

~ 45 ~

International Journal of Engineering in Computer Science 2025; 7(2): 45-56

E-ISSN: 2663-3590

P-ISSN: 2663-3582

Impact Factor (RJIF): 5.52

www.computersciencejournals.c

om/ijecs

IJECS 2025; 7(2): 45-56

Received: 10-06-2025

Accepted: 14-07-2025

Ahmed Jaber Joudah

Department of Computer

Engineering Techniques,

Engineering Technical College,

University of Imam Jaáfar Al-

Sadiq, Thi-Qar Branch, Thi-

Qar, Iraq

Huda Yass Khudhair

Department of Computer

Engineering Techniques,

Engineering Technical College,

University of Imam Jaáfar Al-

Sadiq, Thi-Qar Branch, Thi-

Qar, Iraq

Corresponding Author:

Ahmed Jaber Joudah

Department of Computer

Engineering Techniques,

Engineering Technical College,

University of Imam Jaáfar Al-

Sadiq, Thi-Qar Branch, Thi-

Qar, Iraq

Detecting network security attacks using

ensembling techniques

Ahmed Jaber Joudah and Huda Yass Khudhair

DOI: https://www.doi.org/10.33545/26633582.2025.v7.i2a.201

Abstract
The number of devices using the Internet, as well as the tasks performed through it, increases every

day. So do the attacks against the availability, integrity and confidentiality of the information they

handle. Intrusion Detection Systems (IDS) are one of the most effective security mechanisms to protect

network systems against computer attacks, whether or not there is prior knowledge of them. The

application of Artificial Intelligence and, more specifically, of automatic learning in this type of

program stands out. Most of these IDS analyse network traffic and its normal behaviour so that they

can activate an alarm when part of said traffic differs from the usual. In this way, some types of attacks

can be detected even if they have never been carried out before. The study investigates ensemble

learning for detecting network security attacks, intending to improve machine learning algorithm

performance by combining their results. This study evaluates the efficacy of different machine learning

algorithms in intrusion detection utilizing the NSL KDD dataset, employing Recursive Feature

Elimination (RFE) for feature selection. Results indicate that Random Forest (RF) and Gradient

Boosting Machine (GBM) are the foremost performers, while Decision Tree (DT) also demonstrates

commendable balanced accuracy and precision. Although Support Vector Machine (SVM) has

demonstrated favourable outcomes in previous studies, the research indicates that multiple classifiers

ought to be evaluated for forthcoming intrusion detection system (IDS) implementations.

Keywords: Intrusion Detection Systems, IDS, Security, Intrusion Detection Systems, Ensembling

Techniques

1. Introduction
Identifying malware and attacks through network traffic analysis continues to pose a

significant challenge for network security and incident management professionals. Despite

the existence of advanced detection technologies capable of distinguishing between

malicious and benign behaviour, effective detection continues to pose a challenge [1].

One of the best ways to protect a network, whether against known attacks or those that are

not yet known, is the use of Intrusion Detection Systems (IDS). IDS can monitor information

about an entire network or just about a computer. Those that monitor only the device on

which they are installed are called Host-based Intrusion Detection Systems (HIDS). HIDS

can monitor, in addition to the packets that arrive at a certain network interface, very

different elements, such as log files or running processes, so they are quite dependent on the

veracity of this information [2]. On the other hand, Network-based IDS (NIDS) analyze

information about an entire network. They are generally installed on different computers

located at certain points of the same computer network to have a global view of what is

happening in the network. These systems can analyze such traffic using a variety of

techniques to determine whether its purpose is illegitimate [3]. When the IDS detects a packet

or set of packets that may correspond to a computer attack, it generates an alarm, which

typically has to be attended to by a security technician. It would be desirable for the program

to react only to packets that correspond to an attack, but this is impossible. The IDS will

never know for sure whether a packet corresponds to an attack or not; the purpose of this

document is to determine to what extent machine learning algorithms can be applied to

intrusion detection and which algorithms are most appropriate for detecting which types of

attacks based on certain metrics. To do this, a practical study will be carried out by applying

a series of machine learning algorithms to a dataset containing information corresponding to

a set of network packets. Part of these will correspond to legitimate network use and part to

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://www.doi.org/10.33545/26633582.2025.v7.i2a.201

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 46 ~

computer attacks [4]. The packets corresponding to attacks

will be marked in advance to evaluate the effectiveness of

each algorithm. The aim is to determine which algorithms

are most suitable based on which metrics are considered

most important (false positive rate, false negative rate,

precision, etc.) and which types of attacks are a priority to

detect [5].

Numerous types of attacks can affect networked systems

and there are many different ways to classify them.

Probing/Scanning are attacks that attempt to scan a network

or machine for information and possible vulnerabilities [6].

User to Root (U2R) attacks in which the attacker already

has access to a resource on a system and tries to exploit a

vulnerability at the application or operating system level to

obtain higher privileges. Remote to Local (R2L) are attacks

in which an attempt is made to exploit vulnerabilities in a

system remotely in an attempt to obtain local user

privileges. They are generally preceded by a scan of

network resources. Denial of Service (DoS) are attacks that

seek to compromise the availability of a system's data. They

generally block a machine or network resource by saturating

it with illegitimate requests so that its legitimate users do

not have access to it [7].

There are many other more exhaustive classifications for

computer attacks. From the point of view of network

security, one of the most widely used is the one proposed by

The Mitre Corporation, which classifies the different

techniques used by attackers into 12 groups based on their

objectives [7]. This classification is public and is currently

used by companies and organizations around the world to

evaluate their degree of protection against the different

types of known computer attacks. It is therefore important to

keep in mind at all times that not all attacks are detectable

and that an IDS should always be part of a broader network

security infrastructure, which includes other security

mechanisms that can prevent other types of attacks.

1.1 Machine learning and IDS Classification algorithms

Detecting intrusions in NIDS using anomaly detection is

often considered a classification problem, and several very

different approaches to it have been studied in recent years
[9].

