International Journal of Engineering in Computer Science 2019; 1(1): 73-78

International Journal of

Engineering in Computer Science

E-ISSN: 2663-3590

P-ISSN: 2663-3582
WWW.computersciencejournals.c
om/ijecs

IJECS 2019; 1(1): 73-78
Received: 15-05-2019
Accepted: 18-06-2019

Pradeepkumar Palanisamy
Anna University, Chennai,
Tamil Nadu, India

Corresponding Author:
Pradeepkumar Palanisamy
Anna University, Chennai,

Tamil Nadu, India

Designing and maintaining a robust rest API for Ul
Architectures

Pradeepkumar Palanisamy

DOI: https://www.doi.org/10.33545/26633582.2019.v1.i1a.188

Abstract

The REST API that connects the User Interface (Ul) to backend systems is crucial in modern
application architectures. It's responsible for delivering business logic to users efficiently, securely, and
scalably. This Ul-facing API layer differs from domain APIs, which interact directly with core backend
services or databases. Its specific tasks include shaping data for frontend consumption, enforcing view-
level rules, aggregating results from various sources, and optimizing data payloads. Successfully
building and maintaining such an API requires careful design, adherence to industry standards, ongoing
validation through testing, and close collaboration between frontend and backend development teams.
This document serves as a comprehensive guide to designing, building, and sustaining REST APIs that
effectively support Ul architectures while ensuring high quality, robust security, and long-term
maintainability for evolving digital products.

Keywords: REST API Design, Ul Architecture, APl First Development, APl Testing, Swagger,
OpenAPI, API Versioning, Pagination Strategies, Advanced Error Handling, APl Governance, CI/CD
for APIs, Business Logic Layer, APl Contracts, Field Masking, Consumer-Focused APIs, API
Consistency, Agile AP1 Development, APl Security, AP1 Performance, AP1 Observability, HATEOAS,
Idempotency, Rate Limiting

1. Introduction

In modern, dynamic web and mobile application architectures, the REST API that bridges
the User Interface (Ul) and backend systems plays an undeniably pivotal role. It's not merely
a data conduit but a critical component responsible for delivering complex business logic,
orchestrating service interactions, and presenting information to users in a performant,
secure, and highly scalable manner. Unlike domain-specific APIs that interact directly with
core backend services, databases, or third-party systems, the Ul-facing REST API layer has
distinct responsibilities. These include meticulously shaping data into view-specific models,
rigorously enforcing presentation-layer business rules and validation logic, efficiently
aggregating results from potentially multiple downstream sources, and optimizing data
payloads to ensure minimal latency and optimal consumption by diverse frontend clients
(e.g., single-page applications, native mobile apps, or even other internal Uls).

Building, evolving, and maintaining this crucial REST API layer demands thoughtful and
forward-thinking design principles, strict adherence to established industry standards and
best practices, continuous and automated validation across multiple stages, and exceptionally
close, ongoing coordination between frontend development teams, backend engineering
teams, and often product stakeholders. This document presents a comprehensive and
actionable guide to designing, building, validating, and maintaining REST APIs that serve
Ul architectures effectively. The focus is on ensuring not only immediate functional
requirements but also long-term quality, robust security, predictable performance, and
overall maintainability as the application and its user base grow and evolve.

2. Core principles of a well-designed REST API for Ul

A well-architected REST API for Ul consumption is built upon several foundational

principles that ensure its effectiveness, resilience, and ease of use.

e Clear Separation of Concerns: Maintain a strict isolation between Ul-specific logic
(data transformation, view model preparation), core domain business logic (fundamental
business rules and processes), and underlying data access logic.

~ 73~

www.computersciencejournals.com/ijecs
www.computersciencejournals.com/ijecs
https://www.doi.org/10.33545/26633582.2019.v1.i1a.188

International Journal of Engineering in Computer Science

REST APIs designed for Ul consumption should act as
an orchestration and presentation layer, never bypassing
established domain rules or directly fetching raw,
unstructured data from persistence layers. This
separation enhances modularity, testability, and allows
different layers to evolve independently.

