

~ 12 ~

International Journal of Engineering in Computer Science 2025; 7(2): 12-17

E-ISSN: 2663-3590

P-ISSN: 2663-3582

www.computersciencejournals.c

om/ijecs

IJECS 2025; 7(2): 12-17

Received: 17-04-2025

Accepted: 21-05-2025

Mykyta Roilian

Engineering Manager,

LeanDNA, 611 S Congress Ave

Ste 300, Austin, Texas 78704,

USA

Corresponding Author:

Mykyta Roilian

Engineering Manager,

LeanDNA, 611 S Congress Ave

Ste 300, Austin, Texas 78704,

USA

Designing fault-tolerant distributed systems for supply

chain management: Architectural patterns and

manufacturing scenarios

Mykyta Roilian

DOI: https://www.doi.org/10.33545/26633582.2025.v7.i2a.193

Abstract
This article presents an analysis of architectural solutions aimed at ensuring the fault tolerance of

distributed information systems used in supply chain management within industrial environments.

Three primary patterns are examined: replication, fallback mechanisms, and graceful degradation. The

study evaluates their applicability across various failure scenarios and provides a comparative

assessment based on recovery time objectives (RTO and MTTR) and system availability. The necessity

of integrated architectural design is emphasized, considering the criticality of business functions.

Recommendations are proposed for the implementation of fault-tolerant strategies at different

infrastructure levels to improve the reliability and predictability of supply chain management systems.

Keywords: Distributed systems, fault tolerance, replication, fallback, graceful degradation, supply

chain management, industrial IT infrastructure

1. Introduction

The digitalization of manufacturing processes requires enterprises to maintain a high level of

IT system resilience, particularly in the context of supply management, where continuous

availability of services tracking procurement, material movement, and consumption is

critical. In high-tech industries, a failure in the supply information system can disrupt

assembly schedules, cause production line downtime, and result in significant financial

losses. Unlike traditional supply management systems in manufacturing are focused on

maintaining an exact balance between the needs of the assembly line and current inventory

levels. This imposes strict requirements on the architecture of such systems to ensure

robustness against failures - both within the internal infrastructure and across external

services, including supplier interfaces and corporate ERP platforms.

The objective of this study is to analyze architectural patterns used in the design of fault-

tolerant distributed systems applicable to supply management tasks in manufacturing

enterprises.

2. Main part. Architectural patterns of fault tolerance

The design of fault-tolerant distributed systems requires the implementation of architectural

solutions that ensure the uninterrupted operation of critical components in the event of partial

or complete infrastructure failures. In a manufacturing environment, where inventory and

supply management must remain both available and consistent regardless of disruptions,

specific fault-tolerance patterns are applied. The most widely used among them - replication,

fallback mechanisms, and graceful degradation - are examined below, with emphasis on their

practical applicability in supply chain management tasks.

Data and service replication is a method of failure protection that involves creating multiple

instances of system components distributed across different failure zones (fig. 1).

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://www.doi.org/10.33545/26633582.2025.v7.i2a.193

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 13 ~

Fig 1: Data replication scheme.

Depending on consistency and response time requirements,

either synchronous or asynchronous replication is used.

Synchronous replication ensures data coherence but

increases write latency and demands stable communication.

Asynchronous replication eases load on the primary node

but may cause data inconsistencies during failures.

In supply chain systems, synchronous replication is

preferred for critical data such as material specifications and

order statuses. According to the State of Logistics Survey

2024 [1], top investment areas include digitalization (21,

5%), data analytics (18, 4%), and real-time visibility (15,

6%), all requiring fast and reliable data exchange.

Companies like FedEx, Bolloré Logistics, and LKW Walter

prioritize transparency and fault tolerance, adopting

distributed IT models with real-time data replication to

support these goals.

In addition to replication, fallback mechanisms are widely

used to enable load switching from failed components to

backup or alternative ones. This approach allows

transactions to continue without interruption in case of

unavailability of an external API, internal service, or

database (fig.2).