When detecting intrusions, one may try to determine a

binary classification of the detected events, classifying them

as malicious or legitimate. Since typically the events

classified as malicious will trigger an alarm and will require

subsequent review by a security technician, this distinction

is not sufficient. It is necessary to be able to classify the

event as belonging to a computer attack family whenever

possible. So that the technician can correctly review the

security incident and determine if an attack has occurred. It

will be necessary to know at least the type of attack for this

system to be applied in practice and to be able to determine

if the attack has had an impact, if it was a false positive, etc.

Without this characteristic, the detection of anomalies could

not be implemented effectively in real Intrusion Detection

Systems.

In addition to classification techniques, the use of clustering

techniques [9] for intrusion detection is also quite common.

With this in mind, different approaches can be used when

applying machine learning algorithms in a NIDS. Simple

classifiers. A single ML algorithm can be used to try to

group the different events analysed as legitimate or

malicious and, in the latter case, to determine the type of

attack. Hybrid classifiers. Another option that is widely used

in the literature [10] is to combine several different

algorithms, applying one to the result of the previous one. A

common option is to apply a clustering algorithm before

applying a classifier. Several classifiers are also often

applied (either different algorithms or the same one several

times) to carry out successive classifications on each type of

attack. In this way, each classifier only has to make a binary

classification.

Ensemble classifiers: This technique consists of applying

several classifiers on the same dataset and combining the

results of all of them. The most common way of doing this

is to classify each element by the category chosen by most

algorithms.

Similarly, as already mentioned, the detection of anomalies

by an IDS can be carried out both in isolation and in

conjunction with signature-based detection. The specific

techniques that will be implemented for the study will be

described later. The dataset will be selected from among

those available on the Internet for this purpose. With a focus

on Random Forest (RF) and Gradient Boosting Machine

(GBM) as the best-performing machine learning algorithms

for intrusion detection on the NSL KDD dataset, this

work novelty resides in its thorough evaluation of

competing algorithms.

2. Methodology

The first step will be to select the metrics that will be taken

into account to determine the suitability of a machine

learning algorithm for classifying a packet or packet flow

into the five categories that interest us: Legitimate, Probe,

U2R, R2L or DoS.

Secondly, a dataset will be selected with a capture of the

traffic of a certain network, in which each packet appears

marked with the category to which it corresponds, to apply

supervised learning techniques. There are datasets available

on the Internet that meet these characteristics. They will be

studied and one will be selected based on the format of its

data, the amount of information it contains, the variety of

attacks it shows and how recent its data is. An analysis and

presentation of the main relevant characteristics of the

dataset will also be carried out, the distribution of attacks for

the total number of entries, etc. Next, the attributes of said

dataset that are to be taken into account for the detection of

attacks will be selected. This selection will be made

automatically using certain algorithms designed for this

purpose. The experiment will be used to study the

effectiveness of the classification algorithms based on the

chosen characteristics.

Thirdly, a set of classification algorithms will be selected to

be considered in the experiment. They will be selected

based on their effectiveness as general classification

algorithms and their use in other similar studies, after a

review of the available literature. Many of these algorithms

will have parameters that will need to be determined before

applying them to the data.

Finally, each of the algorithms will be applied to the data in

the dataset. The dataset will be divided into two parts. A

majority of this data will be used to train the classification

algorithm, i.e. to allow it to form a model of legitimate

network traffic from the labels of each packet. The

remaining fraction will be used to see the effectiveness of

this algorithm when classifying once the model has been

created. For each algorithm, the results will be collected and

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 47 ~

the performance metrics mentioned above will be

calculated. These metrics will also be calculated for each of

the main types of attack marked in the dataset. This

information will be compared between the different

algorithms and conclusions will be drawn about the

effectiveness of these in each case.

2.1 Technology used

Execution of a Python script that applies the machine

learning algorithm to the dataset for each of the algorithms.

Initially, train the model, followed by evaluating its

efficacy. A validation phase between the two parties will be

undertaken. This script will utilise the Scikit-Learn and

Plotly libraries. Scikit-Learn (Sklearn) is an open-source

machine-learning library for Python. This library

encompasses the primary machine learning algorithms,

along with tools for the preliminary and subsequent

processing of data. These tools encompass utilities for

dataset partitioning and the extraction and analysis of data

derived from a test. Plotly is a library for graphical data

representation that we will utilise to depict the test results.

2.2 Metric selection

Various metrics may be evaluated to ascertain the

appropriateness of a classification algorithm. We must

evaluate the algorithm's efficacy in classifying the analysed

elements [11]. We will employ the subsequent metrics for

measurement [12]:

True Positive (TP) denotes the quantity of malicious packets

accurately identified as such. True Negative (TN) denotes

the number of legitimate packets accurately identified as

such. False Negative (FN) denotes the quantity of malicious

packets erroneously identified as legitimate. False Positive

(FP) denotes the quantity of legitimate packets erroneously

identified as malicious.

Accuracy: Represents the fraction of correctly classified

packets compared to total classified packets. It is also

sometimes known as precision, not to be confused with

accuracy which we will discuss later. It is one of the most

basic performance metrics in a classification algorithm. It is

calculated using the following formula:

 [11-12]

Precision (P, precision or positive predictive value) [1]:

Represents the percentage of positives that correspond to an

attack. High precision means few false positives.

 [11-12]

Sensitivity (S, True Positive Rate or recall): Represents the

percentage of attacks that have been correctly detected.

High FFN means few false negatives.

 [11-12]

F-score: Harmonic mean of precision and sensitivity. Like

accuracy, it serves to get a general idea of how good a

classifier is. It may not be the best metric for intrusion

detection, since it assumes that precision and sensitivity are

equally important. In our case, this is not the case and for

this reason, we will first look at each one separately, giving

special importance to precision. It consists of a beta

parameter to regulate the importance of each one, although

in this case, we will leave it at 1 so that both have the same.

In this way, the F-score would be calculated as:

 [11-12]

A classification algorithm that maximizes the values of

accuracy, precision and sensitivity will therefore be desired.

The importance of each of these metrics will depend on the

type of system being considered. In general, in an IDS,

maximizing precision will be prioritized, because a high rate

of false positives can imply an excess of work for security

technicians when checking alarms. Therefore, the relative

priority of one or another metric will also depend on how

critical the security of the system is. In our case, and with

the main objective being the integration of anomaly

detection with the signature-based techniques already used,

the main objective will be to maximize precision, so that

when security technicians receive an alert generated by AI,

they know that it is most likely a real alert and examine it

carefully.

