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Abstract 
The number of devices using the Internet, as well as the tasks performed through it, increases every 

day. So do the attacks against the availability, integrity and confidentiality of the information they 

handle. Intrusion Detection Systems (IDS) are one of the most effective security mechanisms to protect 

network systems against computer attacks, whether or not there is prior knowledge of them. The 

application of Artificial Intelligence and, more specifically, of automatic learning in this type of 

program stands out. Most of these IDS analyse network traffic and its normal behaviour so that they 

can activate an alarm when part of said traffic differs from the usual. In this way, some types of attacks 

can be detected even if they have never been carried out before. The study investigates ensemble 

learning for detecting network security attacks, intending to improve machine learning algorithm 

performance by combining their results. This study evaluates the efficacy of different machine learning 

algorithms in intrusion detection utilizing the NSL KDD dataset, employing Recursive Feature 

Elimination (RFE) for feature selection. Results indicate that Random Forest (RF) and Gradient 

Boosting Machine (GBM) are the foremost performers, while Decision Tree (DT) also demonstrates 

commendable balanced accuracy and precision. Although Support Vector Machine (SVM) has 

demonstrated favourable outcomes in previous studies, the research indicates that multiple classifiers 

ought to be evaluated for forthcoming intrusion detection system (IDS) implementations. 

 

Keywords: Intrusion Detection Systems, IDS, Security, Intrusion Detection Systems, Ensembling 

Techniques 

 

1. Introduction 
Identifying malware and attacks through network traffic analysis continues to pose a 

significant challenge for network security and incident management professionals. Despite 

the existence of advanced detection technologies capable of distinguishing between 

malicious and benign behaviour, effective detection continues to pose a challenge [1]. 

One of the best ways to protect a network, whether against known attacks or those that are 

not yet known, is the use of Intrusion Detection Systems (IDS). IDS can monitor information 

about an entire network or just about a computer. Those that monitor only the device on 

which they are installed are called Host-based Intrusion Detection Systems (HIDS). HIDS 

can monitor, in addition to the packets that arrive at a certain network interface, very 

different elements, such as log files or running processes, so they are quite dependent on the 

veracity of this information [2]. On the other hand, Network-based IDS (NIDS) analyze 

information about an entire network. They are generally installed on different computers 

located at certain points of the same computer network to have a global view of what is 

happening in the network. These systems can analyze such traffic using a variety of 

techniques to determine whether its purpose is illegitimate [3]. When the IDS detects a packet 

or set of packets that may correspond to a computer attack, it generates an alarm, which 

typically has to be attended to by a security technician. It would be desirable for the program 

to react only to packets that correspond to an attack, but this is impossible. The IDS will 

never know for sure whether a packet corresponds to an attack or not; the purpose of this 

document is to determine to what extent machine learning algorithms can be applied to 

intrusion detection and which algorithms are most appropriate for detecting which types of 

attacks based on certain metrics. To do this, a practical study will be carried out by applying 

a series of machine learning algorithms to a dataset containing information corresponding to 

a set of network packets. Part of these will correspond to legitimate network use and part to  
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computer attacks [4]. The packets corresponding to attacks 

will be marked in advance to evaluate the effectiveness of 

each algorithm. The aim is to determine which algorithms 

are most suitable based on which metrics are considered 

most important (false positive rate, false negative rate, 

precision, etc.) and which types of attacks are a priority to 

detect [5].  

Numerous types of attacks can affect networked systems 

and there are many different ways to classify them. 

Probing/Scanning are attacks that attempt to scan a network 

or machine for information and possible vulnerabilities [6]. 

User to Root (U2R) attacks in which the attacker already 

has access to a resource on a system and tries to exploit a 

vulnerability at the application or operating system level to 

obtain higher privileges. Remote to Local (R2L) are attacks 

in which an attempt is made to exploit vulnerabilities in a 

system remotely in an attempt to obtain local user 

privileges. They are generally preceded by a scan of 

network resources. Denial of Service (DoS) are attacks that 

seek to compromise the availability of a system's data. They 

generally block a machine or network resource by saturating 

it with illegitimate requests so that its legitimate users do 

not have access to it [7]. 

There are many other more exhaustive classifications for 

computer attacks. From the point of view of network 

security, one of the most widely used is the one proposed by 

The Mitre Corporation, which classifies the different 

techniques used by attackers into 12 groups based on their 

objectives [7]. This classification is public and is currently 

used by companies and organizations around the world to 

evaluate their degree of protection against the different 

types of known computer attacks. It is therefore important to 

keep in mind at all times that not all attacks are detectable 

and that an IDS should always be part of a broader network 

security infrastructure, which includes other security 

mechanisms that can prevent other types of attacks. 

 

1.1 Machine learning and IDS Classification algorithms 

Detecting intrusions in NIDS using anomaly detection is 

often considered a classification problem, and several very 

different approaches to it have been studied in recent years 
[9]. 

When detecting intrusions, one may try to determine a 

binary classification of the detected events, classifying them 

as malicious or legitimate. Since typically the events 

classified as malicious will trigger an alarm and will require 

subsequent review by a security technician, this distinction 

is not sufficient. It is necessary to be able to classify the 

event as belonging to a computer attack family whenever 

possible. So that the technician can correctly review the 

security incident and determine if an attack has occurred. It 

will be necessary to know at least the type of attack for this 

system to be applied in practice and to be able to determine 

if the attack has had an impact, if it was a false positive, etc. 

Without this characteristic, the detection of anomalies could 

not be implemented effectively in real Intrusion Detection 

Systems. 

In addition to classification techniques, the use of clustering 

techniques [9] for intrusion detection is also quite common. 

