

~ 73 ~

International Journal of Engineering in Computer Science 2019; 1(1): 73-78

E-ISSN: 2663-3590

P-ISSN: 2663-3582

www.computersciencejournals.c

om/ijecs

IJECS 2019; 1(1): 73-78

Received: 15-05-2019

Accepted: 18-06-2019

Pradeepkumar Palanisamy

Anna University, Chennai,

Tamil Nadu, India

Corresponding Author:

Pradeepkumar Palanisamy

Anna University, Chennai,

Tamil Nadu, India

Designing and maintaining a robust rest API for UI

Architectures

Pradeepkumar Palanisamy

DOI: https://www.doi.org/10.33545/26633582.2019.v1.i1a.188

Abstract
The REST API that connects the User Interface (UI) to backend systems is crucial in modern

application architectures. It's responsible for delivering business logic to users efficiently, securely, and

scalably. This UI-facing API layer differs from domain APIs, which interact directly with core backend

services or databases. Its specific tasks include shaping data for frontend consumption, enforcing view-

level rules, aggregating results from various sources, and optimizing data payloads. Successfully

building and maintaining such an API requires careful design, adherence to industry standards, ongoing

validation through testing, and close collaboration between frontend and backend development teams.

This document serves as a comprehensive guide to designing, building, and sustaining REST APIs that

effectively support UI architectures while ensuring high quality, robust security, and long-term

maintainability for evolving digital products.

Keywords: REST API Design, UI Architecture, API First Development, API Testing, Swagger,

OpenAPI, API Versioning, Pagination Strategies, Advanced Error Handling, API Governance, CI/CD

for APIs, Business Logic Layer, API Contracts, Field Masking, Consumer-Focused APIs, API

Consistency, Agile API Development, API Security, API Performance, API Observability, HATEOAS,

Idempotency, Rate Limiting

1. Introduction
In modern, dynamic web and mobile application architectures, the REST API that bridges

the User Interface (UI) and backend systems plays an undeniably pivotal role. It's not merely

a data conduit but a critical component responsible for delivering complex business logic,

orchestrating service interactions, and presenting information to users in a performant,

secure, and highly scalable manner. Unlike domain-specific APIs that interact directly with

core backend services, databases, or third-party systems, the UI-facing REST API layer has

distinct responsibilities. These include meticulously shaping data into view-specific models,

rigorously enforcing presentation-layer business rules and validation logic, efficiently

aggregating results from potentially multiple downstream sources, and optimizing data

payloads to ensure minimal latency and optimal consumption by diverse frontend clients

(e.g., single-page applications, native mobile apps, or even other internal UIs).

Building, evolving, and maintaining this crucial REST API layer demands thoughtful and

forward-thinking design principles, strict adherence to established industry standards and

best practices, continuous and automated validation across multiple stages, and exceptionally

close, ongoing coordination between frontend development teams, backend engineering

teams, and often product stakeholders. This document presents a comprehensive and

actionable guide to designing, building, validating, and maintaining REST APIs that serve

UI architectures effectively. The focus is on ensuring not only immediate functional

requirements but also long-term quality, robust security, predictable performance, and

overall maintainability as the application and its user base grow and evolve.

2. Core principles of a well-designed REST API for UI

A well-architected REST API for UI consumption is built upon several foundational

principles that ensure its effectiveness, resilience, and ease of use.

 Clear Separation of Concerns: Maintain a strict isolation between UI-specific logic

(data transformation, view model preparation), core domain business logic (fundamental

business rules and processes), and underlying data access logic.

www.computersciencejournals.com/ijecs
www.computersciencejournals.com/ijecs
https://www.doi.org/10.33545/26633582.2019.v1.i1a.188

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 74 ~

REST APIs designed for UI consumption should act as

an orchestration and presentation layer, never bypassing

established domain rules or directly fetching raw,

unstructured data from persistence layers. This

separation enhances modularity, testability, and allows

different layers to evolve independently.

 Consistency and Predictability in Contracts: Provide

an unwavering and consistent structure across all API

endpoints, including URL patterns, request payload

formats, response data structures, and error message

formats. Predictable APIs significantly reduce the

cognitive load on UI developers, minimize frontend

code complexity by allowing reusable components for

data handling, and drastically shorten the onboarding

time for new developers joining the team. This includes

consistent use of HTTP methods and status codes.