For multi-class classification (3 or more), which we will

attempt in this study, these metrics will be calculated for

each of the classes. Only in the case of accuracy will we try

to approximate its value for the classifier as a whole. Since

the proportion of network traffic generated by the different

types of attacks is very different, we will use balanced

accuracy, which gives a different weight to the examples of

each of the classes depending on the presence of that type of

examples in the dataset. In this way, the classes that appear

in a lower proportion will have a greater weight, so that the

fact that the IDS can classify them or not will consequently

affect the value of the metric. We are not interested in an

IDS that can perfectly classify Probe and DoS attacks,

which generate a much larger amount of traffic if it is not

also able to classify R2L and U2R attacks.

On the other hand, when evaluating an algorithm for its

application in an IDS, it is also necessary to analyze its

computational performance when creating a model of a

network and classifying the events that occur in it. The main

metrics used to determine this are the time taken by the

algorithm to create a model of the system (Training Time,

TRT) and, above all, to classify the packets once the model

has been created (Testing Time, TST) [13]. Even if an

algorithm were able to perfectly classify network traffic, a

high processing time could make it useless for application in

an IDS.

2.3 Network traffic datasets

In the case of datasets for evaluating intrusion detection

systems, this translates into whether each packet or packet

flow has the type of traffic associated with it: whether it is

normal traffic, whether it corresponds to an attack, the type

of attack, etc. Only a dataset containing these labels can be

used in a supervised learning process.

There are multiple datasets with network traffic information

that can be used to evaluate the performance of an IDS. Not

all of them are publicly available; for this study, we focus

on analysing some of those that are, and that have been used

in similar experiments [14]. The characteristics of each

dataset (format and labelling) will determine how the

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 48 ~

machine learning algorithms process them to obtain

information, and the performance of the algorithms when

processing them. These were the datasets considered:

 KDD CUP 1999: KDD CUP 99 contains flow-based

data enriched with data from system logs and network

packets involved in the communication. It contains

more than 20 types of attacks along with normal traffic

and is already divided into a training subset for ML

algorithms and another for testing. It is discarded

because it is outdated, although it has good

characteristics for the experiment.

 NSL KDD: It is an update to KDD CUP 99 that

addresses some of the redundancy issues raised in [12],

but it still contains some of the issues raised by

McHugh in [15]. It, like KDD CUP 99, contains data

based on flows that have been enriched with

information from the hosts and packets involved in the

communication. It has the advantage of allowing

comparison of studies conducted on it because its use is

quite standardised.

 CIC-IDS2017: Another of the datasets offered by the

CIC. It contains information based on bidirectional

flows, with more than 80 characteristics in total. It has

been generated in an emulated network and is divided

into different files corresponding to the periods in

which the different types of attacks were emulated.

Contains the most recent and common attack types in

real networks at the time of its publication.

 CSE-CIC-IDS2018: The latest of the datasets offered

by the CIC in collaboration with the Communications

Security Establishment (CSE). It offers both raw data

(network traffic capture and equipment logs) and flow-

based data. It focuses on dividing the dataset into

profiles that can be combined in the desired proportions

to simulate the behaviour of a given network. This can

be quite useful for different entities to experiment with

a dataset similar to their network, although in principle

it does not offer any advantage for our experiment.

It is preferable to use flow-based datasets that have

been enhanced with additional data and claims [16]. The

NSL KDD dataset was chosen for the current study due

to its standard nature and this reason. It is labelled as

well, which is essentially a prerequisite for intrusion

detection.

 The NSL KDD dataset: The dataset contains data in a

flow-based format, enriched with data on the packets

and devices involved in the communication. The dataset

has a total of 41 features in addition to the label and the

difficulty level. These features can be divided into 4

large groups. Table 1 shows the basic attributes of a

packet flow. Table 2 shows the attributes related to the

content of the packets that make up the flow, i.e.

information related to the application layer. On the

other hand, tables 3 and 4 show information on other

network packet flows that share some characteristic

with the flow to which the entry corresponds. This

information is of vital importance to detect certain types

of attacks (network scans, DDoS attacks, etc.). In the

case of Table 3, this is information about other

connections temporally related to the given one, while

in Table 4 they are related by IP addresses or port

numbers.

 In this way, characteristics can be distinguished in text

string format, others in binary format, and others in

numerical format. Later, it will be necessary to process

the dataset to have a homogeneous type of data with

which to feed the machine learning algorithms.

 Finally, each entry in the dataset includes a label with

the flow classification. The flows are classified as

normal or as corresponding to a computer attack. The

dataset includes flows corresponding to 40 different

types of attacks, each of which can be classified into

one of the categories. This correspondence is shown in

Table 5. On the other hand, a final characteristic is

included that indicates the degree of difficulty when

classifying each entry. For this study, we will ignore

this characteristic.

Table 1: Basic flow attributes

No. Name Description

1

Duration of the communication

2

Transport layer protocol used in the communication (text string)

3 Network service used by the client (text string)

4 State of the connection (text string)

5 Number of bytes sent from the source to the destination during the connection.

6 Number of bytes sent from the destination to the source during the connection.

7 Indicates whether the source and destination IP addresses and port numbers are equal (1) or not (0)

8 fragment Number of erroneous fragments counted in the connection

9

The number of packets with the urgent bit activated counted in the connection.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 49 ~

Table 2: Attributes related to package content

No. Name Description

10

A number of compromise indicators detected in the packet content, such as:

’entering a system’

11

Number of failed login attempts

12

Indicates whether a login was successful (1) or not (0)

13

Number of possible compromise indicators detected in the packet content

14

Indicates whether an administrator console was obtained (1) or not (0)

15

Indicates whether the command ’su root’ was attempted to be executed

during the connection (1) or not (0)

16

Number of accesses and operations performed as root during the connection

17

Number of file creation operations performed during the connection

18

Number of command interpreters used during the connection

19

Number of control file access operations

20

Number of external connections made in a session FTP

21

Indicates whether the login corresponds to one of those considered

potentially dangerous (such as root or admin users) (1) or not (0)

