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Abstract 
This article presents an analysis of architectural solutions aimed at ensuring the fault tolerance of 

distributed information systems used in supply chain management within industrial environments. 

Three primary patterns are examined: replication, fallback mechanisms, and graceful degradation. The 

study evaluates their applicability across various failure scenarios and provides a comparative 

assessment based on recovery time objectives (RTO and MTTR) and system availability. The necessity 

of integrated architectural design is emphasized, considering the criticality of business functions. 

Recommendations are proposed for the implementation of fault-tolerant strategies at different 

infrastructure levels to improve the reliability and predictability of supply chain management systems. 

 

Keywords: Distributed systems, fault tolerance, replication, fallback, graceful degradation, supply 

chain management, industrial IT infrastructure 

 

1. Introduction 

The digitalization of manufacturing processes requires enterprises to maintain a high level of 

IT system resilience, particularly in the context of supply management, where continuous 

availability of services tracking procurement, material movement, and consumption is 

critical. In high-tech industries, a failure in the supply information system can disrupt 

assembly schedules, cause production line downtime, and result in significant financial 

losses. Unlike traditional supply management systems in manufacturing are focused on 

maintaining an exact balance between the needs of the assembly line and current inventory 

levels. This imposes strict requirements on the architecture of such systems to ensure 

robustness against failures - both within the internal infrastructure and across external 

services, including supplier interfaces and corporate ERP platforms. 

The objective of this study is to analyze architectural patterns used in the design of fault-

tolerant distributed systems applicable to supply management tasks in manufacturing 

enterprises. 

 

2. Main part. Architectural patterns of fault tolerance 

The design of fault-tolerant distributed systems requires the implementation of architectural 

solutions that ensure the uninterrupted operation of critical components in the event of partial 

or complete infrastructure failures. In a manufacturing environment, where inventory and 

supply management must remain both available and consistent regardless of disruptions, 

specific fault-tolerance patterns are applied. The most widely used among them - replication, 

fallback mechanisms, and graceful degradation - are examined below, with emphasis on their 

practical applicability in supply chain management tasks. 

Data and service replication is a method of failure protection that involves creating multiple 

instances of system components distributed across different failure zones (fig. 1). 
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Fig 1: Data replication scheme. 

 

Depending on consistency and response time requirements, 

either synchronous or asynchronous replication is used. 

Synchronous replication ensures data coherence but 

increases write latency and demands stable communication. 

Asynchronous replication eases load on the primary node 

but may cause data inconsistencies during failures. 

In supply chain systems, synchronous replication is 

preferred for critical data such as material specifications and 

order statuses. According to the State of Logistics Survey 

2024 [1], top investment areas include digitalization (21, 

5%), data analytics (18, 4%), and real-time visibility (15, 

6%), all requiring fast and reliable data exchange.  

Companies like FedEx, Bolloré Logistics, and LKW Walter 

prioritize transparency and fault tolerance, adopting 

distributed IT models with real-time data replication to 

support these goals. 

In addition to replication, fallback mechanisms are widely 

used to enable load switching from failed components to 

backup or alternative ones. This approach allows 

transactions to continue without interruption in case of 

unavailability of an external API, internal service, or 

database (fig.2). 

 

 
 

Fig 2: Fallback mechanism in service resilience architecture. 

 

In industrial IT systems, fallback mechanisms are 

implemented using active-passive or active-active 

configurations. In active-passive, the secondary node 

activates after a failure, typically with a 10-30 second delay. 

Active-active runs multiple nodes in parallel, enabling near-

instant failover. For external services like supplier APIs, 

fallback often uses read-only caches with pre-approved 

values valid for up to 24 hours, triggered by errors (e.g., 

HTTP 4xx/5xx). These mechanisms require automated 

monitoring, request routing, and event-driven orchestration 

to quickly redirect operations and maintain functionality 

during component failures. 

The third approach - graceful degradation - refers to the 

system’s ability to continue operating despite the 

degradation of certain functions or services, ensuring that 

core business logic remains intact (fig. 3). 
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Fig 3: Modular microservice architecture supporting graceful degradation of non-critical functions. 

 

This approach is most useful during overloads or failures of 
non-critical components. For instance, if a database is 
partially unavailable, the system can temporarily disable 
analytics while keeping core functions like order processing 
active. It may also slow external data sync or limit the 
interface to essential operations [2]. To support this, systems 
should follow a modular, microservice-based design with 
scalable, independently deactivatable components and clear 
functional priorities. Together, fault-tolerant patterns 
provide a reliable strategy for maintaining supply chain 
continuity, minimizing downtime, and ensuring predictable 
behavior during failures. 
 