With this in mind, different approaches can be used when 

applying machine learning algorithms in a NIDS. Simple 

classifiers. A single ML algorithm can be used to try to 

group the different events analysed as legitimate or 

malicious and, in the latter case, to determine the type of 

attack. Hybrid classifiers. Another option that is widely used 

in the literature [10] is to combine several different 

algorithms, applying one to the result of the previous one. A 

common option is to apply a clustering algorithm before 

applying a classifier. Several classifiers are also often 

applied (either different algorithms or the same one several 

times) to carry out successive classifications on each type of 

attack. In this way, each classifier only has to make a binary 

classification.  

Ensemble classifiers: This technique consists of applying 

several classifiers on the same dataset and combining the 

results of all of them. The most common way of doing this 

is to classify each element by the category chosen by most 

algorithms. 

Similarly, as already mentioned, the detection of anomalies 

by an IDS can be carried out both in isolation and in 

conjunction with signature-based detection. The specific 

techniques that will be implemented for the study will be 

described later. The dataset will be selected from among 

those available on the Internet for this purpose. With a focus 

on Random Forest (RF) and Gradient Boosting Machine 

(GBM) as the best-performing machine learning algorithms 

for intrusion detection on the NSL KDD dataset, this 

work novelty resides in its thorough evaluation of 

competing algorithms.  

 

2. Methodology 

The first step will be to select the metrics that will be taken 

into account to determine the suitability of a machine 

learning algorithm for classifying a packet or packet flow 

into the five categories that interest us: Legitimate, Probe, 

U2R, R2L or DoS. 

Secondly, a dataset will be selected with a capture of the 

traffic of a certain network, in which each packet appears 

marked with the category to which it corresponds, to apply 

supervised learning techniques. There are datasets available 

on the Internet that meet these characteristics. They will be 

studied and one will be selected based on the format of its 

data, the amount of information it contains, the variety of 

attacks it shows and how recent its data is. An analysis and 

presentation of the main relevant characteristics of the 

dataset will also be carried out, the distribution of attacks for 

the total number of entries, etc. Next, the attributes of said 

dataset that are to be taken into account for the detection of 

attacks will be selected. This selection will be made 

automatically using certain algorithms designed for this 

purpose. The experiment will be used to study the 

effectiveness of the classification algorithms based on the 

chosen characteristics. 

Thirdly, a set of classification algorithms will be selected to 

be considered in the experiment. They will be selected 

based on their effectiveness as general classification 

algorithms and their use in other similar studies, after a 

review of the available literature. Many of these algorithms 

will have parameters that will need to be determined before 

applying them to the data. 

Finally, each of the algorithms will be applied to the data in 

the dataset. The dataset will be divided into two parts. A 

majority of this data will be used to train the classification 

algorithm, i.e. to allow it to form a model of legitimate 

network traffic from the labels of each packet. The 

remaining fraction will be used to see the effectiveness of 

this algorithm when classifying once the model has been 

created. For each algorithm, the results will be collected and 
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the performance metrics mentioned above will be 

calculated. These metrics will also be calculated for each of 

the main types of attack marked in the dataset. This 

information will be compared between the different 

algorithms and conclusions will be drawn about the 

effectiveness of these in each case. 

 

2.1 Technology used 

Execution of a Python script that applies the machine 

learning algorithm to the dataset for each of the algorithms. 

Initially, train the model, followed by evaluating its 

efficacy. A validation phase between the two parties will be 

undertaken. This script will utilise the Scikit-Learn and 

Plotly libraries. Scikit-Learn (Sklearn) is an open-source 

machine-learning library for Python. This library 

encompasses the primary machine learning algorithms, 

along with tools for the preliminary and subsequent 

processing of data. These tools encompass utilities for 

dataset partitioning and the extraction and analysis of data 

derived from a test. Plotly is a library for graphical data 

representation that we will utilise to depict the test results. 

 

2.2 Metric selection 

Various metrics may be evaluated to ascertain the 

appropriateness of a classification algorithm. We must 

evaluate the algorithm's efficacy in classifying the analysed 

elements [11]. We will employ the subsequent metrics for 

measurement [12]: 

True Positive (TP) denotes the quantity of malicious packets 

accurately identified as such. True Negative (TN) denotes 

the number of legitimate packets accurately identified as 

such. False Negative (FN) denotes the quantity of malicious 

packets erroneously identified as legitimate. False Positive 

(FP) denotes the quantity of legitimate packets erroneously 

identified as malicious. 

Accuracy: Represents the fraction of correctly classified 

packets compared to total classified packets. It is also 

sometimes known as precision, not to be confused with 

accuracy which we will discuss later. It is one of the most 

basic performance metrics in a classification algorithm. It is 

calculated using the following formula: 

 

  [11-12] 

 

Precision (P, precision or positive predictive value) [1]: 

Represents the percentage of positives that correspond to an 

attack. High precision means few false positives. 

 

 [11-12] 

 

Sensitivity (S, True Positive Rate or recall): Represents the 

percentage of attacks that have been correctly detected. 

High FFN means few false negatives. 

 

 [11-12] 

 

F-score: Harmonic mean of precision and sensitivity. Like 

accuracy, it serves to get a general idea of how good a 

classifier is. It may not be the best metric for intrusion 

detection, since it assumes that precision and sensitivity are 

equally important. In our case, this is not the case and for 

this reason, we will first look at each one separately, giving 

special importance to precision. It consists of a beta 

parameter to regulate the importance of each one, although 

in this case, we will leave it at 1 so that both have the same. 