22

Indicates whether the login is as a guest (1) or not (0)

Table 3: Attributes about traffic temporally related to the flow

No. Name Description

23

Number of connections to the same destination host as the current one in the last 2 seconds

24

Number of connections to the same service (destination port) as the current one in the last 2 seconds

25

Percentage of connections with the flag (4) s0, s1, s2 or s3 activated among those counted in count (23)

26

Percentage of connections with the flag (4) s0, s1, s2 or s3 activated among those counted in srv count (24)

27

Percentage of connections with the flag (4) REJ activated among those counted in count (23)

28

Percentage of connections with the flag (4) REJ activated among those counted in count (23) srv count (24)

29

Percentage of connections against the same service (destination port) as the current one, among those counted

in count (23)

30

Percentage of connections against different services (destination port) than the current one, among those

counted in count (23)

31

Percentage of connections against different destination host than the current one, among those counted in srv

count (24)

Table 4: Host-Related Traffic Attributes

No. Name Description

32

Number of connections with the same destination IP address as the current one

33

Number of connections with the same port number as the current one

34

Percentage of connections to the same destination port, among those counted in dst host count

(32)

35

Percentage of connections to different destination ports, among those counted in dst host count

(32)

36

Percentage of connections from the same source port, among those counted in dst host srv count

(33)

37

Percentage of connections to different destination hosts, among those counted in host srv

count (33)

38

Percentage of connections with flags (4) s0, s1, s2 or s3 enabled, among those counted in

host count (32)

39

Percentage of connections with flags (4) s0, s1, s2 or s3 enabled s3 enabled, among those

counted in host srv count (33)

40 z Percentage of connections with the (4) REJ flag enabled, among those counted in host count

(32)

41

Percentage of connections with the (4) REJ flag enabled, among those counted in host

count (33)

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 50 ~

Table 5: Correspondence between attacks collected in NSL KDD and their category

Category Attacks

Probe ,

R2L
Guess Password, Ftp write, imap, xsnoop, named, Phf, Multihop, Warezmas ter, Warezclient, Spy, X_lock, X_snoop, Snmpguess,

Snmpge attack, Httptunnel, Sendmail,

U2R sqlattack, perl, xterm, Buffer overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps

DoS
teardrop, winnuke, syndrop, newtear, bonk, Land, Neptune, Pod, Smurf, Teardrop, Apache2, Ud storm, Process table, Worm,

Mailbomb

2.4 Dataset processing

2.4.1. Dataset splitting: Training Set and Test Set: Scikit-

Learn provides tools to automatically split a dataset into two

random subsets for learning and testing. By default, the

Training Set will comprise 75% of the total, with the

remaining 25% used to evaluate the classifier's

effectiveness. Table 6 shows the number of instances of

each class in both the Training Set and the Test Set using

this configuration.

Table 6: Number of instances in the split NSL KDD dataset

Class Instances in Training Set Instances in the test set

Normal 57196 19087

Probe 10423 3514

R2L 2863 978

U2R 89 29

DoS 39702 13151

2.4.2. Feature selection: Not all features offered by the

datasets offer the same information when classifying the

data. Using all the features of the data can negatively impact

both the computational performance and the effectiveness of

the classification algorithms. Before the training phase of a

dataset, it is common to preprocess it to remove redundant

or non-relevant features.

Feature selection is not always performed in the field of

intrusion detection [17], since many datasets offer their data

in formats that show only the features considered relevant

when detecting attacks. Nevertheless, in this paper, we will

consider some methods to remove irrelevant features and

apply some of them if relevant. It has been observed that, in

our case, feature selection significantly improves the

training time (TRT) of some classifiers. Furthermore, if it is

adequate, it also improves the effectiveness in some cases.

Therefore, it is also intended to carry out a study of how the

number of features and the method to select them affect the

effectiveness of the classifiers.

Two automatic methods of feature selection will be applied

that allow processing the labelled dataset and determining

which features of it are less relevant to classify the nature of

the network events. The first method chosen is Recursive

Feature Elimination (RFE). The algorithm performs several

iterations in which it calculates the relevance of the features

of the dataset. It starts by doing so with all of them and

eliminates the least relevant in each iteration. It has two

important parameters: the classification method used to

evaluate the relevance of the features (estimator) and the

desired number of features. In our case, the classification

method will be Decision Trees, since it is one of the fastest

classifiers and many of the composite methods that we are

going to use are based on it (we will see this later). To

determine the optimal number of features, one option would

be to use a variation of RFE that allows this to be done

automatically. RFECV is a version of RFE that performs

cross-validation using the data in the dataset to determine

the optimal number of features, so it is not necessary to

specify it in advance. However, we want to evaluate the

performance of the classifiers for each feature and selection

method, so this is not useful, we will use RFE for each case.

The other feature selection method is the statistical method

of Principal Component Analysis (PCA). The idea of this

method is to convert the initial set of features, probably

correlated, into a smaller set of features without linear

correlation that preserves as much information as possible

with respect to the original set. It has the advantage that it is

not necessary to select a classifier as an estimator of the

relevance of each feature so that no biases are introduced

when applying it. It has the disadvantage that it does not

take into account the classification problem being addressed

when selecting the features.

Both RFE and PCA will be applied to the dataset to select 5,

10, 15, 20 and 25 features. The average effectiveness of the

classifiers will be evaluated in all cases with respect to the

same metric so that the optimal number of features and the

best method to select them are determined. The metric with

respect to which we will compare them will be the average

balanced accuracy of all the classifiers. Once several

features and a selection method have been selected, we will

proceed to evaluate the effectiveness of the classifiers in that

case, taking into account all the metrics described above.

2.4.3. Preprocessing: The classification algorithms

implemented in ScikitLearn need to process numeric data.

Therefore, all the features in the dataset that are in string

format (including the label) will be replaced by a unique

integer for each string. All the features will be stored in 32-

bit float format. In addition, all NaNs that can be found will

be replaced by numbers.