3. Application in Manufacturing Scenarios 

 

Industrial enterprises dealing with a large number of 
material items, multiple suppliers, and distributed 
warehouse infrastructures place high demands on the 
resilience of IT systems that support supply chain 
management. In the context of complex, multi-stage 
production cycles, the failure of a single component within 
the digital platform can lead to a breakdown in 
synchronization between production planning, inventory 
management, and external supply sources. Practical 
experience shows that the effective implementation of fault-
tolerant architectures depends on the type of manufacturing 
process, the criticality of supplies, and the specifics of 
supplier interaction (table 1). 
 

Table 1: Application of fault-tolerance patterns in manufacturing supply chain scenarios [3, 4] 
 

Manufacturing process scenario Type of failure Applied pattern Implementation Outcome 

Failure of the central order 
management module 

Database service 
failure 

Replication 
(synchronous) 

Horizontally scalable storage with a 
backup node. 

Preservation of transactional 
consistency. 

Unavailability of external supplier 
API 

External connection 
failure 

Fallback 
Use of locally cached data or 

duplicated channels. 
Minimization of decision-making 

delays. 

Overload of material demand 
calculation service 

Performance 
degradation 

Graceful degradation Lower frequency, core functions only. Retention of core functionality. 

Failure of inter-site 
communication service 

Network failure Fallback + replication 
Local storage of orders with post-

recovery consolidation 
Continuity of operations at isolated 

sites. 

Inaccessibility of consumption 
analytics module 

Auxiliary service 
failure 

Graceful degradation Prioritized core functions. 
Maintenance of critical-level 

functional capability. 

Planned overload of ERP system 
nodes 

Planned 
unavailability 

Replication + 
Fallback 

Switching to backup instance with full 
synchronization. 

Elimination of process downtime 
during operational hours. 

 
Modern industrial IT systems not only implement basic 
fault-tolerance mechanisms but are increasingly integrating 
intelligent analytics modules to enhance adaptability. For 
example, the application of artificial intelligence in 
warehouse operations contributes to greater resilience 
against unexpected disruptions and enables real-time 
optimization of supply chain decisions. AI technologies are 
being actively applied in warehouse operations management 
to improve resource allocation, forecast demand more 
accurately, and reduce manual errors in high-load 
environments [5]. 
The scenarios presented illustrate how technical 
architectural solutions can be embedded into the context of 
real-world manufacturing processes. The application of each 

pattern is determined by the criticality level of the supported 
function: for order and inventory management, it typically 
involves replication with full data coherence; for 
interactions with external systems - fallback mechanisms 
with acceptable latency; and for analytics and support - 
degradation strategies allowing temporary deactivation. An 
approach focused on isolation, scalability, and component 
resilience helps minimize the impact of local failures on the 
entire supply chain. Thus, architectural patterns become an 
integral part of designing the information infrastructure of a 
modern manufacturing enterprise. 
 
4. Comparative analysis of pattern effectiveness  
The choice of a fault-tolerant architectural pattern should be 
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based on key technical metrics such as Recovery Time 
Objective (RTO), Mean Time to Recovery (MTTR), and 
system availability. This section presents a comparative 
analysis of three patterns - replication, fallback, and graceful 
degradation - using five typical failure scenarios in 
manufacturing environments to objectively assess the 
resilience of each architecture under real-world conditions. 
The first metric - RTO - represents the maximum acceptable 
time for system recovery after a failure. The replication 
pattern provides the lowest RTO, especially in active node 

configurations, where failover occurs almost instantly. This 
is crucial for maintaining synchronous operations in 
production environments that demand minimal downtime. 
Fallback mechanisms yield moderate RTO values, as they 
require time to detect failures and reroute requests. The 
highest RTO is observed in the graceful degradation pattern, 
where service interruptions are mitigated by temporarily 
reducing functionality, lowering the urgency of immediate 
recovery (fig. 4). 

 

 
 

Fig 4: RTO across failure scenarios for fault-tolerance patterns. 

