is a hypothesis. During the
supervised learning process, they will be adjusted so
that the output layer, with a single node, produces the
desired output 2, One of the most widely used
architectures is the Multilayer Perceptron (MLP), which
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will be used for this study.

Naive Bayes Classifier (NB): This is a generative
model 4. The problem is that it is usually more
complicated to determine the distribution followed by
the input data than to create an adequate classifier
without doing so, as occurred in the algorithms
explained above. Naive Bayes is a simplification of the
Optimal Bayes Classifier (based on Bayes’ Theorem) in
which the number of parameters to be estimated is
significantly reduced by making an assumption. The
parameters are estimated using the maximum likelihood
principle.

It will be necessary to determine the optimal parameters
for these algorithms.

2.5.2 Composite classifiers

Composite classifiers are those in which the results of
several simple classifiers, whether of the same or different
type, are used to perform the final classification based on
the results of these.

There are different methods to pool the results of the strong
classifiers to make a final decision.

Bagging: Different models are built on different
portions of the original dataset. Generally, it is done
with simple classifiers of the same type.

Boosting: Different models are built. The first one
learns to classify the data, while the following ones try
to learn to correct the prediction errors of the previous
one.

Voting: Different models are built, generally with
simple classifiers of different types, and the results of
these are combined through a voting process or some
simple statistical calculation.

For this study, we will consider some examples of each of
these methods, of those implemented by Scikit Learn. These
have been the ones we have selected.

Random Forest (RF): This is a classifier that consists
of a collection of decision trees (DT), in which each
tree is built by applying an algorithm to a subset of the
Training Set from a random vector so that this vector
determines how the tree is generated. A bagging
technique is therefore used. The final results are
obtained by voting on the predictions of each of the
trees.

Adaptive Boosting or AdaBoost: The AdaBoost
classifier is based on the creation of a set of weak
classifiers, typically decision trees (DT). First, the first
tree is built according to a classification algorithm (for
example ID3 or CART) from the data in the Training
Set. Then, the effectiveness of this model is evaluated
and a second tree is created, giving greater weight to
those elements of the Training Set that have not been
correctly classified by the first one. This process is
repeated successively.

Gradient Boosting Machine (GBM): This classifier
differs from AdaBoost in the way it tries to correct the
error of simple classifiers. While AdaBoost does this by
adjusting the weights of the elements in the Training
Set, GBM does this by adjusting the parameters of the
loss function. In classification, a loss function
calculates the value of the penalty due to the incorrect
classification of data. In this way, the classification
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problem is treated as an optimization problem in which
the aim is to minimize the loss of the model by adding
simple classifiers to the set. Different standard loss
functions can be used for this, or a specific one can be
defined.

e Voting Classifier (VC): This is one of the simplest
ways of combining several classifiers. The final
classification of each example is simply determined by
a majority vote of all classifiers. The class can also be
predicted by calculating the average of the probabilities
given by each simple classifier to each class and
choosing the one with the highest average. This is what
we will do in this study. Different types of classifiers
can be used.

2.6 Implementation

The implementation will consist of a main script in Python3
based on the Scikit Learn libraries and a directory structure.
In addition, it will use an auxiliary script for each evaluated
classifier and another auxiliary script for graph extraction.
All the necessary files are available in GitLab 1.

The main script, test.py, will read the data and execute other
auxiliary scripts contained in these directories; the script
itself will create, if they do not exist, the output directories
where it will save the results of the evaluation of the
classifiers. Each execution of the script will overwrite this
data. To replicate the experiment carried out, it is only
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necessary to clone the Gitlab repository and execute the
Test.py script.