On the other hand, some of the classifiers require that the

data they work with has been scaled or normalized, so the

data will be treated in the appropriate way in each case.

In addition, the labels corresponding to all groups will be

grouped to replace those corresponding to specific attacks

by the family to which they belong, according to the

information collected in Table 5.

2.4.4. ML algorithms to be studied: For this study, only

those algorithms that have obtained the best results in the

studies carried out so far will be considered, for which we

will look at the information collected in [16-17].

2.5 Simple classifiers

2.5.1 Algorithms selected

 Decision Trees (DT) [18]: The algorithm implemented

by Scikit-Learn is CART (Classification and

Regression Trees). This is a modified version of the

ID3 and C4.5 algorithms. This algorithm creates a

binary decision tree during the supervised training

phase, which is interpreted as if-then rules. At each

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 51 ~

node, a decision is made based on the value of a certain

attribute. The decisions and their order are determined

based on their relevance to classify the data during the

training phase [7].

 Support Vector Machines (SVM): SVM is one of the

most widely used approaches in supervised machine

learning [19]. To perform the calculation efficiently,

kernel functions are used, which allow obtaining a

measure of the degree of similarity of two points in a

space of greater dimensionality than the given data,

without having to calculate the coordinates of the points

in said space. In the classification using SVM, different

kernel functions can be used (linear, Gaussian,

polynomial...) with different parameters. The suitability

of one or the other will depend largely on the input

data. As for the other parameters of the classifier, the

penalty parameter C or cost is important. C determines

the degree of importance of the misclassified points. A

higher C implies that more importance is given to

correctly classifying all the points in the Training Set

than to leaving space in the models of each class for the

classification of future data. The selection of these

parameters will be done automatically with cross-

validation tools, also looking at the parameters used in

other studies such as [20] and [21]. We tested a series of

parameters considered in these studies using the cross-

validation tool Randomized Search CV so that the

optimal ones were Gaussian kernel, C=5000 and

gamma = 0.1. Later on, the selection of features will be

seen in more detail.

 Artificial Neural Networks (ANN): This is a family of

machine learning algorithms that process information

using units that imitate the behaviour of neurons in the

human brain. Each of these units (called neurons) takes

a set of data as input and produces a single output data,

which can be used as input by other processing units.

We are going to focus on the most widely used

architecture: feedforward neural networks, where the

neural network can be represented as a directed graph

without cycles, such that each node is a neuron and

each link represents that the output of one neuron is the

input of another. For simplicity, it is considered that the

network is made up of layers, such that the neurons in

layer i receive as input the output of those in layer i-1

(except in layer 0) and pass their output to layer i+1

(except in the last layer). The first layer has n+1

neurons, where n is the dimensionality of the input data.

The output of each neuron in the first layer after feeding

it with the vector x is each of the attributes of the

vector, except for the vector n+1 which is always 1. The

neurons in the intermediate layers or hidden layers

receive as input the weighted sum of the outputs of the

neurons in the previous layer that connect to them, and

calculate the output by applying a function (activation

function) to that value. The architecture of a neural

network is called the set of its nodes, its links and the

activation function applied to its neurons. The learning

process is carried out by applying different weights to

the links of a fixed architecture. Each combination of

possible weights in the links is a hypothesis. During the

supervised learning process, they will be adjusted so

that the output layer, with a single node, produces the

desired output [22]. One of the most widely used

architectures is the Multilayer Perceptron (MLP), which

will be used for this study.

 Naive Bayes Classifier (NB): This is a generative

model [22]. The problem is that it is usually more

complicated to determine the distribution followed by

the input data than to create an adequate classifier

without doing so, as occurred in the algorithms

explained above. Naive Bayes is a simplification of the

Optimal Bayes Classifier (based on Bayes’ Theorem) in

which the number of parameters to be estimated is

significantly reduced by making an assumption. The

parameters are estimated using the maximum likelihood

principle.

 It will be necessary to determine the optimal parameters

for these algorithms.

2.5.2 Composite classifiers

Composite classifiers are those in which the results of

several simple classifiers, whether of the same or different

type, are used to perform the final classification based on

the results of these.

There are different methods to pool the results of the strong

classifiers to make a final decision.

 Bagging: Different models are built on different

portions of the original dataset. Generally, it is done

with simple classifiers of the same type.

 Boosting: Different models are built. The first one

learns to classify the data, while the following ones try

to learn to correct the prediction errors of the previous

one.

 Voting: Different models are built, generally with

simple classifiers of different types, and the results of

these are combined through a voting process or some

simple statistical calculation.

For this study, we will consider some examples of each of

these methods, of those implemented by Scikit Learn. These

have been the ones we have selected.

 Random Forest (RF): This is a classifier that consists

of a collection of decision trees (DT), in which each

tree is built by applying an algorithm to a subset of the

Training Set from a random vector so that this vector

determines how the tree is generated. A bagging

technique is therefore used. The final results are

obtained by voting on the predictions of each of the

trees.

 Adaptive Boosting or AdaBoost: The AdaBoost

classifier is based on the creation of a set of weak

classifiers, typically decision trees (DT). First, the first

tree is built according to a classification algorithm (for

example ID3 or CART) from the data in the Training

Set. Then, the effectiveness of this model is evaluated

and a second tree is created, giving greater weight to

those elements of the Training Set that have not been

correctly classified by the first one. This process is

repeated successively.

 Gradient Boosting Machine (GBM): This classifier

differs from AdaBoost in the way it tries to correct the

error of simple classifiers. While AdaBoost does this by

adjusting the weights of the elements in the Training

Set, GBM does this by adjusting the parameters of the

loss function. In classification, a loss function

calculates the value of the penalty due to the incorrect

classification of data. In this way, the classification

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 52 ~

problem is treated as an optimization problem in which

the aim is to minimize the loss of the model by adding

simple classifiers to the set. Different standard loss

functions can be used for this, or a specific one can be

defined.

 Voting Classifier (VC): This is one of the simplest

ways of combining several classifiers. The final

classification of each example is simply determined by

a majority vote of all classifiers. The class can also be

predicted by calculating the average of the probabilities

given by each simple classifier to each class and

choosing the one with the highest average. This is what

we will do in this study. Different types of classifiers

can be used.