In this way, the F-score would be calculated as: 

 

 [11-12] 

 

A classification algorithm that maximizes the values of 

accuracy, precision and sensitivity will therefore be desired. 

The importance of each of these metrics will depend on the 

type of system being considered. In general, in an IDS, 

maximizing precision will be prioritized, because a high rate 

of false positives can imply an excess of work for security 

technicians when checking alarms. Therefore, the relative 

priority of one or another metric will also depend on how 

critical the security of the system is. In our case, and with 

the main objective being the integration of anomaly 

detection with the signature-based techniques already used, 

the main objective will be to maximize precision, so that 

when security technicians receive an alert generated by AI, 

they know that it is most likely a real alert and examine it 

carefully. 

For multi-class classification (3 or more), which we will 

attempt in this study, these metrics will be calculated for 

each of the classes. Only in the case of accuracy will we try 

to approximate its value for the classifier as a whole. Since 

the proportion of network traffic generated by the different 

types of attacks is very different, we will use balanced 

accuracy, which gives a different weight to the examples of 

each of the classes depending on the presence of that type of 

examples in the dataset. In this way, the classes that appear 

in a lower proportion will have a greater weight, so that the 

fact that the IDS can classify them or not will consequently 

affect the value of the metric. We are not interested in an 

IDS that can perfectly classify Probe and DoS attacks, 

which generate a much larger amount of traffic if it is not 

also able to classify R2L and U2R attacks. 

On the other hand, when evaluating an algorithm for its 

application in an IDS, it is also necessary to analyze its 

computational performance when creating a model of a 

network and classifying the events that occur in it. The main 

metrics used to determine this are the time taken by the 

algorithm to create a model of the system (Training Time, 

TRT) and, above all, to classify the packets once the model 

has been created (Testing Time, TST) [13]. Even if an 

algorithm were able to perfectly classify network traffic, a 

high processing time could make it useless for application in 

an IDS. 

 

2.3 Network traffic datasets 

In the case of datasets for evaluating intrusion detection 

systems, this translates into whether each packet or packet 

flow has the type of traffic associated with it: whether it is 

normal traffic, whether it corresponds to an attack, the type 

of attack, etc. Only a dataset containing these labels can be 

used in a supervised learning process. 

There are multiple datasets with network traffic information 

that can be used to evaluate the performance of an IDS. Not 

all of them are publicly available; for this study, we focus 

on analysing some of those that are, and that have been used 

in similar experiments [14]. The characteristics of each 

dataset (format and labelling) will determine how the 
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machine learning algorithms process them to obtain 

information, and the performance of the algorithms when 

processing them. These were the datasets considered: 

 KDD CUP 1999: KDD CUP 99 contains flow-based 

data enriched with data from system logs and network 

packets involved in the communication. It contains 

more than 20 types of attacks along with normal traffic 

and is already divided into a training subset for ML 

algorithms and another for testing. It is discarded 

because it is outdated, although it has good 

characteristics for the experiment.  

 NSL KDD: It is an update to KDD CUP 99 that 

addresses some of the redundancy issues raised in [12], 

but it still contains some of the issues raised by 

McHugh in [15]. It, like KDD CUP 99, contains data 

based on flows that have been enriched with 

information from the hosts and packets involved in the 

communication. It has the advantage of allowing 

comparison of studies conducted on it because its use is 

quite standardised.  

 CIC-IDS2017: Another of the datasets offered by the 

CIC. It contains information based on bidirectional 

flows, with more than 80 characteristics in total. It has 

been generated in an emulated network and is divided 

into different files corresponding to the periods in 

which the different types of attacks were emulated. 

Contains the most recent and common attack types in 

real networks at the time of its publication. 

 CSE-CIC-IDS2018: The latest of the datasets offered 

by the CIC in collaboration with the Communications 

Security Establishment (CSE). It offers both raw data 

(network traffic capture and equipment logs) and flow-

based data. It focuses on dividing the dataset into 

profiles that can be combined in the desired proportions 

to simulate the behaviour of a given network. This can 

be quite useful for different entities to experiment with 

a dataset similar to their network, although in principle 

it does not offer any advantage for our experiment.

It is preferable to use flow-based datasets that have 

been enhanced with additional data and claims [16]. The 

NSL KDD dataset was chosen for the current study due 

to its standard nature and this reason. It is labelled as 

well, which is essentially a prerequisite for intrusion 

detection. 

 The NSL KDD dataset: The dataset contains data in a 

flow-based format, enriched with data on the packets 

and devices involved in the communication. The dataset 

has a total of 41 features in addition to the label and the 

difficulty level. These features can be divided into 4 

large groups. Table 1 shows the basic attributes of a 

packet flow. Table 2 shows the attributes related to the 

content of the packets that make up the flow, i.e. 

information related to the application layer. On the 

other hand, tables 3 and 4 show information on other 

network packet flows that share some characteristic 

with the flow to which the entry corresponds. This 

information is of vital importance to detect certain types 

of attacks (network scans, DDoS attacks, etc.). In the 

case of Table 3, this is information about other 

connections temporally related to the given one, while 

in Table 4 they are related by IP addresses or port 

numbers. 

 In this way, characteristics can be distinguished in text 

string format, others in binary format, and others in 

numerical format. Later, it will be necessary to process 

the dataset to have a homogeneous type of data with 

which to feed the machine learning algorithms. 

 Finally, each entry in the dataset includes a label with 

the flow classification. The flows are classified as 

normal or as corresponding to a computer attack. The 

dataset includes flows corresponding to 40 different 

types of attacks, each of which can be classified into 

one of the categories. This correspondence is shown in 

Table 5. On the other hand, a final characteristic is 

included that indicates the degree of difficulty when 

classifying each entry. For this study, we will ignore 

this characteristic. 