Fig 2: Fallback mechanism in service resilience architecture.

In industrial IT systems, fallback mechanisms are

implemented using active-passive or active-active

configurations. In active-passive, the secondary node

activates after a failure, typically with a 10-30 second delay.

Active-active runs multiple nodes in parallel, enabling near-

instant failover. For external services like supplier APIs,

fallback often uses read-only caches with pre-approved

values valid for up to 24 hours, triggered by errors (e.g.,

HTTP 4xx/5xx). These mechanisms require automated

monitoring, request routing, and event-driven orchestration

to quickly redirect operations and maintain functionality

during component failures.

The third approach - graceful degradation - refers to the

system’s ability to continue operating despite the

degradation of certain functions or services, ensuring that

core business logic remains intact (fig. 3).

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 14 ~

Fig 3: Modular microservice architecture supporting graceful degradation of non-critical functions.

This approach is most useful during overloads or failures of
non-critical components. For instance, if a database is
partially unavailable, the system can temporarily disable
analytics while keeping core functions like order processing
active. It may also slow external data sync or limit the
interface to essential operations [2]. To support this, systems
should follow a modular, microservice-based design with
scalable, independently deactivatable components and clear
functional priorities. Together, fault-tolerant patterns
provide a reliable strategy for maintaining supply chain
continuity, minimizing downtime, and ensuring predictable
behavior during failures.

3. Application in Manufacturing Scenarios

Industrial enterprises dealing with a large number of
material items, multiple suppliers, and distributed
warehouse infrastructures place high demands on the
resilience of IT systems that support supply chain
management. In the context of complex, multi-stage
production cycles, the failure of a single component within
the digital platform can lead to a breakdown in
synchronization between production planning, inventory
management, and external supply sources. Practical
experience shows that the effective implementation of fault-
tolerant architectures depends on the type of manufacturing
process, the criticality of supplies, and the specifics of
supplier interaction (table 1).

Table 1: Application of fault-tolerance patterns in manufacturing supply chain scenarios [3, 4]

Manufacturing process scenario Type of failure Applied pattern Implementation Outcome

Failure of the central order
management module

Database service
failure

Replication
(synchronous)

Horizontally scalable storage with a
backup node.

Preservation of transactional
consistency.

Unavailability of external supplier
API

External connection
failure

Fallback
Use of locally cached data or

duplicated channels.
Minimization of decision-making

delays.

Overload of material demand
calculation service

Performance
degradation

Graceful degradation Lower frequency, core functions only. Retention of core functionality.

Failure of inter-site
communication service

Network failure Fallback + replication
Local storage of orders with post-

recovery consolidation
Continuity of operations at isolated

sites.

Inaccessibility of consumption
analytics module

Auxiliary service
failure

Graceful degradation Prioritized core functions.
Maintenance of critical-level

functional capability.

Planned overload of ERP system
nodes

Planned
unavailability

Replication +
Fallback

Switching to backup instance with full
synchronization.

Elimination of process downtime
during operational hours.

Modern industrial IT systems not only implement basic
fault-tolerance mechanisms but are increasingly integrating
intelligent analytics modules to enhance adaptability. For
example, the application of artificial intelligence in
warehouse operations contributes to greater resilience
against unexpected disruptions and enables real-time
optimization of supply chain decisions. AI technologies are
being actively applied in warehouse operations management
to improve resource allocation, forecast demand more
accurately, and reduce manual errors in high-load
environments [5].
The scenarios presented illustrate how technical
architectural solutions can be embedded into the context of
real-world manufacturing processes. The application of each

pattern is determined by the criticality level of the supported
function: for order and inventory management, it typically
involves replication with full data coherence; for
interactions with external systems - fallback mechanisms
with acceptable latency; and for analytics and support -
degradation strategies allowing temporary deactivation. An
approach focused on isolation, scalability, and component
resilience helps minimize the impact of local failures on the
entire supply chain. Thus, architectural patterns become an
integral part of designing the information infrastructure of a
modern manufacturing enterprise.