2.6 Implementation

The implementation will consist of a main script in Python3

based on the Scikit Learn libraries and a directory structure.

In addition, it will use an auxiliary script for each evaluated

classifier and another auxiliary script for graph extraction.

All the necessary files are available in GitLab 1.

The main script, test.py, will read the data and execute other

auxiliary scripts contained in these directories; the script

itself will create, if they do not exist, the output directories

where it will save the results of the evaluation of the

classifiers. Each execution of the script will overwrite this

data. To replicate the experiment carried out, it is only

necessary to clone the Gitlab repository and execute the

Test.py script.

The directory structure is the following, as it is available in

GitLab and represented in Figure 1. A base directory ./ with

the main script, which carries out the entire study regarding

the classifiers. Two subdirectories are required: the ./data

subdirectory should contain the KDD NSL dataset in CSV

format and the ./classifiers subdirectory, with a script for

each of the classifiers to be evaluated, following the same

structure in all cases. In addition, the main script itself will

create, if they do not exist, 3 output subdirectories where it

will write data. In ./models, the Scikit Learn models that

should be used in the future are saved. In ./results, the files

with the performance metrics resulting from the study will

be saved. At the root, there will be a file that allows

comparing the efficiency of the classifiers according to the

selection of characteristics, and a series of subdirectories

with the metrics corresponding to the study with each subset

of characteristics. Finally, in ./graphs the same structure will

be replicated to store the graphs and tables that allow

visualizing this data.

2.6.1. Selection of parameters

To implement the script, we must first select the appropriate

parameters for all the classifiers. In our case, the classifiers

in which it was necessary to consider some parameters a

priori are ANN and SVM.

Fig 1: Directory tree used by the script. In a lighter color, the directories are created at runtime.

In the case of ANN, the parameter to be determined is the

structure of the neural network. A classic three-layer

structure was chosen, selecting the number of neurons in the

hidden layer according to what was explained in [19]. In this

way, and since the effectiveness of the classifiers with

different numbers of characteristics in the input is going to

be evaluated, the number of nodes in the hidden layer will

be equal to this. In the case of SVM, we will use one of the

tools provided by Scikit Learn to perform cross-

validati Through this, we test

different types of kernels (linear, polynomial, Gaussian,

sigmoid), different values for the penalty parameter C (10,

100, 1000, 5000, 10000) and different values for the

coefficient of the RBF, polynomial and sigmoid kernels,

gamma (0.00001, 0.001, 0.1). These test values were

obtained by reviewing the literature and the values typically

used in intrusion detection. Using this random search tool,

these parameters were optimized in terms of the accuracy of

the classifier, not in terms of the time taken, resulting in the

selection of the RBF (Radial Basis Function) kernel,

C=5000 and gamma = 0.1. The RBF kernel seemed to fit the

data distribution better. In addition, it allows its treatment in

a much shorter training time than the other two kernels that

offer better results: the polynomial and the linear. The value

of the penalty parameter has been automatically selected,

giving a value much higher than that used in the consulted

bibliography [21].

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 53 ~

2.6.2. Steps performed by the script

Once the script associated with each of the classifiers has

been created, the main script can be executed. The steps

followed by the program are the following.

Loading the dataset and processing the dataset. The CSV

file with the KDD NSL dataset located in ./data is opened,

under the name ’NSL-KDD.csv’. The labels and the

characteristics that are in string format are encoded so that

the dataset can be applied to the machine learning

algorithms, which require numerical data. The labels of the

dataset are grouped. The model used to encode them is

saved so that the original values can be recovered later.

Selection of characteristics. The features with the most

information are selected so that 5, 10, 15, 20 and 25 features

remain; using two feature selection algorithms, RFE and

PCA, as explained in section 6.5.2. Versions of the dataset

with the selected features are saved in subdirectories of the

./data folder. One subdirectory for each number of features

evaluated and for each selection algorithm.

Classifier evaluation. The auxiliary scripts in the ./classifiers

directory are executed, and each classifier is evaluated for

each of the selected feature subsets, saving the extracted

metrics to disk in the ./results subdirectory. The evaluation

of each classifier consists of three steps. First, the selected

dataset is preprocessed, scaling or normalizing the data as

necessary for each classifier. Second, the classifier is trained

(training phase) with the Training Set. Next, we try to

predict the classes of the Test Set (classification phase) and

extract the performance metrics, saving them on disk in the

corresponding subdirectory (again, one for each selector and

number of features).

2.6.3. Extracting Results

Extracting results: An additional script has been developed

that allows extracting graphs and tables from the data

generated by the test. It is located in the root folder under

the name .

This script will read the files created by each classifier in the

./results folder and its subdirectories; and will create tables

and graphs from them, which will make it easier for us to

compare the different classifiers. To create the different

graphs, we will use the Plotly Python libraries. The format

of the tables and graphs will be the one offered by them.

3. Results and Discussion

First, analyse the influence of the number of features and

their selection method on the effectiveness of the classifiers.

Figure 2 shows the average balanced accuracy of the

classification algorithms for each number, according to what

was defined; the selection methods being RFE and PCA.

That is, the balanced accuracy of all the classifiers has been

obtained for each number of features and selection method

and the average of all of them has been obtained, to have a

single metric with which to compare all the cases.

Fig 2: Average balanced accuracy of classifiers as a function of the number of features, selected using RFE

Looking at the graphs we see that in general, the accuracy

increases as the number of features increases, especially

using PCA. Reviewing the data we see that the accuracy

values are usually higher for RFE in most cases, especially

for small numbers of features. In the cases where it is better

for PCA, there is hardly any difference with respect to RFE.

This also occurs for those algorithms not based on Decision

Trees, which is the estimator used to select the features.

There are also differences with respect to training times. For

the same number of features, they are usually higher in the

case of PCA. This may be because classifiers have more

difficulties in creating a model using features that are less

relevant to the problem. Thus, we consider that the best

selection method is RFE, and a good number of features

(20), for which in this case the highest accuracy was

obtained. Table 7 shows the attributes selected from those

previously presented.