 
Table 1: Basic flow attributes 

 

No. Name Description 

1 
 

Duration of the communication 

2 
 

Transport layer protocol used in the communication (text string) 

3  Network service used by the client (text string) 

4  State of the connection (text string) 

5  Number of bytes sent from the source to the destination during the connection. 

6  Number of bytes sent from the destination to the source during the connection. 

7  Indicates whether the source and destination IP addresses and port numbers are equal (1) or not (0) 

8  fragment Number of erroneous fragments counted in the connection 

9 
 

The number of packets with the urgent bit activated counted in the connection. 
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Table 2: Attributes related to package content 
 

No. Name Description 

10 
 

A number of compromise indicators detected in the packet content, such as:  

’entering a system’ 

11 
 

Number of failed login attempts 

12 
 

Indicates whether a login was successful (1) or not (0) 

13 
 

Number of possible compromise indicators detected in the packet content 

14 
 

Indicates whether an administrator console was obtained (1) or not (0) 

15 
 

Indicates whether the command ’su root’ was attempted to be executed  

during the connection (1) or not (0) 

16 
 

Number of accesses and operations performed as root during the connection 

17 
 

Number of file creation operations performed during the connection 

18 
 

Number of command interpreters used during the connection 

19 
 

Number of control file access operations 

20 
 

Number of external connections made in a session FTP 

21 
 

Indicates whether the login corresponds to one of those considered  

potentially dangerous (such as root or admin users) (1) or not (0) 

22 
 

Indicates whether the login is as a guest (1) or not (0) 

 
Table 3: Attributes about traffic temporally related to the flow 

 

No. Name Description 

23 
 

Number of connections to the same destination host as the current one in the last 2 seconds 

24 
 

Number of connections to the same service (destination port) as the current one in the last 2 seconds 

25 
 

Percentage of connections with the flag (4) s0, s1, s2 or s3 activated among those counted in count (23) 

26 
 

Percentage of connections with the flag (4) s0, s1, s2 or s3 activated among those counted in srv count (24) 

27 
 

Percentage of connections with the flag (4) REJ activated among those counted in count (23) 

28 
 

Percentage of connections with the flag (4) REJ activated among those counted in count (23) srv count (24) 

29 
 

Percentage of connections against the same service (destination port) as the current one, among those counted 

in count (23) 

30 
 

Percentage of connections against different services (destination port) than the current one, among those 

counted in count (23) 

31 
 

Percentage of connections against different destination host than the current one, among those counted in srv 

count (24) 

 
Table 4: Host-Related Traffic Attributes 

 

No. Name Description 

32 
 

Number of connections with the same destination IP address as the current one 

33 
 

Number of connections with the same port number as the current one 

34 
 

Percentage of connections to the same destination port, among those counted in dst host count 

(32) 

35 
 

Percentage of connections to different destination ports, among those counted in dst host count 

(32) 

36 
 

Percentage of connections from the same source port, among those counted in dst host srv count 

(33) 

37 
 

Percentage of connections to different destination hosts, among those counted in  host srv 

count (33) 

38 
 

Percentage of connections with flags (4) s0, s1, s2 or s3 enabled, among those counted in  

host count (32) 

39 
 

Percentage of connections with flags (4) s0, s1, s2 or s3 enabled s3 enabled, among those 

counted in host srv count (33) 

40 z Percentage of connections with the (4) REJ flag enabled, among those counted in host count 

(32) 

41 
 

Percentage of connections with the (4) REJ flag enabled, among those counted in  host 

count (33) 
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Table 5: Correspondence between attacks collected in NSL KDD and their category 
 

Category Attacks 

Probe ,  

R2L 
Guess Password, Ftp write, imap, xsnoop, named, Phf, Multihop, Warezmas ter, Warezclient, Spy, X_lock, X_snoop, Snmpguess, 

Snmpge attack, Httptunnel, Sendmail,  

U2R  sqlattack, perl, xterm, Buffer overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps 

DoS 
teardrop, winnuke, syndrop, newtear, bonk, Land, Neptune, Pod, Smurf, Teardrop, Apache2, Ud storm, Process table, Worm, 

Mailbomb 

 

2.4 Dataset processing 

2.4.1. Dataset splitting: Training Set and Test Set: Scikit-

Learn provides tools to automatically split a dataset into two 

random subsets for learning and testing. By default, the 

Training Set will comprise 75% of the total, with the 

remaining 25% used to evaluate the classifier's 

effectiveness. Table 6 shows the number of instances of 

each class in both the Training Set and the Test Set using 

this configuration. 

 
Table 6: Number of instances in the split NSL KDD dataset 

 

Class Instances in Training Set Instances in the test set 

Normal 57196 19087 

Probe 10423 3514 

R2L 2863 978 

U2R 89 29 

DoS 39702 13151 

 

2.4.2. Feature selection: Not all features offered by the 

datasets offer the same information when classifying the 

data. Using all the features of the data can negatively impact 

both the computational performance and the effectiveness of 

the classification algorithms. Before the training phase of a 

dataset, it is common to preprocess it to remove redundant 

or non-relevant features. 

Feature selection is not always performed in the field of 

intrusion detection [17], since many datasets offer their data 

in formats that show only the features considered relevant 

when detecting attacks. Nevertheless, in this paper, we will 

consider some methods to remove irrelevant features and 

apply some of them if relevant. It has been observed that, in 

our case, feature selection significantly improves the 

training time (TRT) of some classifiers. Furthermore, if it is 

adequate, it also improves the effectiveness in some cases. 