 Efficient Data Shaping, Filtering, and Projection:
The API should be designed to return precisely the data

necessary for a given UI view or component—it must

assiduously avoid both over-fetching (sending

excessive, unused data that bloats payloads and

increases latency) and under-fetching (requiring the UI

to make multiple subsequent calls to gather all

necessary information for a single view). Implement

mechanisms like field selection (projections) to allow

UI consumers granular control over the data fields

returned, empowering them to optimize for specific use

cases.

 Robust Versioning Strategy: It's paramount to never

introduce breaking changes to existing consumers

without a clear and well-communicated versioning

strategy. Utilize URI-based semantic versioning (e.g.,

/v1/resource, /v2/resource) or allow consumers to

request specific versions via custom HTTP headers

(e.g., Accept-Version: v1.2). This approach allows for

the introduction of backward-incompatible

improvements or structural changes while ensuring

existing UI clients continue to function without

disruption.

 Statelessness of Interactions: Each individual request

from a UI client to the REST API must contain all the

necessary context and information required for the API

to process that request independently. The API should

not rely on or store any session state related to a

particular client between requests. This stateless design

simplifies scaling (as requests can be routed to any

available server instance), improves resilience, and

makes caching strategies (both on the server-side and

client-side) more straightforward and effective.

 Enhanced Transparency and Comprehensive

Observability: Design and build the API with

production monitoring and operational support in mind

from day one. This includes implementing structured

logging (e.g., JSON-formatted logs) with rich

contextual information, ensuring all requests are tagged

with traceable request IDs that propagate through

downstream services, and defining and exposing clearly

defined metrics (e.g., request latency, error rates,

throughput per endpoint) to facilitate proactive

production monitoring, rapid troubleshooting, and

performance analysis.

3. Designing REST Endpoints for UI Consumers

The design of your API endpoints (URIs) is a critical aspect

of usability and discoverability for UI developers.

 Resource-Oriented URIs with Clear Hierarchies:
Design your URIs around logical resources that the UI

needs to interact with (e.g., /users, /products, /orders).

Use nouns to represent resources and leverage path

nesting to indicate relationships or hierarchies (e.g.,

/users/{userId}/accounts/{accountId}/transactions).

Avoid using verbs or specific operations in URIs
(e.g., /getUserAccountsById or /processNewOrder).

HTTP methods (GET, post, put, delete, patch) should

define the action being performed on the resource.

 Strategic Use of Query Parameters for Flexibility:
Empower UI clients by allowing them to customize

responses through well-defined query parameters.

These are essential for implementing features such as

filtering (e.g., ?status=active), sorting (e.g., ?sort=

createdAt:desc), full-text searching (e.g., ?q=keyword),

and efficient pagination (e.g., ?limit=20&offset=40 or

?pageSize=10&pageToken=xyz).

 Effective Pagination for Large Datasets: When

dealing with collections that can return a large number

of items, always implement pagination to ensure

performance and manageability. Choose between

cursor-based pagination (which uses an opaque token

pointing to the next/previous item, offering better

stability against data changes and optimal performance

for very large datasets) or offset-based pagination

(simpler to implement using limit and offset

parameters, but can have performance issues or

inconsistent results if data changes frequently during

pagination). Provide clear pagination metadata in

responses (e.g., total items, next/previous page links).

 Granular Field Selection (Projections): To reduce

payload size, minimize data transfer, and improve UI

rendering performance, allow clients to specify exactly

which fields of a resource they need. This is commonly

implemented using a query parameter like

?fields=id,name,email,profile.avatarUrl. This prevents

over-fetching and is particularly useful for mobile

clients or performance-sensitive UIs.

 Support for HATEOAS (Hypermedia as the Engine

of Application State) where Beneficial: In certain

scenarios, particularly for complex workflows or

discoverable APIs, consider including HATEOAS-style

navigational links within your API responses (e.g.,

using a _links attribute). These links guide the client on

possible next actions or related resources, which can

reduce client-side hardcoding of URIs and improve the

overall discoverability and evolvability of the API.

 Consistent and Documented Naming Conventions:
Establish and enforce consistent naming conventions

for resource names, path parameters, query parameters,

and JSON fields. Typically, use plural nouns for

resource collections (e.g., /users not /user). Choose a

case convention (e.g., snake_case or camelCase) that

aligns with your primary backend language ecosystem

norms or organizational standards. Document all

naming patterns, conventions, and common parameter

names clearly in your API style guide and OpenAPI

specification.