Table 7: Attributes selected by RFE

No. Name Description

1 Duration Communication duration

2 Protocol_type Transport layer protocol used in the communication

3 Service Network service used by the client

4 Flag Connection status

5 Src_bytes Number of bytes sent from source to destination during the connection.

6 Dst_bytes Number of bytes sent from destination to source during the connection.

11 Num_failed_logins Number of failed login attempts

22 Is_guest_login Indicates whether the login is as a guest (1) or not (0)

23 Count Number of connections to the same destination host as the current one in the last 2 seconds

30 Diff_srv_rate Percentage of connections (23) against different services (destination port) than the current one.

32 Dst_host _ount Number of connections with the same destination IP address as the current one

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 54 ~

33 Dst_host_srv_count Number of connections with the same port number as the current one

34 Dst_host_same_srv rate Percentage of connections from (32) to the same destination port.

35 Dst_host_diff_srv rate Percentage of connections from (32) to different destination ports.

36 Dst_host_same_src port rate Percentage of connections from (33) from the same source port.

37 Dst_host_srv_diff_host_rate Percentage of connections from (33) to different destination hosts.

38 Dst_host_error_rate Percentage of connections from (32) with the (4) s0, s1, s2 or s3 flags set.

39 Dst_host_srv_serror rate Percentage of connections from (33) with the (4) s0, s1, s2 or s3 flags set.

40 Dst_host_error_rate Percentage of connections from (32) with the (4) REJ flag set.

41 Dst_host_srv_error rate Percentage of connections from (33) with the (4) REJ flag set.

Once these parameters are set, we can analyze the

effectiveness of all the classifiers with respect to the

metrics. We will focus mainly on four metrics: accuracy

(balanced, used as an indicator of the overall effectiveness

of a classifier), precision (to try to minimize the number of

false positives by a possible ML-based IDS) and training

and classification times (to make it possible to apply the

classifier in a real-time IDS).

Fig 3: Balanced accuracy of each classifier, for 20 features selected by RFE

We start with accuracy, which is what gives us a general

idea of how well each algorithm has classified the samples

in the 5 categories. Figure 3 gives us an idea of the value for

each of the classifiers. In this way, we see that the classifiers

that obtained the highest accuracy were ANN, RF, and

GBM. However, reviewing the data, we see that ANN failed

to classify any instance of U2R attacks, which appear in a

lower proportion, which rules it out as a good classifier. We

will see this in more detail later.

We now look at the accuracy, the fraction of really positive

positives. A low accuracy would indicate that a large

number of network flows have been classified as attacks

when they were not, or that they have been classified as the

wrong type of attack. It does not make sense to take into

account the overall accuracy of each classifier, but rather we

should focus on reviewing the accuracy of each classifier for

each class. More specifically, when classifying the 4 types

of attacks, which is what would generate false alarms and an

overload of work for security technicians. Therefore, we

will look at tables 8, 9 and 10; which show us the

performance metrics for each class of the ANN, RF and

GBM classifiers, respectively. Here we see that ANN has

not been able to classify U2R-type attacks in any case and

that its sensitivity and precision when classifying R2L-type

attacks are also significantly lower.

Table 8: Performance metrics of the DT, NB and ANN classifier, for 20 features selected by RFE

 DT classifier NB classifier ANN classifier

Class/metrics F Score Precision Sensitivity Total F Score Precision Sensitivity Total F Score Precision Sensitivity Total

DOS 0.999 0.998 0.999 13151 0.828 0.751 0.908 13151 0.987 0.996 0.979 13151

Normal 0.995 0.995 0.995 19087 0.872 0.87 0.873 19087 0.982 0.976 0.978 19087

Probe 0.994 0.994 0.995 3514 0.388 0.553 0.298 3514 0.971 0.964 0.978 3514

R2L 0.944 0.947 0.941 978 0.045 1 0.023 978 0.881 0.896 0.865 978

U2R 0.525 0.5 0.552 28 0 0 0 28 0 0 0 28

Table 9: Performance metrics of the SVM and RF classifier, for 20 features selected by RFE

 SVM classifier RF classifier

Class/metrics F Score Precision Sensitivity Total F Score Precision Sensitivity Total

DOS 0.987 0.996 0.979 13151 0.998 0.997 0.979 13151

Normal 0.982 0.976 0.978 19087 0.951 0.972 0.991 19087

Probe 0.971 0.964 0.978 3514 0.964 0.987 0.943 3514

R2L 0.881 0.896 0.865 978 0.918 0.908 0.929 978

U2R 0 0 0 28 0.326 0.5 0.241 28

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 55 ~

Table 10: Performance metrics of the GBM and VC classifier, for 20 features selected by RFE

 GBM classifier VC classifier

Class/Metrics F Score Precision Sensitivity Total F Score Precision Sensitivity Total

DOS 0.998 0.998 0.998 13151 0.998 0.997 0.999 13151

Normal 0.994 0.993 0.995 19087 0.993 0.992 0.995 19087

Probe 0.986 0.984 0.978 3514 0.987 0.987 0.978 3514

R2L 0.942 0.971 0.914 978 0.935 0.959 0.911 978

U2R 0.731 0.826 0.655 28 0.176 0.6 0.103 28

Finally, we look at the training and classification times,

shown in Figure 4. The algorithms with the longest training

time have been, by far, ANN and VC; followed far behind

by GBM and SVM. This training time may not greatly

condition the application of the algorithm to an IDS if the

algorithm is not intended to be trained regularly. In that

case, it would only affect the installation and start-up time

of the IDS. As for the classification times, the only one with

a significantly higher time is SVM, with 2.8 seconds for the

37,130 samples of the Test Set. This could make it a poor

candidate for its application in a real-time IDS. Of the

remaining classifiers, the composites are the ones with the

highest classification times, being up to 0.3 seconds in the

case of RF. However, it is not considered a time that in any

way prevents its application in an IDS.