Therefore, it is also intended to carry out a study of how the 

number of features and the method to select them affect the 

effectiveness of the classifiers. 

Two automatic methods of feature selection will be applied 

that allow processing the labelled dataset and determining 

which features of it are less relevant to classify the nature of 

the network events. The first method chosen is Recursive 

Feature Elimination (RFE). The algorithm performs several 

iterations in which it calculates the relevance of the features 

of the dataset. It starts by doing so with all of them and 

eliminates the least relevant in each iteration. It has two 

important parameters: the classification method used to 

evaluate the relevance of the features (estimator) and the 

desired number of features. In our case, the classification 

method will be Decision Trees, since it is one of the fastest 

classifiers and many of the composite methods that we are 

going to use are based on it (we will see this later). To 

determine the optimal number of features, one option would 

be to use a variation of RFE that allows this to be done 

automatically. RFECV is a version of RFE that performs 

cross-validation using the data in the dataset to determine 

the optimal number of features, so it is not necessary to 

specify it in advance. However, we want to evaluate the 

performance of the classifiers for each feature and selection 

method, so this is not useful, we will use RFE for each case. 

The other feature selection method is the statistical method 

of Principal Component Analysis (PCA). The idea of this 

method is to convert the initial set of features, probably 

correlated, into a smaller set of features without linear 

correlation that preserves as much information as possible 

with respect to the original set. It has the advantage that it is 

not necessary to select a classifier as an estimator of the 

relevance of each feature so that no biases are introduced 

when applying it. It has the disadvantage that it does not 

take into account the classification problem being addressed 

when selecting the features. 

Both RFE and PCA will be applied to the dataset to select 5, 

10, 15, 20 and 25 features. The average effectiveness of the 

classifiers will be evaluated in all cases with respect to the 

same metric so that the optimal number of features and the 

best method to select them are determined. The metric with 

respect to which we will compare them will be the average 

balanced accuracy of all the classifiers. Once several 

features and a selection method have been selected, we will 

proceed to evaluate the effectiveness of the classifiers in that 

case, taking into account all the metrics described above. 

 

2.4.3. Preprocessing: The classification algorithms 

implemented in ScikitLearn need to process numeric data. 

Therefore, all the features in the dataset that are in string 

format (including the label) will be replaced by a unique 

integer for each string. All the features will be stored in 32-

bit float format. In addition, all NaNs that can be found will 

be replaced by numbers. 

On the other hand, some of the classifiers require that the 

data they work with has been scaled or normalized, so the 

data will be treated in the appropriate way in each case. 

In addition, the labels corresponding to all groups will be 

grouped to replace those corresponding to specific attacks 

by the family to which they belong, according to the 

information collected in Table 5. 

 

2.4.4. ML algorithms to be studied: For this study, only 

those algorithms that have obtained the best results in the 

studies carried out so far will be considered, for which we 

will look at the information collected in [16-17]. 

 

2.5 Simple classifiers 

2.5.1 Algorithms selected 

 Decision Trees (DT) [18]: The algorithm implemented 

by Scikit-Learn is CART (Classification and 

Regression Trees). This is a modified version of the 

ID3 and C4.5 algorithms. This algorithm creates a 

binary decision tree during the supervised training 

phase, which is interpreted as if-then rules. At each 
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node, a decision is made based on the value of a certain 

attribute. The decisions and their order are determined 

based on their relevance to classify the data during the 

training phase [7]. 

 Support Vector Machines (SVM): SVM is one of the 

most widely used approaches in supervised machine 

learning [19]. To perform the calculation efficiently, 

kernel functions are used, which allow obtaining a 

measure of the degree of similarity of two points in a 

space of greater dimensionality than the given data, 

without having to calculate the coordinates of the points 

in said space. In the classification using SVM, different 

kernel functions can be used (linear, Gaussian, 

polynomial...) with different parameters. The suitability 

of one or the other will depend largely on the input 

data. As for the other parameters of the classifier, the 

penalty parameter C or cost is important. C determines 

the degree of importance of the misclassified points. A 

higher C implies that more importance is given to 

correctly classifying all the points in the Training Set 

than to leaving space in the models of each class for the 

classification of future data. The selection of these 

parameters will be done automatically with cross-

validation tools, also looking at the parameters used in 

other studies such as [20] and [21]. We tested a series of 

parameters considered in these studies using the cross-

validation tool Randomized Search CV so that the 

optimal ones were Gaussian kernel, C=5000 and 

gamma = 0.1. Later on, the selection of features will be 

seen in more detail. 

 Artificial Neural Networks (ANN): This is a family of 

machine learning algorithms that process information 

using units that imitate the behaviour of neurons in the 

human brain. Each of these units (called neurons) takes 

a set of data as input and produces a single output data, 

which can be used as input by other processing units. 

We are going to focus on the most widely used 

architecture: feedforward neural networks, where the 

neural network can be represented as a directed graph 

without cycles, such that each node is a neuron and 

each link represents that the output of one neuron is the 

input of another. For simplicity, it is considered that the 

network is made up of layers, such that the neurons in 

layer i receive as input the output of those in layer i-1 

(except in layer 0) and pass their output to layer i+1 

(except in the last layer). The first layer has n+1 

neurons, where n is the dimensionality of the input data. 

