International Journal of Engineering in Computer Science 2025; 7(2): 12-17

International Journal of

Engineering in Computer Science

E-ISSN: 2663-3590

P-ISSN: 2663-3582
WWW.computersciencejournals.c
om/ijecs

IJECS 2025; 7(2): 12-17
Received: 17-04-2025
Accepted: 21-05-2025

Mykyta Roilian

Engineering Manager,
LeanDNA, 611 S Congress Ave
Ste 300, Austin, Texas 78704,
USA

Corresponding Author:

Mykyta Roilian

Engineering Manager,
LeanDNA, 611 S Congress Ave
Ste 300, Austin, Texas 78704,
USA

Designing fault-tolerant distributed systems for supply
chain management: Architectural patterns and
manufacturing scenarios

Mykyta Roilian

DOI: https://www.doi.org/10.33545/26633582.2025.v7.i2a.193

Abstract

This article presents an analysis of architectural solutions aimed at ensuring the fault tolerance of
distributed information systems used in supply chain management within industrial environments.
Three primary patterns are examined: replication, fallback mechanisms, and graceful degradation. The
study evaluates their applicability across various failure scenarios and provides a comparative
assessment based on recovery time objectives (RTO and MTTR) and system availability. The necessity
of integrated architectural design is emphasized, considering the criticality of business functions.
Recommendations are proposed for the implementation of fault-tolerant strategies at different
infrastructure levels to improve the reliability and predictability of supply chain management systems.

Keywords: Distributed systems, fault tolerance, replication, fallback, graceful degradation, supply
chain management, industrial IT infrastructure

1. Introduction

The digitalization of manufacturing processes requires enterprises to maintain a high level of
IT system resilience, particularly in the context of supply management, where continuous
availability of services tracking procurement, material movement, and consumption is
critical. In high-tech industries, a failure in the supply information system can disrupt
assembly schedules, cause production line downtime, and result in significant financial
losses. Unlike traditional supply management systems in manufacturing are focused on
maintaining an exact balance between the needs of the assembly line and current inventory
levels. This imposes strict requirements on the architecture of such systems to ensure
robustness against failures - both within the internal infrastructure and across external
services, including supplier interfaces and corporate ERP platforms.

The objective of this study is to analyze architectural patterns used in the design of fault-
tolerant distributed systems applicable to supply management tasks in manufacturing
enterprises.

2. Main part. Architectural patterns of fault tolerance

The design of fault-tolerant distributed systems requires the implementation of architectural
solutions that ensure the uninterrupted operation of critical components in the event of partial
or complete infrastructure failures. In a manufacturing environment, where inventory and
supply management must remain both available and consistent regardless of disruptions,
specific fault-tolerance patterns are applied. The most widely used among them - replication,
fallback mechanisms, and graceful degradation - are examined below, with emphasis on their
practical applicability in supply chain management tasks.

Data and service replication is a method of failure protection that involves creating multiple
instances of system components distributed across different failure zones (fig. 1).

~12~

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://www.doi.org/10.33545/26633582.2025.v7.i2a.193

International Journal of Engineering in Computer Science

https://www.computersciencejournals.com/ijecs

‘ Global load balancer]

A 4
S S
r Zone A Zone B Zone C
(Replica) (Replica) (Replica)

Fig 1: Data replication scheme.

Depending on consistency and response time requirements,
either synchronous or asynchronous replication is used.
Synchronous replication ensures data coherence but
increases write latency and demands stable communication.
Asynchronous replication eases load on the primary node
but may cause data inconsistencies during failures.

In supply chain systems, synchronous replication is
preferred for critical data such as material specifications and
order statuses. According to the State of Logistics Survey
2024 M top investment areas include digitalization (21,
5%), data analytics (18, 4%), and real-time visibility (15,

6%), all requiring fast and reliable data exchange.
Companies like FedEx, Bolloré Logistics, and LKW Walter
prioritize transparency and fault tolerance, adopting
distributed IT models with real-time data replication to
support these goals.

In addition to replication, fallback mechanisms are widely
used to enable load switching from failed components to
backup or alternative ones. This approach allows
transactions to continue without interruption in case of
unavailability of an external API, internal service, or
database (fig.2).