The directory structure is the following, as it is available in
GitLab and represented in Figure 1. A base directory ./ with
the main script, which carries out the entire study regarding
the classifiers. Two subdirectories are required: the ./data
subdirectory should contain the KDD NSL dataset in CSV
format and the ./classifiers subdirectory, with a script for
each of the classifiers to be evaluated, following the same
structure in all cases. In addition, the main script itself will
create, if they do not exist, 3 output subdirectories where it
will write data. In ./models, the Scikit Learn models that
should be used in the future are saved. In ./results, the files
with the performance metrics resulting from the study will
be saved. At the root, there will be a file that allows
comparing the efficiency of the classifiers according to the
selection of characteristics, and a series of subdirectories
with the metrics corresponding to the study with each subset
of characteristics. Finally, in ./graphs the same structure will
be replicated to store the graphs and tables that allow
visualizing this data.

2.6.1. Selection of parameters

To implement the script, we must first select the appropriate
parameters for all the classifiers. In our case, the classifiers
in which it was necessary to consider some parameters a
priori are ANN and SVM.

S a

featuresXselectorY

]
J
|
|

Test.py ./data JJclassifiers ./models Jresults ./graphics
NSL-KDD.csv
CLF.py featuresXselectorY featuresXselectorY

Fig 1: Directory tree used by the script. In a lighter color, the directories are created at runtime.

In the case of ANN, the parameter to be determined is the
structure of the neural network. A classic three-layer
structure was chosen, selecting the number of neurons in the
hidden layer according to what was explained in 1%, In this
way, and since the effectiveness of the classifiers with
different numbers of characteristics in the input is going to
be evaluated, the number of nodes in the hidden layer will
be equal to this. In the case of SVM, we will use one of the
tools provided by Scikit Learn to perform cross-
validati, RandomizedSearchCV, Through this, we test
different types of kernels (linear, polynomial, Gaussian,
sigmoid), different values for the penalty parameter C (10,
100, 1000, 5000, 10000) and different values for the
coefficient of the RBF, polynomial and sigmoid kernels,
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gamma (0.00001, 0.001, 0.1). These test values were
obtained by reviewing the literature and the values typically
used in intrusion detection. Using this random search tool,
these parameters were optimized in terms of the accuracy of
the classifier, not in terms of the time taken, resulting in the
selection of the RBF (Radial Basis Function) kernel,
C=5000 and gamma = 0.1. The RBF kernel seemed to fit the
data distribution better. In addition, it allows its treatment in
a much shorter training time than the other two kernels that
offer better results: the polynomial and the linear. The value
of the penalty parameter has been automatically selected,
giving a value much higher than that used in the consulted
bibliography [?,
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2.6.2. Steps performed by the script

Once the script associated with each of the classifiers has
been created, the main script can be executed. The steps
followed by the program are the following.

Loading the dataset and processing the dataset. The CSV
file with the KDD NSL dataset located in ./data is opened,
under the name ’NSL-KDD.csv’. The labels and the
characteristics that are in string format are encoded so that
the dataset can be applied to the machine learning
algorithms, which require numerical data. The labels of the
dataset are grouped. The model used to encode them is
saved so that the original values can be recovered later.
Selection of characteristics. The features with the most
information are selected so that 5, 10, 15, 20 and 25 features
remain; using two feature selection algorithms, RFE and
PCA, as explained in section 6.5.2. Versions of the dataset
with the selected features are saved in subdirectories of the
Jdata folder. One subdirectory for each number of features
evaluated and for each selection algorithm.

Classifier evaluation. The auxiliary scripts in the ./classifiers
directory are executed, and each classifier is evaluated for
each of the selected feature subsets, saving the extracted
metrics to disk in the ./results subdirectory. The evaluation
of each classifier consists of three steps. First, the selected
dataset is preprocessed, scaling or normalizing the data as
necessary for each classifier. Second, the classifier is trained
(training phase) with the Training Set. Next, we try to
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predict the classes of the Test Set (classification phase) and
extract the performance metrics, saving them on disk in the
corresponding subdirectory (again, one for each selector and
number of features).

2.6.3. Extracting Results

Extracting results: An additional script has been developed
that allows extracting graphs and tables from the data
generated by the test. It is located in the root folder under
the name ProcessResults.py

This script will read the files created by each classifier in the
Jresults folder and its subdirectories; and will create tables
and graphs from them, which will make it easier for us to
compare the different classifiers. To create the different
graphs, we will use the Plotly Python libraries. The format
of the tables and graphs will be the one offered by them.