The output of each neuron in the first layer after feeding 

it with the vector x is each of the attributes of the 

vector, except for the vector n+1 which is always 1. The 

neurons in the intermediate layers or hidden layers 

receive as input the weighted sum of the outputs of the 

neurons in the previous layer that connect to them, and 

calculate the output by applying a function (activation 

function) to that value. The architecture of a neural 

network is called the set of its nodes, its links and the 

activation function applied to its neurons. The learning 

process is carried out by applying different weights to 

the links of a fixed architecture. Each combination of 

possible weights in the links is a hypothesis. During the 

supervised learning process, they will be adjusted so 

that the output layer, with a single node, produces the 

desired output [22]. One of the most widely used 

architectures is the Multilayer Perceptron (MLP), which 

will be used for this study. 

 Naive Bayes Classifier (NB): This is a generative 

model [22]. The problem is that it is usually more 

complicated to determine the distribution followed by 

the input data than to create an adequate classifier 

without doing so, as occurred in the algorithms 

explained above. Naive Bayes is a simplification of the 

Optimal Bayes Classifier (based on Bayes’ Theorem) in 

which the number of parameters to be estimated is 

significantly reduced by making an assumption. The 

parameters are estimated using the maximum likelihood 

principle. 

 It will be necessary to determine the optimal parameters 

for these algorithms. 

 

2.5.2 Composite classifiers 

Composite classifiers are those in which the results of 

several simple classifiers, whether of the same or different 

type, are used to perform the final classification based on 

the results of these. 

There are different methods to pool the results of the strong 

classifiers to make a final decision. 

 Bagging: Different models are built on different 

portions of the original dataset. Generally, it is done 

with simple classifiers of the same type. 

 Boosting: Different models are built. The first one 

learns to classify the data, while the following ones try 

to learn to correct the prediction errors of the previous 

one. 

 Voting: Different models are built, generally with 

simple classifiers of different types, and the results of 

these are combined through a voting process or some 

simple statistical calculation. 

 

For this study, we will consider some examples of each of 

these methods, of those implemented by Scikit Learn. These 

have been the ones we have selected. 

 Random Forest (RF): This is a classifier that consists 

of a collection of decision trees (DT), in which each 

tree is built by applying an algorithm to a subset of the 

Training Set from a random vector so that this vector 

determines how the tree is generated. A bagging 

technique is therefore used. The final results are 

obtained by voting on the predictions of each of the 

trees. 

 Adaptive Boosting or AdaBoost: The AdaBoost 

classifier is based on the creation of a set of weak 

classifiers, typically decision trees (DT). First, the first 

tree is built according to a classification algorithm (for 

example ID3 or CART) from the data in the Training 

Set. Then, the effectiveness of this model is evaluated 

and a second tree is created, giving greater weight to 

those elements of the Training Set that have not been 

correctly classified by the first one. This process is 

repeated successively. 

 Gradient Boosting Machine (GBM): This classifier 

differs from AdaBoost in the way it tries to correct the 

error of simple classifiers. While AdaBoost does this by 

adjusting the weights of the elements in the Training 

Set, GBM does this by adjusting the parameters of the 

loss function. In classification, a loss function 

calculates the value of the penalty due to the incorrect 

classification of data. In this way, the classification 
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problem is treated as an optimization problem in which 

the aim is to minimize the loss of the model by adding 

simple classifiers to the set. Different standard loss 

functions can be used for this, or a specific one can be 

defined. 

 Voting Classifier (VC): This is one of the simplest 

ways of combining several classifiers. The final 

classification of each example is simply determined by 

a majority vote of all classifiers. The class can also be 

predicted by calculating the average of the probabilities 

given by each simple classifier to each class and 

choosing the one with the highest average. This is what 

we will do in this study. Different types of classifiers 

can be used. 

 

2.6 Implementation 

The implementation will consist of a main script in Python3 

based on the Scikit Learn libraries and a directory structure. 

In addition, it will use an auxiliary script for each evaluated 

classifier and another auxiliary script for graph extraction. 

All the necessary files are available in GitLab 1. 

The main script, test.py, will read the data and execute other 

auxiliary scripts contained in these directories; the script 

itself will create, if they do not exist, the output directories 

where it will save the results of the evaluation of the 

classifiers. Each execution of the script will overwrite this 

data. To replicate the experiment carried out, it is only

necessary to clone the Gitlab repository and execute the 

Test.py script. 

The directory structure is the following, as it is available in 

GitLab and represented in Figure 1. A base directory ./ with 

the main script, which carries out the entire study regarding 

the classifiers. Two subdirectories are required: the ./data 

subdirectory should contain the KDD NSL dataset in CSV 

format and the ./classifiers subdirectory, with a script for 

each of the classifiers to be evaluated, following the same 

structure in all cases. In addition, the main script itself will 

create, if they do not exist, 3 output subdirectories where it 

will write data. In ./models, the Scikit Learn models that 

should be used in the future are saved. In ./results, the files 

with the performance metrics resulting from the study will 

be saved. At the root, there will be a file that allows 

comparing the efficiency of the classifiers according to the 

selection of characteristics, and a series of subdirectories 

with the metrics corresponding to the study with each subset 

of characteristics. Finally, in ./graphs the same structure will 

be replicated to store the graphs and tables that allow 

visualizing this data. 

 

2.6.1. Selection of parameters 

To implement the script, we must first select the appropriate 

parameters for all the classifiers. In our case, the classifiers 

in which it was necessary to consider some parameters a 

priori are ANN and SVM. 

 

 
 

Fig 1: Directory tree used by the script. In a lighter color, the directories are created at runtime. 