[Client request]

|

[Main service]

A

[Primary API]

(External API)

Failure
detection

Backup
activated

If APl unavailable

)

[Read-only cache |

(local values)
o

Fallback service
(Redundant node)

—!

Fig 2: Fallback mechanism in service resilience architecture.

In industrial IT systems, fallback mechanisms are
implemented using active-passive or active-active
configurations. In active-passive, the secondary node
activates after a failure, typically with a 10-30 second delay.
Active-active runs multiple nodes in parallel, enabling near-
instant failover. For external services like supplier APIs,
fallback often uses read-only caches with pre-approved

values valid for up to 24 hours, triggered by errors (e.g.,

HTTP 4xx/5xx). These mechanisms require automated
monitoring, request routing, and event-driven orchestration
to quickly redirect operations and maintain functionality
during component failures.

The third approach - graceful degradation - refers to the
system’s ability to continue operating despite the
degradation of certain functions or services, ensuring that
core business logic remains intact (fig. 3).

~13~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

https://www.computersciencejournals.com/ijecs

' Core
: business
: logic
Motification Order Inventory
service processing | | management

Modular design

Microservice

Fig 3: Modular microservice architecture supporting graceful degradation of non-critical functions.

This approach is most useful during overloads or failures of
non-critical components. For instance, if a database is
partially unavailable, the system can temporarily disable
analytics while keeping core functions like order processing
active. It may also slow external data sync or limit the
interface to essential operations [?. To support this, systems
should follow a modular, microservice-based design with
scalable, independently deactivatable components and clear
functional priorities. Together, fault-tolerant patterns
provide a reliable strategy for maintaining supply chain
continuity, minimizing downtime, and ensuring predictable
behavior during failures.

3. Application in Manufacturing Scenarios

Industrial enterprises dealing with a large number of
material items, multiple suppliers, and distributed
warehouse infrastructures place high demands on the
resilience of IT systems that support supply chain
management. In the context of complex, multi-stage
production cycles, the failure of a single component within
the digital platform can lead to a breakdown in
synchronization between production planning, inventory
management, and external supply sources. Practical
experience shows that the effective implementation of fault-
tolerant architectures depends on the type of manufacturing
process, the criticality of supplies, and the specifics of
supplier interaction (table 1).

Table 1: Application of fault-tolerance patterns in manufacturing supply chain scenarios [4

Manufacturing process scenario

Type of failure

Applied pattern

Implementation Qutcome

Failure of the central order Database service Replication Horizontally scalable storage with a Preservation of transactional
management module failure (synchronous) backup node. consistency.
Unavailability of external supplier| External connection Fallback Use of locally cached data or Minimization of decision-making
API| failure duplicated channels. delays.
Overload of material demand Performance

calculation service degradation

Graceful degradation

Lower frequency, core functions only. Retention of core functionality.

Failure of inter-site

communication service Network failure

Fallback + replication

Local storage of orders with post-
recovery consolidation

Continuity of operations at isolated
sites.

Inaccessibility of consumption Auxiliary service

Graceful degradation

. Maintenance of critical-level
Prioritized core functions. aintenance of critical-leve

analytics module failure functional capability.
Planned overload of ERP system Planned Replication + Switching to backup instance with full | Elimination of process downtime
nodes unavailability Fallback synchronization. during operational hours.

Modern industrial IT systems not only implement basic
fault-tolerance mechanisms but are increasingly integrating
intelligent analytics modules to enhance adaptability. For
example, the application of artificial intelligence in
warehouse operations contributes to greater resilience
against unexpected disruptions and enables real-time
optimization of supply chain decisions. Al technologies are
being actively applied in warehouse operations management
to improve resource allocation, forecast demand more

accurately, and reduce manual errors in high-load
environments 1,
The scenarios presented illustrate how technical

architectural solutions can be embedded into the context of
real-world manufacturing processes. The application of each

pattern is determined by the criticality level of the supported
function: for order and inventory management, it typically
involves replication with full data coherence; for
interactions with external systems - fallback mechanisms
with acceptable latency; and for analytics and support -
degradation strategies allowing temporary deactivation. An
approach focused on isolation, scalability, and component
resilience helps minimize the impact of local failures on the
entire supply chain. Thus, architectural patterns become an
integral part of designing the information infrastructure of a
modern manufacturing enterprise.