4. Response Structure and Formatting

Consistent and informative response structures are key to a

good developer experience for UI teams.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 75 ~

 Standardized Response Enveloping: Consistently

wrap all API responses, both successful and error

responses, within a standard envelope structure. This

provides a predictable way for clients to parse data,

metadata, and error information. A common pattern

includes:

JSON

{

"data": { /* main response payload for success, or

null/empty for errors */ },

"meta": { /* pagination info, request IDs, custom metadata

*/ },

"errors": [/* array of error objects, empty for success */]

}

The meta object can also contain information about the

request itself or additional context useful to the client.

 Strict Adherence to Standard HTTP Status Codes:
Adhere rigorously to the semantics of standard HTTP

status codes to convey the outcome of API requests.

This allows HTTP clients and intermediaries (like

caches or load balancers) to behave correctly. Key

examples include:

o 200 OK: Successful retrieval of a resource (response

body typically contains the resource).

o 201 Created: A new resource was successfully created

(response body often contains the newly created

resource, and a Location header points to it).

o 202 Accepted: The request has been accepted for

processing, but the processing has not been completed

(often used for asynchronous operations).

o 204 No Content: The request was successful, but there

is no response body to return (e.g., for a successful

DELETE operation).

o 400 Bad Request: The request was malformed or

contained invalid parameters (client-side error). The

response body should detail the errors.

o 401 Unauthorized: The client is not authenticated and

needs to provide credentials.

o 403 Forbidden: The client is authenticated but does not

have permission to access the requested resource.

o 404 Not Found: The requested resource could not be

found.

o 422 Unprocessable Entity: The request was well-

formed but contained semantic errors (e.g., validation

errors on fields).

o 500 Internal Server Error: An unexpected error

occurred on the server. Avoid revealing sensitive

details.

o 502 Bad Gateway / 503 Service Unavailable: Indicate

issues with upstream services or temporary server

overload. Handle all error codes clearly and

consistently, providing a meaningful error payload.

 Clear and Developer-Friendly Error Messages: For

all client-side (4xx) and server-side (5xx) errors,

provide clear, structured, and developer-friendly error

messages in the response body. This aids significantly

in debugging. A good error object format might

include:

JSON

{

"errors": [

{

"code": "VALIDATION_ERROR", // A machine-readable

error code

"message": "The email address provided is not valid.", // A

human-readable message

"field": "email", // Optional: The specific field causing the

error

"details": "Ensure the email follows the format

user@example.com.", // Optional: More detailed

explanation or suggestion

"Trace ID": "abc-123-def-456-ghi" // A unique ID for

tracing this error in server logs

}

]

}

Including multiple error objects in the errors array is useful

for bulk operations or validating multiple fields at once.

 Support for Localization of Messages: Where

applicable, especially for user-facing error messages or

display hints returned by the API, design the API to

support localization. This can often be achieved by

respecting the Accept-Language HTTP header sent by

the client. The API can then return messages in the

requested language, or provide localization keys that

the UI can use to look up translations from its own

internationalization (i18n) resources.

5. API Governance and Standards

Establishing strong API governance and adhering to defined

standards are crucial for maintaining quality, consistency,

and security across your API landscape.

 Comprehensive OpenAPI/Swagger Specifications:
Maintain accurate, up-to-date, and machine-readable

API contracts using the OpenAPI Specification

(formerly swagger). These specifications serve as the

single source of truth for your API's design, detailing

endpoints, request/response schemas, authentication

methods, and more. They enable consumer client SDK

auto-generation, automated testing (contract testing),

interactive API documentation, and easier integration

for UI developers.

 Published API Style Guides: Develop and publish an

internal API style guide that clearly defines

organizational standards and best practices. This guide

should cover aspects like naming conventions (for

paths, parameters, fields), preferred error formatting,

consistent HTTP verb usage for CRUD operations,

rules for request and response structures, versioning

strategies, and pagination guidelines. Making this guide

easily accessible promotes consistency across all API

development teams.

 Defined Security Standards and Enforcement

Points: Clearly define and document the security

requirements for all APIs. This includes specifying

mandatory authentication mechanisms (e.g., OAuth 2.0

flows, JWT validation), authorization rules (e.g., role-

based access control scopes), requirements for rate

limits and throttling, policies for input validation, and

expectations for secure communication (TLS). Often,

many of these security concerns can be enforced

consistently at an API gateway level.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 76 ~

 Controlled Schema Evolution Practices: Establish

clear practices for managing changes to your API

schemas, especially breaking changes. Utilize feature

flags for rolling out new functionality incrementally or

rely on the established API versioning strategy to

introduce backward-incompatible changes gracefully,

allowing existing consumer’s time to migrate. Always

communicate upcoming changes and deprecation

timelines proactively.