Consistency and Predictability in Contracts: Provide
an unwavering and consistent structure across all API
endpoints, including URL patterns, request payload
formats, response data structures, and error message
formats. Predictable APIs significantly reduce the
cognitive load on Ul developers, minimize frontend
code complexity by allowing reusable components for
data handling, and drastically shorten the onboarding
time for new developers joining the team. This includes
consistent use of HTTP methods and status codes.
Efficient Data Shaping, Filtering, and Projection:
The API should be designed to return precisely the data
necessary for a given Ul view or component—it must
assiduously avoid both over-fetching (sending
excessive, unused data that bloats payloads and
increases latency) and under-fetching (requiring the Ul
to make multiple subsequent calls to gather all
necessary information for a single view). Implement
mechanisms like field selection (projections) to allow
Ul consumers granular control over the data fields
returned, empowering them to optimize for specific use
cases.

Robust Versioning Strategy: It's paramount to never
introduce breaking changes to existing consumers
without a clear and well-communicated versioning
strategy. Utilize URI-based semantic versioning (e.g.,
Ivl/resource, /v2/resource) or allow consumers to
request specific versions via custom HTTP headers
(e.g., Accept-Version: v1.2). This approach allows for
the introduction of backward-incompatible
improvements or structural changes while ensuring
existing Ul clients continue to function without
disruption.

Statelessness of Interactions: Each individual request
from a Ul client to the REST API must contain all the
necessary context and information required for the API
to process that request independently. The API should
not rely on or store any session state related to a
particular client between requests. This stateless design
simplifies scaling (as requests can be routed to any
available server instance), improves resilience, and
makes caching strategies (both on the server-side and
client-side) more straightforward and effective.
Enhanced Transparency and Comprehensive
Observability: Design and build the API with
production monitoring and operational support in mind
from day one. This includes implementing structured
logging (e.g., JSON-formatted logs) with rich
contextual information, ensuring all requests are tagged
with traceable request IDs that propagate through
downstream services, and defining and exposing clearly
defined metrics (e.g., request latency, error rates,
throughput per endpoint) to facilitate proactive
production monitoring, rapid troubleshooting, and
performance analysis.

https://www.computersciencejournals.com/ijecs

of usability and discoverability for Ul developers.

Resource-Oriented URIs with Clear Hierarchies:
Design your URIs around logical resources that the Ul
needs to interact with (e.g., /users, /products, /orders).
Use nouns to represent resources and leverage path
nesting to indicate relationships or hierarchies (e.g.,
{users/{userld}/accounts/{accountld}/transactions).
Avoid using verbs or specific operations in URIs
(e.g., /getUserAccountsByld or /processNewOrder).
HTTP methods (GET, post, put, delete, patch) should
define the action being performed on the resource.
Strategic Use of Query Parameters for Flexibility:
Empower Ul clients by allowing them to customize
responses through well-defined query parameters.
These are essential for implementing features such as
filtering (e.g., ?status=active), sorting (e.g., ?sort=
createdAt:desc), full-text searching (e.g., ?q=keyword),
and efficient pagination (e.g., ?limit=20&offset=40 or
?pageSize=10&pageToken=xyz).

Effective Pagination for Large Datasets: When
dealing with collections that can return a large number
of items, always implement pagination to ensure
performance and manageability. Choose between
cursor-based pagination (which uses an opaque token
pointing to the next/previous item, offering better
stability against data changes and optimal performance
for very large datasets) or offset-based pagination
(simpler to implement wusing limit and offset
parameters, but can have performance issues or
inconsistent results if data changes frequently during
pagination). Provide clear pagination metadata in
responses (e.g., total items, next/previous page links).
Granular Field Selection (Projections): To reduce
payload size, minimize data transfer, and improve Ul
rendering performance, allow clients to specify exactly
which fields of a resource they need. This is commonly
implemented using a query parameter like
?fields=id,name,email,profile.avatarUrl. This prevents
over-fetching and is particularly useful for mobile
clients or performance-sensitive Uls.