4. Comparative analysis of pattern effectiveness
The choice of a fault-tolerant architectural pattern should be

~14 ~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

based on key technical metrics such as Recovery Time
Objective (RTO), Mean Time to Recovery (MTTR), and
system availability. This section presents a comparative
analysis of three patterns - replication, fallback, and graceful
degradation - using five typical failure scenarios in
manufacturing environments to objectively assess the
resilience of each architecture under real-world conditions.

The first metric - RTO - represents the maximum acceptable
time for system recovery after a failure. The replication
pattern provides the lowest RTO, especially in active node

https://www.computersciencejournals.com/ijecs

configurations, where failover occurs almost instantly. This
is crucial for maintaining synchronous operations in
production environments that demand minimal downtime.
Fallback mechanisms yield moderate RTO values, as they
require time to detect failures and reroute requests. The
highest RTO is observed in the graceful degradation pattern,
where service interruptions are mitigated by temporarily
reducing functionality, lowering the urgency of immediate
recovery (fig. 4).

=—e= Replication

121

101

=]
T

RTO (minutes)
(=)

=== Fallback

/\/

2r /-\

Graceful degradation

AP failure

Internal service outage Database degradation
Failure Scenario

Module overload Network disruption

Fig 4: RTO across failure scenarios for fault-tolerance patterns.

The RTO values presented in the graph are based on
engineering best practices and industry sources that reflect
the behavior of common fault-tolerant patterns in production
IT environments & 71 According to AWS, the active
replication strategy (multi-site active-active) delivers the
lowest RTO and RPO, as failure triggers immediate traffic
redirection across regions without node shutdown -
effectively with near-zero delay. Overall, minimal RTO
values for replication (1-2 minutes) correspond to active
configurations with automated failover, as confirmed by
documentation on high-availability clusters and cloud
systems. For the fallback approach (5-7 minutes), delays are
typically caused by failure detection and rerouting logic.
Higher RTO values for graceful degradation (10-13

minutes) result from the architecture's focus on maintaining
core functionality under load rather than achieving rapid
recovery.

The second key metric is system availability, expressed as
the percentage of time the system remains operational.
Replication demonstrates the highest level of stability, as the
failure of a single component does not lead to service
interruption. Fallback mechanisms provide a high, though
slightly less consistent, level of availability - especially
when external dependencies are involved. Graceful
degradation maintains overall operability but, due to
reduced functionality, the system’s full availability is
assessed as lower (fig. 5).

100

A\ *_-
99
© 98f
>
=
o
K]
®
z 97}
96
=e==Replication
== Fallback
Graceful degradation
95 API failure Internal service outage Database degradation Medule overload Network disruption

Failure Scenario

Fig 5: System availability by resilience pattern under various failure scenarios.

~15~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

For the replication pattern, the availability level in the range
of 99, 97-99, 99% reflects the characteristics of high-
availability solutions, where automatic failover and load
balancing ensure virtually uninterrupted service operation [
1. The availability level for fallback mechanisms (99,3-
99,6%) is determined by the time required for failure
detection and traffic rerouting, as well as the potential
dependency on external API, whose SLA rarely exceed
99,5%. In the case of graceful degradation, the reduction in
full availability to 96, 5-97, 5% is due to the fact that the
system retains only its core functionality, temporarily

https://www.computersciencejournals.com/ijecs

limiting auxiliary services such as
synchronization, or interface modules.

The third metric - MTTR- reflects the average time required
to restore the system after a failure and provides insight into
the system’s typical response to incidents. This value
captures not only the technical characteristics of the
infrastructure but also the efficiency of monitoring, alerting,
and automated response processes, determining how quickly
the system can return to a stable state after a disruption

(fig. 6).

analytics,

8| ==e== Replication
=—e— Fallback
Graceful degradation

MTTR (minutes)

/

| T

. 1
API failure Internal service outage

Database degradation
Failure Scenario

Module overload Network disruption

Fig 6: Comparative MTTR values across failure scenarios for different resilience patterns.