Fig 4: Training time (min) and Classification time (s) of each classifier, in minutes. For 20 features selected by RFE

4. Conclusion

According to the analysis, Random Forest (RF) and

Gradient Boosting Machine (GMB) are the best algorithms

for detecting intrusions. Always remember that this occurs

for the data format of the NSL KDD dataset and the features

selected by the RFE algorithm, but it may not be applicable

in other situations. Other classifiers, especially DT, also

obtained adequate values regarding balanced accuracy and

precision. In addition, it should be remembered that

classifiers such as SVM obtained auspicious results in other

studies on intrusion detection. It is considered that many of

the algorithms should continue to be taken into account in

future similar studies, and could even be offered as options

in future implementations of an IDS.

References

1. Khraisat A, Gondal I, Vamplew P, Kamruzzaman J.

Survey of intrusion detection systems: techniques,

datasets and challenges. Cybersecur. 2019;2:20.

https://doi.org/10.1186/s42400-019-0038-7

2. Khraisat A, Alazab A. A critical review of intrusion

detection systems in the internet of things: techniques,

deployment strategy, validation strategy, attacks, public

datasets and challenges. Cybersecur. 2021;4:18.

https://doi.org/10.1186/s42400-021-00077-7

3. Abbas A, Khan MA, Latif S, Latif S, Zaib A, Alnumay

WS, et al. A new ensemble-based intrusion detection

system for internet of things. Arab J Sci Eng.

2022;47:1805-1819. https://doi.org/10.1007/s13369-

021-06086-5

4. Herrmann D, Pridöhl H. Basic concepts and models of

cybersecurity. In: Christen M, Gordijn B, Loi M,

editors. The ethics of cybersecurity. Cham: Springer;

2020. p. 19-36. https://doi.org/10.1007/978-3-030-

29053-5_2

5. Shanker R, Agrawal P, Singh A, Bhatt M. Framework

for identifying network attacks through packet

inspection using machine learning. Nonlinear Eng.

2023;12. https://doi.org/10.1515/nleng-2022-0297

6. Wang H, Li Y. Overview of DDoS attack detection in

software-defined networks. IEEE Access.

2024;12:38351-38381.

https://doi.org/10.1109/ACCESS.2024.3375395

7. Asharf J, Moustafa N, Khurshid H, Debie E, Haider W,

Wahab A. A review of intrusion detection systems

using machine and deep learning in internet of things:

challenges, solutions and future directions. Electronics.

2020;9(7):1177.

https://doi.org/10.3390/electronics9071177

8. García-Teodoro P, Díaz-Verdejo J, Maciá-Fernández G,

Vázquez E. Anomaly-based network intrusion

detection: techniques, systems and challenges. Comput

Secur. 2009;28:18-28.

https://doi.org/10.1016/j.cose.2008.08.003

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 56 ~

9. Lee K, Lee J, Yim K. Classification and analysis of

malicious code detection techniques based on the APT

attack. Appl Sci. 2023;13(5):2894.

https://doi.org/10.3390/app13052894

10. Ibrahim HAH, Zuobi ORAL, Abaker AM, Alzghoul

MB. A hybrid online classifier system for internet

traffic based on statistical machine learning approach

and flow port number. Appl Sci. 2021;11(24):12113.

https://doi.org/10.3390/app112412113

11. Orozco-Arias S, Piña JS, Tabares-Soto R, Castillo-Ossa

LF, Guyot R, Isaza G. Measuring performance metrics

of machine learning algorithms for detecting and

classifying Transposable Elements. Processes.

2020;8(6):638. https://doi.org/10.3390/pr8060638

12. Altulaihan E, Almaiah MA, Aljughaiman A. Anomaly

detection IDS for detecting DoS attacks in IoT

networks based on machine learning algorithms.

Sensors. 2024;24(2):713.

https://doi.org/10.3390/s24020713

13. Talpur F, Korejo IA, Chandio AA, Ghulam A, Talpur

MSH. ML-based detection of DDoS attacks using

evolutionary algorithms optimization. Sensors.

2024;24(5):1672. https://doi.org/10.3390/s24051672

14. Khanan A, Abdelgadir Mohamed Y, Mohamed AHHM,

Bashir M. From bytes to insights: a systematic literature

review on unraveling IDS datasets for enhanced

cybersecurity understanding. IEEE Access.

2024;12:59289-59317.

https://doi.org/10.1109/ACCESS.2024.3392338

15. McHugh J. Testing intrusion detection systems: a

critique of the 1998 and 1999 DARPA intrusion

detection system evaluations as performed by Lincoln

Laboratory. ACM Trans Inf Syst Secur. 2000;3(4):262-

294.

16. Buczak AL, Guven E. A survey of data mining and

machine learning methods for cyber security intrusion

detection. IEEE Commun Surv Tutor. 2016;18(2):1153-

1176. https://doi.org/10.1109/COMST.2015.2494502

17. Musa US, Chakraborty S, Abdullahi MM, Maini T. A

review on intrusion detection system using machine

learning techniques. In: 2021 International Conference

on Computing, Communication, and Intelligent

Systems (ICCCIS); 2021. p. 541-549.

https://doi.org/10.1109/ICCCIS51004.2021.9397121

18. Mishra P, Varadharajan V, Tupakula U, Pilli E. A

detailed investigation and analysis of using machine

learning techniques for intrusion detection. IEEE

Commun Surv Tutor. 2018;PP:1-1.

https://doi.org/10.1109/COMST.2018.2847722

19. Heaton J. Ian Goodfellow, Yoshua Bengio, and Aaron

Courville: Deep learning. Genet Program Evolvable

Mach. 2018;19:305-307.

https://doi.org/10.1007/s10710-017-9314-z

20. Hsu CW, Chang CC, Lin CJ. A practical guide to

support vector classification. Technical Report,

Department of Computer Science and Information

Engineering, National Taiwan University, Taipei; 2003.

p. 1-12.

21. Chen WH, Hsu SH, Shen HP. Application of SVM and

ANN for intrusion detection. Comput Oper Res.

2005;32:2617-2634.

https://doi.org/10.1016/j.cor.2004.03.019

22. Shalev-Shwartz S, Ben-David S. Understanding

machine learning: from theory to algorithms.

Cambridge: Cambridge University Press; 2014.

https://doi.org/10.1017/CBO9781107298019

https://www.computersciencejournals.com/ijecs