Support for HATEOAS (Hypermedia as the Engine
of Application State) where Beneficial: In certain
scenarios, particularly for complex workflows or
discoverable APIs, consider including HATEOAS-style
navigational links within your API responses (e.g.,
using a _links attribute). These links guide the client on
possible next actions or related resources, which can
reduce client-side hardcoding of URIs and improve the
overall discoverability and evolvability of the API.
Consistent and Documented Naming Conventions:
Establish and enforce consistent naming conventions
for resource names, path parameters, query parameters,
and JSON fields. Typically, use plural nouns for
resource collections (e.g., /users not /user). Choose a
case convention (e.g., snake_case or camelCase) that
aligns with your primary backend language ecosystem
norms or organizational standards. Document all
naming patterns, conventions, and common parameter
names clearly in your API style guide and OpenAPI
specification.

4. Response Structure and Formatting

3. Designing REST Endpoints for Ul Consumers
The design of your API endpoints (URISs) is a critical aspect

Consistent and informative response structures are key to a
good developer experience for Ul teams.

~74 ~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

e Standardized Response Enveloping: Consistently
wrap all API responses, both successful and error
responses, within a standard envelope structure. This
provides a predictable way for clients to parse data,
metadata, and error information. A common pattern
includes:

JSON

"data": { /* main response payload for success, or
null/empty for errors */ },

"meta": { /* pagination info, request IDs, custom metadata
*/ }’

"errors"; [/* array of error objects, empty for success */]

}

The meta object can also contain information about the
request itself or additional context useful to the client.

e Strict Adherence to Standard HTTP Status Codes:
Adhere rigorously to the semantics of standard HTTP
status codes to convey the outcome of API requests.
This allows HTTP clients and intermediaries (like
caches or load balancers) to behave correctly. Key
examples include:

o 200 OK: Successful retrieval of a resource (response
body typically contains the resource).

o 201 Created: A new resource was successfully created
(response body often contains the newly created
resource, and a Location header points to it).

o 202 Accepted: The request has been accepted for
processing, but the processing has not been completed
(often used for asynchronous operations).

o 204 No Content: The request was successful, but there
is no response body to return (e.g., for a successful
DELETE operation).

o 400 Bad Request: The request was malformed or
contained invalid parameters (client-side error). The
response body should detail the errors.

o 401 Unauthorized: The client is not authenticated and
needs to provide credentials.

o 403 Forbidden: The client is authenticated but does not
have permission to access the requested resource.

o 404 Not Found: The requested resource could not be
found.

o 422 Unprocessable Entity: The request was well-
formed but contained semantic errors (e.g., validation
errors on fields).

o 500 Internal Server Error: An unexpected error
occurred on the server. Avoid revealing sensitive
details.

o 502 Bad Gateway / 503 Service Unavailable: Indicate
issues with upstream services or temporary server
overload. Handle all error codes clearly and
consistently, providing a meaningful error payload.

e Clear and Developer-Friendly Error Messages: For
all client-side (4xx) and server-side (5xx) errors,
provide clear, structured, and developer-friendly error
messages in the response body. This aids significantly
in debugging. A good error object format might
include:

JSON
{

https://www.computersciencejournals.com/ijecs

"errors"; [

"code": "VALIDATION_ERROR", // A machine-readable
error code

"message™: "The email address provided is not valid.", // A
human-readable message

"field": "email", // Optional: The specific field causing the
error

"details": "Ensure the email follows the
user@example.com.”, /[Optional: More
explanation or suggestion

"Trace ID": "abc-123-def-456-ghi" // A unique ID for
tracing this error in server logs

}

]

}

Including multiple error objects in the errors array is useful

for bulk operations or validating multiple fields at once.

e Support for Localization of Messages: Where
applicable, especially for user-facing error messages or
display hints returned by the API, design the API to
support localization. This can often be achieved by
respecting the Accept-Language HTTP header sent by
the client. The API can then return messages in the
requested language, or provide localization keys that
the Ul can use to look up translations from its own
internationalization (i18n) resources.

format
detailed

5. APl Governance and Standards

Establishing strong API governance and adhering to defined

standards are crucial for maintaining quality, consistency,

and security across your API landscape.