3. Results and Discussion

First, analyse the influence of the number of features and
their selection method on the effectiveness of the classifiers.
Figure 2 shows the average balanced accuracy of the
classification algorithms for each number, according to what
was defined; the selection methods being RFE and PCA.
That is, the balanced accuracy of all the classifiers has been
obtained for each number of features and selection method
and the average of all of them has been obtained, to have a
single metric with which to compare all the cases.
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Fig 2: Average balanced accuracy of classifiers as a function of the number of features, selected using RFE

Looking at the graphs we see that in general, the accuracy
increases as the number of features increases, especially
using PCA. Reviewing the data we see that the accuracy
values are usually higher for RFE in most cases, especially
for small numbers of features. In the cases where it is better
for PCA, there is hardly any difference with respect to RFE.
This also occurs for those algorithms not based on Decision
Trees, which is the estimator used to select the features.
There are also differences with respect to training times. For

the same number of features, they are usually higher in the
case of PCA. This may be because classifiers have more
difficulties in creating a model using features that are less
relevant to the problem. Thus, we consider that the best
selection method is RFE, and a good number of features
(20), for which in this case the highest accuracy was
obtained. Table 7 shows the attributes selected from those
previously presented.

Table 7: Attributes selected by RFE

No. Name Description

1 Duration Communication duration

2 Protocol_type Transport layer protocol used in the communication

3 Service Network service used by the client

4 Flag Connection status

5 Src_bytes Number of bytes sent from source to destination during the connection.

6 Dst_bytes Number of bytes sent from destination to source during the connection.

11 Num_failed_logins Number of failed login attempts

22 Is_guest_login Indicates whether the login is as a guest (1) or not (0)

23 Count Number of connections to the same destination host as the current one in the last 2 seconds
30 Diff_srv_rate Percentage of connections (23) against different services (destination port) than the current one.
32 Dst_host ount Number of connections with the same destination IP address as the current one
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33 Dst_host_srv_count

Number of connections with the same port number as the current one

34 Dst_host_same_srv rate

Percentage of connections from (32) to the same destination port.

35 Dst_host_diff _srv rate

Percentage of connections from (32) to different destination ports.

36 | Dst_host same_src port rate

Percentage of connections from (33) from the same source port.

37| Dst_host_srv_diff_host_rate

Percentage of connections from (33) to different destination hosts.

38 Dst_host_error_rate Percentage of connections from (32) with the (4) s0, s1, s2 or s3 flags set.
39| Dst host srv_serror rate Percentage of connections from (33) with the (4) s0, s1, s2 or s3 flags set.
40 Dst_host_error_rate Percentage of connections from (32) with the (4) REJ flag set.

41| Dst_host _srv_error rate

Percentage of connections from (33) with the (4) REJ flag set.

Once these parameters are set, we can analyze the
effectiveness of all the classifiers with respect to the
metrics. We will focus mainly on four metrics: accuracy
(balanced, used as an indicator of the overall effectiveness

of a classifier), precision (to try to minimize the number of
false positives by a possible ML-based IDS) and training
and classification times (to make it possible to apply the
classifier in a real-time IDS).
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Fig 3: Balanced accuracy of each classifier, for 20 features selected by RFE

We start with accuracy, which is what gives us a general
idea of how well each algorithm has classified the samples
in the 5 categories. Figure 3 gives us an idea of the value for
each of the classifiers. In this way, we see that the classifiers
that obtained the highest accuracy were ANN, RF, and
GBM. However, reviewing the data, we see that ANN failed
to classify any instance of U2R attacks, which appear in a
lower proportion, which rules it out as a good classifier. We
will see this in more detail later.