4. Comparative analysis of pattern effectiveness
The choice of a fault-tolerant architectural pattern should be

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 15 ~

based on key technical metrics such as Recovery Time
Objective (RTO), Mean Time to Recovery (MTTR), and
system availability. This section presents a comparative
analysis of three patterns - replication, fallback, and graceful
degradation - using five typical failure scenarios in
manufacturing environments to objectively assess the
resilience of each architecture under real-world conditions.
The first metric - RTO - represents the maximum acceptable
time for system recovery after a failure. The replication
pattern provides the lowest RTO, especially in active node

configurations, where failover occurs almost instantly. This
is crucial for maintaining synchronous operations in
production environments that demand minimal downtime.
Fallback mechanisms yield moderate RTO values, as they
require time to detect failures and reroute requests. The
highest RTO is observed in the graceful degradation pattern,
where service interruptions are mitigated by temporarily
reducing functionality, lowering the urgency of immediate
recovery (fig. 4).

Fig 4: RTO across failure scenarios for fault-tolerance patterns.

The RTO values presented in the graph are based on
engineering best practices and industry sources that reflect
the behavior of common fault-tolerant patterns in production
IT environments [6, 7]. According to AWS, the active
replication strategy (multi-site active-active) delivers the
lowest RTO and RPO, as failure triggers immediate traffic
redirection across regions without node shutdown -
effectively with near-zero delay. Overall, minimal RTO
values for replication (1-2 minutes) correspond to active
configurations with automated failover, as confirmed by
documentation on high-availability clusters and cloud
systems. For the fallback approach (5-7 minutes), delays are
typically caused by failure detection and rerouting logic.
Higher RTO values for graceful degradation (10-13

minutes) result from the architecture's focus on maintaining
core functionality under load rather than achieving rapid
recovery.
The second key metric is system availability, expressed as
the percentage of time the system remains operational.
Replication demonstrates the highest level of stability, as the
failure of a single component does not lead to service
interruption. Fallback mechanisms provide a high, though
slightly less consistent, level of availability - especially
when external dependencies are involved. Graceful
degradation maintains overall operability but, due to
reduced functionality, the system’s full availability is
assessed as lower (fig. 5).

Fig 5: System availability by resilience pattern under various failure scenarios.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 16 ~

For the replication pattern, the availability level in the range

of 99, 97-99, 99% reflects the characteristics of high-

availability solutions, where automatic failover and load

balancing ensure virtually uninterrupted service operation [8,

9]. The availability level for fallback mechanisms (99,3-

99,6%) is determined by the time required for failure

detection and traffic rerouting, as well as the potential

dependency on external API, whose SLA rarely exceed

99,5%. In the case of graceful degradation, the reduction in

full availability to 96, 5-97, 5% is due to the fact that the

system retains only its core functionality, temporarily

limiting auxiliary services such as analytics,

synchronization, or interface modules.

The third metric - MTTR- reflects the average time required

to restore the system after a failure and provides insight into

the system’s typical response to incidents. This value

captures not only the technical characteristics of the

infrastructure but also the efficiency of monitoring, alerting,

and automated response processes, determining how quickly

the system can return to a stable state after a disruption

(fig. 6).

Fig 6: Comparative MTTR values across failure scenarios for different resilience patterns.

For replication, the low MTTR value (1-2 minutes) is

explained by the presence of a pre-configured standby node

and automatic failover without the need for initialization. In

the case of fallback mechanisms, the average recovery time

increases to 4-5 minutes due to the need to identify the

failure point, reroute traffic, and possibly load alternative

components. Graceful degradation demonstrates the highest

MTTR (6-8 minutes), as it often requires manual or

operator-assisted recovery of disabled functions, along with

re-synchronization of modules [10].