 
The RTO values presented in the graph are based on 
engineering best practices and industry sources that reflect 
the behavior of common fault-tolerant patterns in production 
IT environments [6, 7]. According to AWS, the active 
replication strategy (multi-site active-active) delivers the 
lowest RTO and RPO, as failure triggers immediate traffic 
redirection across regions without node shutdown - 
effectively with near-zero delay. Overall, minimal RTO 
values for replication (1-2 minutes) correspond to active 
configurations with automated failover, as confirmed by 
documentation on high-availability clusters and cloud 
systems. For the fallback approach (5-7 minutes), delays are 
typically caused by failure detection and rerouting logic. 
Higher RTO values for graceful degradation (10-13 

minutes) result from the architecture's focus on maintaining 
core functionality under load rather than achieving rapid 
recovery. 
The second key metric is system availability, expressed as 
the percentage of time the system remains operational. 
Replication demonstrates the highest level of stability, as the 
failure of a single component does not lead to service 
interruption. Fallback mechanisms provide a high, though 
slightly less consistent, level of availability - especially 
when external dependencies are involved. Graceful 
degradation maintains overall operability but, due to 
reduced functionality, the system’s full availability is 
assessed as lower (fig. 5). 

 

 
 

Fig 5: System availability by resilience pattern under various failure scenarios. 
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For the replication pattern, the availability level in the range 

of 99, 97-99, 99% reflects the characteristics of high-

availability solutions, where automatic failover and load 

balancing ensure virtually uninterrupted service operation [8, 

9]. The availability level for fallback mechanisms (99,3-

99,6%) is determined by the time required for failure 

detection and traffic rerouting, as well as the potential 

dependency on external API, whose SLA rarely exceed 

99,5%. In the case of graceful degradation, the reduction in 

full availability to 96, 5-97, 5% is due to the fact that the 

system retains only its core functionality, temporarily 

limiting auxiliary services such as analytics, 

synchronization, or interface modules. 

The third metric - MTTR- reflects the average time required 

to restore the system after a failure and provides insight into 

the system’s typical response to incidents. This value 

captures not only the technical characteristics of the 

infrastructure but also the efficiency of monitoring, alerting, 

and automated response processes, determining how quickly 

the system can return to a stable state after a disruption 

(fig. 6). 

 

 
 

Fig 6: Comparative MTTR values across failure scenarios for different resilience patterns. 

 

For replication, the low MTTR value (1-2 minutes) is 

explained by the presence of a pre-configured standby node 

and automatic failover without the need for initialization. In 

the case of fallback mechanisms, the average recovery time 

increases to 4-5 minutes due to the need to identify the 

failure point, reroute traffic, and possibly load alternative 

components. Graceful degradation demonstrates the highest 

MTTR (6-8 minutes), as it often requires manual or 

operator-assisted recovery of disabled functions, along with 

re-synchronization of modules [10]. 

Overall, replication is considered the most suitable solution 

for critical systems with strict continuity requirements. 

Fallback handles external failures effectively and can be 

efficiently implemented with caching and redundant 

interfaces. Despite its relatively high recovery times, 

graceful degradation enables the system to maintain 

essential functionality without complete shutdown, which is 

particularly valuable in user-facing or interactive 

environments. In industrial practice, the best results are 

achieved through the combined integration of all three 

approaches, distributed according to the criticality levels of 

business functions. 

 

5. Conclusion 

Given the complexity of modern production chains and the 

reliance on stable information flows, fault tolerance in 

distributed supply chain management systems is a critical 

requirement. Architectural patterns - replication, fallback, 

and graceful degradation - offer strategies to mitigate 

various types of failures and maintain operational 

continuity. Replication provides maximum availability and 

minimal recovery time by duplicating critical components. 

Fallback allows for flexible responses to external service 

failures through alternative channels or cached data. 

Graceful degradation mechanisms, in turn, enable the 

preservation of core functionality even when some services 

become unavailable, which is particularly important for 

user-facing interfaces and operational continuity. 

Based on the conducted analysis, several recommendations 

can be made for designing fault-tolerant supply chain 

systems. First, a multi-layered approach should be 

implemented, combining different architectural patterns 

according to the criticality of business functions. Second, 

services should be decomposed into distinct failure 

domains, allowing for independent scaling and monitoring. 

Third, systems should incorporate prioritized degradation 

mechanisms, ensuring that essential operations continue 

under constrained conditions. Finally, fault tolerance should 

be viewed as an integral property of the system architecture, 

rather than as a set of auxiliary features added in the later 

stages of development. This approach not only increases 

system reliability but also improves the long-term 

manageability of digital infrastructure. 
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