 Automated Linting and Validation Tools: Integrate

automated tools into your development and CI/CD

workflows to enforce adherence to your API style guide

and OpenAPI specifications. Tools like Spectral,

Stoplight Prism, or other API linters can automatically

check OpenAPI documents for consistency,

correctness, and compliance with predefined rulesets,

catching issues before they reach production.

6. Performance and Optimization for UI

UI-facing APIs must be highly performant to ensure a

smooth and responsive user experience.

 Strategic Aggregation & Resource Batching: To

reduce the number of HTTP round-trips from the UI,

which can significantly impact perceived performance

(especially on mobile networks), design endpoints that

aggregate data from multiple underlying sources or

allow batching of operations. For example, a

/dashboard-summary endpoint might combine data that

would otherwise require several individual API calls.

Similarly, allow batch creation or update of resources

where appropriate (e.g., POST /users/batch-create).

 Effective Data Compression: Always serve API

responses with HTTP compression using algorithms

like gzip or Brotli. Modern browsers and HTTP clients

universally support these. Configure your web servers,

reverse proxies, or API gateways to handle compression

automatically based on the Accept-Encoding request

header. This can drastically reduce payload sizes and

improve transfer times.

 Handling Asynchronous Operations Gracefully: For

operations that are long-running or cannot complete

immediately (e.g., generating a large report, processing

a video), design the API to handle them asynchronously

to avoid blocking the UI. Common patterns include:

o Polling: The API immediately returns a 202 Accepted

response with a status URI. The client then polls this

URI until the operation is complete.

o Webhooks: The client provides a callback URL, and

the API notifies the client via an HTTP POST to this

URL when the operation is done.

o Server-Sent Events (SSE) / WebSockets: For real-

time updates or continuous data streams, consider using

SSE (for server-to-client unidirectional communication)

or WebSockets (for bidirectional communication).

 Efficient Client-Side and Intermediary Caching:
Leverage HTTP caching headers effectively to allow

UIs and intermediary caches (like CDNs or browser

caches) to store and reuse responses, reducing the need

to re-fetch data. Key headers include:

o ETag: An identifier for a specific version of a resource.

Used with If-None-Match to avoid re-fetching if the

resource hasn't changed.

o Last-Modified: The date the resource was last

modified. Used with If-Modified-Since.

o Cache-Control: Directives for caching behavior (e.g.,

public, private, max-age, no-cache, no-store).

Protective Rate Limiting and Quotas: Protect your API

endpoints from abuse (both intentional and unintentional) by

implementing clear rate limits (requests per time window)

and quotas. These can be applied at the IP level, user level,

or API key level. Clearly communicate these limits to

clients, often via HTTP response headers like X-RateLimit-

Limit, X-RateLimit-Remaining, and X-RateLimit-Reset

(providing the Unix timestamp when the quota will reset).

7. Security Best Practices

Security is paramount for any API, especially those

exposed to user interfaces

 Robust Token-Based Authentication (OAuth 2.0 and

JWT): Secure your APIs using industry-standard

token-based authentication mechanisms, typically

OAuth 2.0 for authorization flows and JSON Web

Tokens (JWTs) as bearer tokens. Enforce practices like

using short-lived access tokens, implementing secure

refresh token mechanisms, regularly rotating secrets

and signing keys, and validating token signatures and

claims (e.g., iss, aud, exp) on every request.

 Fine-Grained Role-Based Access Control (RBAC)

and Scope Validation: Beyond authentication (who the

user is), implement robust authorization (what the user

is allowed to do). Enforce fine-grained permissions

based on user roles or OAuth scopes associated with the

access token. Ensure that users can only access

resources and perform actions appropriate for their

assigned privileges.

 Rigorous Input Sanitization and Validation: Protect

against common injection vulnerabilities (e.g., SQL

injection, NoSQL injection, XSS if API responses are

rendered directly as HTML, command injection) by

validating all incoming data (path parameters, query

parameters, request bodies) against strict schemas and

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 77 ~

sanitizing inputs where appropriate before they are used

in queries or commands. Use well-vetted libraries for

validation.