For replication, the low MTTR value (1-2 minutes) is
explained by the presence of a pre-configured standby node
and automatic failover without the need for initialization. In
the case of fallback mechanisms, the average recovery time
increases to 4-5 minutes due to the need to identify the
failure point, reroute traffic, and possibly load alternative
components. Graceful degradation demonstrates the highest
MTTR (6-8 minutes), as it often requires manual or
operator-assisted recovery of disabled functions, along with
re-synchronization of modules 1,

Overall, replication is considered the most suitable solution
for critical systems with strict continuity requirements.
Fallback handles external failures effectively and can be
efficiently implemented with caching and redundant
interfaces. Despite its relatively high recovery times,
graceful degradation enables the system to maintain
essential functionality without complete shutdown, which is
particularly valuable in user-facing or interactive
environments. In industrial practice, the best results are
achieved through the combined integration of all three
approaches, distributed according to the criticality levels of
business functions.

5. Conclusion

Given the complexity of modern production chains and the
reliance on stable information flows, fault tolerance in
distributed supply chain management systems is a critical
requirement. Architectural patterns - replication, fallback,
and graceful degradation - offer strategies to mitigate
various types of failures and maintain operational
continuity. Replication provides maximum availability and

minimal recovery time by duplicating critical components.
Fallback allows for flexible responses to external service
failures through alternative channels or cached data.
Graceful degradation mechanisms, in turn, enable the
preservation of core functionality even when some services
become unavailable, which is particularly important for
user-facing interfaces and operational continuity.

Based on the conducted analysis, several recommendations
can be made for designing fault-tolerant supply chain
systems. First, a multi-layered approach should be
implemented, combining different architectural patterns
according to the criticality of business functions. Second,
services should be decomposed into distinct failure
domains, allowing for independent scaling and monitoring.
Third, systems should incorporate prioritized degradation
mechanisms, ensuring that essential operations continue
under constrained conditions. Finally, fault tolerance should
be viewed as an integral property of the system architecture,
rather than as a set of auxiliary features added in the later
stages of development. This approach not only increases
system reliability but also improves the long-term
manageability of digital infrastructure.

6. References

1. Transport Intelligence. State of logistics survey 2024:
road freight - key challenges and technology
investments. 2024. https://www.ti-insight.com/wp-
content/uploads/2024/04/Road-Transport-SOLS-2024-
WP-3.pdf (accessed 2025 Jun 23).

2. Allam H. Full-stack resilience: Designing systems that
tolerate chaos by default. Int J Emerg Res Eng Technol.

~16 ~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

2025;6(2):53-62.

3. Lijin Z. Research on software supply chain security
assurance mechanism system based on blockchain
technology. In: 2024 4th International Signal
Processing, Communications and Engineering
Management Conference (ISPCEM); 2024. p. 939-944.

4. Stepanov M. Implementation of CRM and ERP systems
in small and medium-sized businesses as a means of
improving operational efficiency in e-commerce. Econ
Bus Theory Pract. 2025;5(123):382-386.

5. Shokirov K. Application of artificial intelligence in
warehouse operations management. Prof Bull Econ
Manag. 2024;4:29-33.

6. Amazon Web Services. REL13-BP02: Use defined
recovery strategies to meet the recovery objectives.
2022.
https://docs.aws.amazon.com/wellarchitected/2022-03-
31/framework/rel_planning_for_recovery_disaster_reco
very.html (accessed 2025 Jun 24).

7. Amazon Web Services. Disaster recovery of workloads
on AWS: Recovery in the cloud. 2022.
https://docs.aws.amazon.com/pdfs/whitepapers/latest/di
saster-recovery-workloads-on-aws/disaster-recovery-
workloads-on-aws.pdf (accessed 2025 Jun 24).

8. Amazon. Amazon Aurora Service Level Agreement.
https://aws.amazon.com/ru/rds/aurora/sla/ (accessed
2025 Jun 24).

9. Amazon. Amazon Elastic Load Balancing Service
Level Agreement.
https://aws.amazon.com/ru/elasticloadbalancing/sla/
(accessed 2025 Jun 24).

10. Rahman F, Soewito B. Enhancing database availability:
A combined approach using SQL Always On Failover
Cluster Instance and Awvailability Groups. J Comput
Sci. 2025;21(6):1332-1342.

~17 ~

https://www.computersciencejournals.com/ijecs