We now look at the accuracy, the fraction of really positive
positives. A low accuracy would indicate that a large
number of network flows have been classified as attacks
when they were not, or that they have been classified as the

wrong type of attack. It does not make sense to take into
account the overall accuracy of each classifier, but rather we
should focus on reviewing the accuracy of each classifier for
each class. More specifically, when classifying the 4 types
of attacks, which is what would generate false alarms and an
overload of work for security technicians. Therefore, we
will look at tables 8, 9 and 10; which show us the
performance metrics for each class of the ANN, RF and
GBM classifiers, respectively. Here we see that ANN has
not been able to classify U2R-type attacks in any case and
that its sensitivity and precision when classifying R2L-type
attacks are also significantly lower.

Table 8: Performance metrics of the DT, NB and ANN classifier, for 20 features selected by RFE

DT classifier NB classifier ANN classifier
Class/metrics | F Score | Precision | Sensitivity | Total | F Score | Precision | Sensitivity | Total | F Score | Precision | Sensitivity | Total
DOS 0.999 0.998 0.999 |13151] 0.828 0.751 0.908 |13151| 0.987 0.996 0.979 13151
Normal 0.995 0.995 0.995 |19087| 0.872 0.87 0.873 |19087| 0.982 0.976 0.978 19087
Probe 0.994 0.994 0.995 3514 | 0.388 0.553 0.298 3514 | 0.971 0.964 0.978 3514
R2L 0.944 0.947 0.941 978 | 0.045 1 0.023 978 | 0.881 0.896 0.865 978
U2R 0.525 0.5 0.552 28 0 0 0 28 0 0 0 28
Table 9: Performance metrics of the SVM and RF classifier, for 20 features selected by RFE
SVM classifier RF classifier
Class/metrics F Score Precision Sensitivity Total F Score Precision Sensitivity Total
DOS 0.987 0.996 0.979 13151 0.998 0.997 0.979 13151
Normal 0.982 0.976 0.978 19087 0.951 0.972 0.991 19087
Probe 0.971 0.964 0.978 3514 0.964 0.987 0.943 3514
R2L 0.881 0.896 0.865 978 0.918 0.908 0.929 978
U2R 0 0 0 28 0.326 0.5 0.241 28
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Table 10: Performance metrics of the GBM and VC classifier, for 20 features selected by RFE

GBM classifier VC classifier
Class/Metrics F Score Precision Sensitivity Total F Score Precision Sensitivity Total
DOS 0.998 0.998 0.998 13151 0.998 0.997 0.999 13151
Normal 0.994 0.993 0.995 19087 0.993 0.992 0.995 19087
Probe 0.986 0.984 0.978 3514 0.987 0.987 0.978 3514
R2L 0.942 0.971 0.914 978 0.935 0.959 0.911 978
U2R 0.731 0.826 0.655 28 0.176 0.6 0.103 28

Finally, we look at the training and classification times,
shown in Figure 4. The algorithms with the longest training
time have been, by far, ANN and VC; followed far behind
by GBM and SVM. This training time may not greatly
condition the application of the algorithm to an IDS if the
algorithm is not intended to be trained regularly. In that
case, it would only affect the installation and start-up time
of the IDS. As for the classification times, the only one with

a significantly higher time is SVM, with 2.8 seconds for the
37,130 samples of the Test Set. This could make it a poor
candidate for its application in a real-time IDS. Of the
remaining classifiers, the composites are the ones with the
highest classification times, being up to 0.3 seconds in the
case of RF. However, it is not considered a time that in any
way prevents its application in an IDS.

m Classification time of each classifier

NB

ANN SUM

Classifiers

Training time (min) of each classifier

Fig 4: Training time (min) and Classification time (s) of each

4. Conclusion

According to the analysis, Random Forest (RF) and
Gradient Boosting Machine (GMB) are the best algorithms
for detecting intrusions. Always remember that this occurs
for the data format of the NSL KDD dataset and the features
selected by the RFE algorithm, but it may not be applicable
in other situations. Other classifiers, especially DT, also
obtained adequate values regarding balanced accuracy and
precision. In addition, it should be remembered that
classifiers such as SVM obtained auspicious results in other
studies on intrusion detection. It is considered that many of
the algorithms should continue to be taken into account in
future similar studies, and could even be offered as options
in future implementations of an IDS.
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