 

In the case of ANN, the parameter to be determined is the 

structure of the neural network. A classic three-layer 

structure was chosen, selecting the number of neurons in the 

hidden layer according to what was explained in [19]. In this 

way, and since the effectiveness of the classifiers with 

different numbers of characteristics in the input is going to 

be evaluated, the number of nodes in the hidden layer will 

be equal to this. In the case of SVM, we will use one of the 

tools provided by Scikit Learn to perform cross-

validati  Through this, we test 

different types of kernels (linear, polynomial, Gaussian, 

sigmoid), different values for the penalty parameter C (10, 

100, 1000, 5000, 10000) and different values for the 

coefficient of the RBF, polynomial and sigmoid kernels, 

gamma (0.00001, 0.001, 0.1). These test values were 

obtained by reviewing the literature and the values typically 

used in intrusion detection. Using this random search tool, 

these parameters were optimized in terms of the accuracy of 

the classifier, not in terms of the time taken, resulting in the 

selection of the RBF (Radial Basis Function) kernel, 

C=5000 and gamma = 0.1. The RBF kernel seemed to fit the 

data distribution better. In addition, it allows its treatment in 

a much shorter training time than the other two kernels that 

offer better results: the polynomial and the linear. The value 

of the penalty parameter has been automatically selected, 

giving a value much higher than that used in the consulted 

bibliography [21]. 
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2.6.2. Steps performed by the script 

Once the script associated with each of the classifiers has 

been created, the main script can be executed. The steps 

followed by the program are the following. 

Loading the dataset and processing the dataset. The CSV 

file with the KDD NSL dataset located in ./data is opened, 

under the name ’NSL-KDD.csv’. The labels and the 

characteristics that are in string format are encoded so that 

the dataset can be applied to the machine learning 

algorithms, which require numerical data. The labels of the 

dataset are grouped. The model used to encode them is 

saved so that the original values can be recovered later. 

Selection of characteristics. The features with the most 

information are selected so that 5, 10, 15, 20 and 25 features 

remain; using two feature selection algorithms, RFE and 

PCA, as explained in section 6.5.2. Versions of the dataset 

with the selected features are saved in subdirectories of the 

./data folder. One subdirectory for each number of features 

evaluated and for each selection algorithm. 

Classifier evaluation. The auxiliary scripts in the ./classifiers 

directory are executed, and each classifier is evaluated for 

each of the selected feature subsets, saving the extracted 

metrics to disk in the ./results subdirectory. The evaluation 

of each classifier consists of three steps. First, the selected 

dataset is preprocessed, scaling or normalizing the data as 

necessary for each classifier. Second, the classifier is trained 

(training phase) with the Training Set. Next, we try to

predict the classes of the Test Set (classification phase) and 

extract the performance metrics, saving them on disk in the 

corresponding subdirectory (again, one for each selector and 

number of features). 

 

2.6.3. Extracting Results 

Extracting results: An additional script has been developed 

that allows extracting graphs and tables from the data 

generated by the test. It is located in the root folder under 

the name . 

This script will read the files created by each classifier in the 

./results folder and its subdirectories; and will create tables 

and graphs from them, which will make it easier for us to 

compare the different classifiers. To create the different 

graphs, we will use the Plotly Python libraries. The format 

of the tables and graphs will be the one offered by them. 

 

3. Results and Discussion  

First, analyse the influence of the number of features and 

their selection method on the effectiveness of the classifiers. 

Figure 2 shows the average balanced accuracy of the 

classification algorithms for each number, according to what 

was defined; the selection methods being RFE and PCA. 

That is, the balanced accuracy of all the classifiers has been 

obtained for each number of features and selection method 

and the average of all of them has been obtained, to have a 

single metric with which to compare all the cases. 

 

 
 

Fig 2: Average balanced accuracy of classifiers as a function of the number of features, selected using RFE 

 

Looking at the graphs we see that in general, the accuracy 

increases as the number of features increases, especially 

using PCA. Reviewing the data we see that the accuracy 

values are usually higher for RFE in most cases, especially 

for small numbers of features. In the cases where it is better 

for PCA, there is hardly any difference with respect to RFE. 

This also occurs for those algorithms not based on Decision 

Trees, which is the estimator used to select the features. 

There are also differences with respect to training times. For 

the same number of features, they are usually higher in the 

case of PCA. This may be because classifiers have more 

difficulties in creating a model using features that are less 

relevant to the problem. Thus, we consider that the best 

selection method is RFE, and a good number of features 

(20), for which in this case the highest accuracy was 

obtained. Table 7 shows the attributes selected from those 

previously presented. 

 
Table 7: Attributes selected by RFE 

 

No. Name Description 

1 Duration Communication duration 

2 Protocol_type Transport layer protocol used in the communication 

3 Service Network service used by the client 

4 Flag Connection status 

5 Src_bytes Number of bytes sent from source to destination during the connection. 

6 Dst_bytes Number of bytes sent from destination to source during the connection. 

11 Num_failed_logins Number of failed login attempts 

22 Is_guest_login Indicates whether the login is as a guest (1) or not (0) 

23 Count Number of connections to the same destination host as the current one in the last 2 seconds 

30 Diff_srv_rate Percentage of connections (23) against different services (destination port) than the current one. 

32 Dst_host _ount Number of connections with the same destination IP address as the current one 
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33 Dst_host_srv_count Number of connections with the same port number as the current one 

34 Dst_host_same_srv rate Percentage of connections from (32) to the same destination port. 

35 Dst_host_diff_srv rate Percentage of connections from (32) to different destination ports. 

36 Dst_host_same_src port rate Percentage of connections from (33) from the same source port. 

37 Dst_host_srv_diff_host_rate Percentage of connections from (33) to different destination hosts. 

38 Dst_host_error_rate Percentage of connections from (32) with the (4) s0, s1, s2 or s3 flags set. 

39 Dst_host_srv_serror rate Percentage of connections from (33) with the (4) s0, s1, s2 or s3 flags set. 

40 Dst_host_error_rate Percentage of connections from (32) with the (4) REJ flag set. 

41 Dst_host_srv_error rate Percentage of connections from (33) with the (4) REJ flag set. 

 

Once these parameters are set, we can analyze the 

effectiveness of all the classifiers with respect to the 

metrics. We will focus mainly on four metrics: accuracy 

(balanced, used as an indicator of the overall effectiveness 

of a classifier), precision (to try to minimize the number of 

false positives by a possible ML-based IDS) and training 

and classification times (to make it possible to apply the 

classifier in a real-time IDS). 