 Effective Rate Limits, Throttling, and Spike Arrest:
Implement robust mechanisms to protect your API

endpoints from various forms of abuse, including

denial-of-service attacks or runaway client scripts. This

includes IP-level or token-level rate limits, request

throttling to smooth out traffic bursts, and potentially

spike arrest policies to block sudden, abnormally high

traffic from a single source.

 TLS Everywhere for Data in Transit: Mandate the

use of HTTPS (HTTP over TLS) for all API

communication to encrypt data in transit and protect

against man-in-the-middle attacks. Use strong, up-to-

date TLS ciphers and protocols. Implement

mechanisms for automatic SSL/TLS certificate renewal

and consider features like HTTP Strict Transport

Security (HSTS) to enforce HTTPS usage by clients.

 Principle of Least Privilege for API Keys/Service

Accounts: If the API itself needs to communicate with

other downstream services using API keys or service

accounts, ensure these identities are configured with the

absolute minimum set of permissions required for their

function.

8. Testing and CI/CD Integration

Thorough testing and seamless CI/CD integration are vital

for maintaining API quality and enabling rapid, reliable

delivery.

 Comprehensive Unit Testing: Write unit tests to

validate the individual components that drive your API,

such as request handlers, controllers, data

serializers/deserializers, business logic services, and

custom validation rules. These tests should be fast,

isolated, and cover both positive and negative

scenarios, including edge cases.

 Rigorous Schema & Contract Testing: Implement

automated tests to ensure that your API adheres to its

defined OpenAPI/Swagger specification and that no

unintended contract drift occurs between the API

provider and its UI consumers. Tools like Pact (for

consumer-driven contract testing) or Dredd (for

validating against OpenAPI specs) can be invaluable

here. These tests catch breaking changes early.

 Focused Integration Testing: Conduct integration

tests to verify the interactions between your API layer

and its immediate dependencies, such as databases,

message queues, or other backend services. For these

tests, it's common to use mock or stubbed versions of

downstream services to ensure test isolation, speed, and

determinism, focusing on the contract and interaction

logic rather than the full behavior of the dependency.

 Targeted E2E Tests for API-UI Alignment and

Critical Flows: While extensive E2E testing is often

complex, include a select suite of E2E tests that confirm

critical real-world user flows involving both the UI and

the API. These tests might simulate actions like user

registration, form submission, complex data

synchronization, or multi-step checkout processes,

ensuring that the API and UI are correctly aligned in

practice.

 Automated CI Pipelines: Integrate all types of tests

(unit, contract, integration) into your Continuous

Integration (CI) pipelines using tools like GitHub

Actions, Jenkins, GitLab CI, or Azure DevOps.

Automate the validation of your OpenAPI specification

within these pipelines using linters and contract testing

tools. Ensure that builds fail if any tests or validation

checks do not pass.

 Stable and Isolated Test Environments: Maintain

stable, isolated, and reproducible test environments

(e.g., dev, QA, staging) that mirror your production

environment as closely as possible. These environments

should have appropriately seeded test data to facilitate

comprehensive API verification by both automated tests

and manual exploratory testing. Consider using

containerization or IaC for managing these

environments.

9. Maintainability and Evolution

Designing an API for long-term maintainability and graceful

evolution is crucial for its sustained success.

 Modular and Domain-Driven API Design: Structure

your API endpoints and underlying service logic by

cohesive business domains or distinct features, rather

than by technical layers or CRUD operations on single

database tables. This modular approach makes the API

easier to understand, manage, and scale as new features

are added or existing ones are modified. It also allows

different teams to own different parts of the API more

effectively.

 Strict Adherence to Backwards Compatibility (or

Versioning): For any given API version, never

introduce breaking changes that would disrupt existing

UI clients. If a breaking change is unavoidable (e.g.,

removing a field, changing a data type, altering an

endpoint path), introduce it in a new API version (e.g.,

/v2/) and provide a clear migration path and deprecation

timeline for the older version.

 Synchronized and Accessible Documentation: Ensure

that your API documentation is always accurate,

comprehensive, and easily accessible to UI developers

and other consumers. Ideally, b (e.g., using tools like

Swagger UI, ReDoc, or SpringDoc). This guarantees

that the documentation reflects the actual API contract

and stays in sync with code changes.