Overall, replication is considered the most suitable solution

for critical systems with strict continuity requirements.

Fallback handles external failures effectively and can be

efficiently implemented with caching and redundant

interfaces. Despite its relatively high recovery times,

graceful degradation enables the system to maintain

essential functionality without complete shutdown, which is

particularly valuable in user-facing or interactive

environments. In industrial practice, the best results are

achieved through the combined integration of all three

approaches, distributed according to the criticality levels of

business functions.

5. Conclusion

Given the complexity of modern production chains and the

reliance on stable information flows, fault tolerance in

distributed supply chain management systems is a critical

requirement. Architectural patterns - replication, fallback,

and graceful degradation - offer strategies to mitigate

various types of failures and maintain operational

continuity. Replication provides maximum availability and

minimal recovery time by duplicating critical components.

Fallback allows for flexible responses to external service

failures through alternative channels or cached data.

Graceful degradation mechanisms, in turn, enable the

preservation of core functionality even when some services

become unavailable, which is particularly important for

user-facing interfaces and operational continuity.

Based on the conducted analysis, several recommendations

can be made for designing fault-tolerant supply chain

systems. First, a multi-layered approach should be

implemented, combining different architectural patterns

according to the criticality of business functions. Second,

services should be decomposed into distinct failure

domains, allowing for independent scaling and monitoring.

Third, systems should incorporate prioritized degradation

mechanisms, ensuring that essential operations continue

under constrained conditions. Finally, fault tolerance should

be viewed as an integral property of the system architecture,

rather than as a set of auxiliary features added in the later

stages of development. This approach not only increases

system reliability but also improves the long-term

manageability of digital infrastructure.

6. References

1. Transport Intelligence. State of logistics survey 2024:

road freight - key challenges and technology

investments. 2024. https://www.ti-insight.com/wp-

content/uploads/2024/04/Road-Transport-SOLS-2024-

WP-3.pdf (accessed 2025 Jun 23).

2. Allam H. Full-stack resilience: Designing systems that

tolerate chaos by default. Int J Emerg Res Eng Technol.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 17 ~

2025;6(2):53-62.

3. Lijin Z. Research on software supply chain security

assurance mechanism system based on blockchain

technology. In: 2024 4th International Signal

Processing, Communications and Engineering

Management Conference (ISPCEM); 2024. p. 939-944.

4. Stepanov M. Implementation of CRM and ERP systems

in small and medium-sized businesses as a means of

improving operational efficiency in e-commerce. Econ

Bus Theory Pract. 2025;5(123):382-386.

5. Shokirov K. Application of artificial intelligence in

warehouse operations management. Prof Bull Econ

Manag. 2024;4:29-33.

6. Amazon Web Services. REL13-BP02: Use defined

recovery strategies to meet the recovery objectives.

2022.

https://docs.aws.amazon.com/wellarchitected/2022-03-

31/framework/rel_planning_for_recovery_disaster_reco

very.html (accessed 2025 Jun 24).

7. Amazon Web Services. Disaster recovery of workloads

on AWS: Recovery in the cloud. 2022.

https://docs.aws.amazon.com/pdfs/whitepapers/latest/di

saster-recovery-workloads-on-aws/disaster-recovery-

workloads-on-aws.pdf (accessed 2025 Jun 24).

8. Amazon. Amazon Aurora Service Level Agreement.

https://aws.amazon.com/ru/rds/aurora/sla/ (accessed

2025 Jun 24).

9. Amazon. Amazon Elastic Load Balancing Service

Level Agreement.

https://aws.amazon.com/ru/elasticloadbalancing/sla/

(accessed 2025 Jun 24).

10. Rahman F, Soewito B. Enhancing database availability:

A combined approach using SQL Always On Failover

Cluster Instance and Availability Groups. J Comput

Sci. 2025;21(6):1332-1342.

https://www.computersciencejournals.com/ijecs