 

 
 

Fig 3: Balanced accuracy of each classifier, for 20 features selected by RFE 

 

We start with accuracy, which is what gives us a general 

idea of how well each algorithm has classified the samples 

in the 5 categories. Figure 3 gives us an idea of the value for 

each of the classifiers. In this way, we see that the classifiers 

that obtained the highest accuracy were ANN, RF, and 

GBM. However, reviewing the data, we see that ANN failed 

to classify any instance of U2R attacks, which appear in a 

lower proportion, which rules it out as a good classifier. We 

will see this in more detail later. 

We now look at the accuracy, the fraction of really positive 

positives. A low accuracy would indicate that a large 

number of network flows have been classified as attacks 

when they were not, or that they have been classified as the 

wrong type of attack. It does not make sense to take into 

account the overall accuracy of each classifier, but rather we 

should focus on reviewing the accuracy of each classifier for 

each class. More specifically, when classifying the 4 types 

of attacks, which is what would generate false alarms and an 

overload of work for security technicians. Therefore, we 

will look at tables 8, 9 and 10; which show us the 

performance metrics for each class of the ANN, RF and 

GBM classifiers, respectively. Here we see that ANN has 

not been able to classify U2R-type attacks in any case and 

that its sensitivity and precision when classifying R2L-type 

attacks are also significantly lower.  

 
Table 8: Performance metrics of the DT, NB and ANN classifier, for 20 features selected by RFE 

 

  DT classifier  NB classifier  ANN classifier  

Class/metrics  F Score Precision Sensitivity Total F Score Precision Sensitivity Total F Score Precision Sensitivity Total 

DOS 0.999 0.998 0.999 13151 0.828 0.751 0.908 13151 0.987 0.996 0.979 13151 

Normal 0.995 0.995 0.995 19087 0.872 0.87 0.873 19087 0.982 0.976 0.978 19087 

Probe 0.994 0.994 0.995 3514 0.388 0.553 0.298 3514 0.971 0.964 0.978 3514 

R2L 0.944 0.947 0.941 978 0.045 1 0.023 978 0.881 0.896 0.865 978 

U2R 0.525 0.5 0.552 28 0 0 0 28 0 0 0 28 

 
Table 9: Performance metrics of the SVM and RF classifier, for 20 features selected by RFE 

 

  SVM classifier  RF classifier  

Class/metrics  F Score Precision Sensitivity Total F Score Precision Sensitivity Total 

DOS 0.987 0.996 0.979 13151 0.998 0.997 0.979 13151 

Normal 0.982 0.976 0.978 19087 0.951 0.972 0.991 19087 

Probe 0.971 0.964 0.978 3514 0.964 0.987 0.943 3514 

R2L 0.881 0.896 0.865 978 0.918 0.908 0.929 978 

U2R 0 0 0 28 0.326 0.5 0.241 28 
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Table 10: Performance metrics of the GBM and VC classifier, for 20 features selected by RFE 
 

  GBM classifier  VC classifier  

Class/Metrics F Score Precision Sensitivity Total F Score Precision Sensitivity Total 

DOS 0.998 0.998 0.998 13151 0.998 0.997 0.999 13151 

Normal 0.994 0.993 0.995 19087 0.993 0.992 0.995 19087 

Probe 0.986 0.984 0.978 3514 0.987 0.987 0.978 3514 

R2L 0.942 0.971 0.914 978 0.935 0.959 0.911 978 

U2R 0.731 0.826 0.655 28 0.176 0.6 0.103 28 

 

Finally, we look at the training and classification times, 

shown in Figure 4. The algorithms with the longest training 

time have been, by far, ANN and VC; followed far behind 

by GBM and SVM. This training time may not greatly 

condition the application of the algorithm to an IDS if the 

algorithm is not intended to be trained regularly. In that 

case, it would only affect the installation and start-up time 

of the IDS. As for the classification times, the only one with 

a significantly higher time is SVM, with 2.8 seconds for the 

37,130 samples of the Test Set. This could make it a poor 

candidate for its application in a real-time IDS. Of the 

remaining classifiers, the composites are the ones with the 

highest classification times, being up to 0.3 seconds in the 

case of RF. However, it is not considered a time that in any 

way prevents its application in an IDS. 

 

 
 

Fig 4: Training time (min) and Classification time (s) of each classifier, in minutes. For 20 features selected by RFE 

 

4. Conclusion 

According to the analysis, Random Forest (RF) and 

Gradient Boosting Machine (GMB) are the best algorithms 

for detecting intrusions. Always remember that this occurs 

for the data format of the NSL KDD dataset and the features 

selected by the RFE algorithm, but it may not be applicable 

in other situations. Other classifiers, especially DT, also 

obtained adequate values regarding balanced accuracy and 

precision. In addition, it should be remembered that 

classifiers such as SVM obtained auspicious results in other 

studies on intrusion detection. It is considered that many of 

the algorithms should continue to be taken into account in 

future similar studies, and could even be offered as options 

in future implementations of an IDS. 
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