 Proactive Monitoring, Logging, and Alerting:
Implement comprehensive monitoring and alerting

using Application Performance Management (APM)

tools (e.g., Datadog, New Relic, Dynatrace) or cloud

provider-native solutions. Track key API metrics such

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 78 ~

as request latency (p50, p90, p99), error rates (by status

code and endpoint), request throughput, and resource

utilization. Set up alerts for unusual traffic patterns,

spikes in error rates, or performance degradation to

enable proactive issue detection and resolution.

 Deep Observability with Distributed Tracing:
Enhance observability by ensuring that unique trace IDs

are generated or ingested at the API gateway or initial

request handler. These trace IDs should be included in

all structured logs and propagated through headers to

any downstream services called by the API. This allows

for distributed tracing, making it possible to follow a

single request's journey across multiple microservices

or components, which is invaluable for debugging

complex issues in a distributed environment.

 Clear Deprecation Strategy and Communication:
When an older API version or specific endpoints need

to be retired, establish and clearly communicate a

deprecation strategy. This should include publishing a

deprecation timeline, providing a comprehensive

migration guide to the new version or alternative

endpoints, and potentially offering temporary support

or brownout periods to encourage consumers to

migrate. Proactive communication minimizes

disruption for your API consumers.

10. Conclusion

The REST API layer that serves as the critical interface

between sophisticated User Interfaces and backend systems

holds significantly more responsibility than just shuttling

data back and forth it meticulously embodies the

application's presentation logic, defines the structure of

client-server interactions, and underpins the overall

reliability and responsiveness required to deliver rich,

engaging, and seamless user experiences. Building this

intermediary layer with unwavering clarity in its contracts,

consistency in its design patterns, and long-term

maintainability as core tenets profoundly reduces frontend

development complexity, accelerates parallel development

efforts across teams, and makes the inevitable process of

troubleshooting and issue resolution significantly faster and

more efficient.

From the meticulous enforcement of API contracts and

thoughtful schema design to strategic performance

optimizations and the embedding of comprehensive

Observability, a well-architected UI-facing REST API

becomes a powerful enabler. It enhances collaboration and

understanding between frontend and backend teams,

facilitates rapid feedback loops within automated CI/CD

pipelines, and ensures remarkable stability and resilience

even as applications undergo continuous evolution and scale

to meet growing demands. Adhering to the principles, best

practices, and considerations outlined throughout this

document empowers engineering teams to consistently

deliver scalable, secure, performant, and future-proof REST

APIs specifically tailored and optimized for the unique

demands of modern UI consumption, ultimately

contributing to a superior end-user experience.

11. References
1. Fielding RT. Architectural Styles and the Design of

Network-based Software Architectures. [Doctoral

dissertation]. University of California, Irvine; 2000.

Available from:

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.

htm

2. Richardson L, Ruby S. Restful Web Services.

Sebastopol: O'Reilly Media, 2007.

3. OpenAPI Initiative. OpenAPI Specification v3.0.0,

2017. Available from:

https://github.com/OAI/OpenAPI-

Specification/blob/main/versions/3.0.0.md

4. Hardt D. The OAuth 2.0 Authorization Framework

(RFC 6749). Internet Engineering Task Force (IETF);

2012. Available from: https://tools.ietf.org/html/rfc6749

5. Jones MB, Bradley J, Sakimura N. JSON Web Token

(JWT), RFC 7519. IETF, 2015. Available from:

https://tools.ietf.org/html/rfc7519

6. Zalando. Restful API Guidelines, 2016. Available from:

https://opensource.zalando.com/restful-api-guidelines

Microsoft Docs. Versioning a REST API, 2019.

Available from: https://learn.microsoft.com/en-

us/azure/architecture/best-practices/api-design

7. Postman. The State of the API: Developer Survey

Results, 2018. Available from:

https://www.postman.com/state-of-api/api-testing

8. Stoplight. API Style Guide: Spectral Linting Rules,

2020. Available from:

https://docs.stoplight.io/docs/spectral

9. Reddy PR, Chakravarthi P. An Approach for testing

restful web services using dynamic test case generation.

Int J Web Semant Technol. 2016;7(1):1-12. DOI:

10.5121/ijwest.2016.7101

10. Arcuri A, Briand LC. A Hitchhiker’s guide to statistical

tests for assessing randomized algorithms in software

engineering. Softw Test Verif Reliab. 2014;24(3):219-

250. DOI: 10.1002/stvr.1486

11. Github Engineering. API Versioning at GitHub, 2016.

Available from: https://github.blog/2013-05-16-api-v3-

is-officially-out-of-beta

https://www.computersciencejournals.com/ijecs