e Comprehensive OpenAPIl/Swagger Specifications:
Maintain accurate, up-to-date, and machine-readable
APl contracts using the OpenAPI Specification
(formerly swagger). These specifications serve as the
single source of truth for your API's design, detailing
endpoints, request/response schemas, authentication
methods, and more. They enable consumer client SDK
auto-generation, automated testing (contract testing),
interactive APl documentation, and easier integration
for Ul developers.

e Published API Style Guides: Develop and publish an
internal APl style guide that clearly defines
organizational standards and best practices. This guide
should cover aspects like naming conventions (for
paths, parameters, fields), preferred error formatting,
consistent HTTP verb usage for CRUD operations,
rules for request and response structures, versioning
strategies, and pagination guidelines. Making this guide
easily accessible promotes consistency across all API
development teams.

e Defined Security Standards and Enforcement
Points: Clearly define and document the security
requirements for all APIs. This includes specifying
mandatory authentication mechanisms (e.g., OAuth 2.0
flows, JWT validation), authorization rules (e.g., role-
based access control scopes), requirements for rate
limits and throttling, policies for input validation, and
expectations for secure communication (TLS). Often,
many of these security concerns can be enforced
consistently at an API gateway level.

~ 75~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

Controlled Schema Evolution Practices: Establish
clear practices for managing changes to your API
schemas, especially breaking changes. Utilize feature
flags for rolling out new functionality incrementally or
rely on the established API versioning strategy to
introduce backward-incompatible changes gracefully,
allowing existing consumer’s time to migrate. Always
communicate upcoming changes and deprecation
timelines proactively.

Automated Linting and Validation Tools: Integrate
automated tools into your development and CI/CD
workflows to enforce adherence to your API style guide
and OpenAPI specifications. Tools like Spectral,
Stoplight Prism, or other API linters can automatically
check OpenAPl documents for consistency,
correctness, and compliance with predefined rulesets,
catching issues before they reach production.

6. Performance and Optimization for Ul

Ul-facing APIs must be highly performant to ensure a
smooth and responsive user experience.

Strategic Aggregation & Resource Batching: To
reduce the number of HTTP round-trips from the Ul,
which can significantly impact perceived performance
(especially on mobile networks), design endpoints that
aggregate data from multiple underlying sources or
allow batching of operations. For example, a
/dashboard-summary endpoint might combine data that
would otherwise require several individual API calls.
Similarly, allow batch creation or update of resources
where appropriate (e.g., POST /users/batch-create).
Effective Data Compression: Always serve API
responses with HTTP compression using algorithms
like gzip or Brotli. Modern browsers and HTTP clients
universally support these. Configure your web servers,
reverse proxies, or APl gateways to handle compression
automatically based on the Accept-Encoding request
header. This can drastically reduce payload sizes and

https://www.computersciencejournals.com/ijecs

improve transfer times.

Handling Asynchronous Operations Gracefully: For
operations that are long-running or cannot complete
immediately (e.g., generating a large report, processing
a video), design the API to handle them asynchronously
to avoid blocking the Ul. Common patterns include:
Polling: The API immediately returns a 202 Accepted
response with a status URI. The client then polls this
URI until the operation is complete.

Webhooks: The client provides a callback URL, and
the API notifies the client via an HTTP POST to this
URL when the operation is done.

Server-Sent Events (SSE) / WebSockets: For real-
time updates or continuous data streams, consider using
SSE (for server-to-client unidirectional communication)
or WebSockets (for bidirectional communication).
Efficient Client-Side and Intermediary Caching:
Leverage HTTP caching headers effectively to allow
Uls and intermediary caches (like CDNs or browser
caches) to store and reuse responses, reducing the need
to re-fetch data. Key headers include:

ETag: An identifier for a specific version of a resource.
Used with If-None-Match to avoid re-fetching if the
resource hasn't changed.

Last-Modified: The date the resource was
modified. Used with If-Modified-Since.
Cache-Control: Directives for caching behavior (e.g.,
public, private, max-age, no-cache, no-store).

last

Protective Rate Limiting and Quotas: Protect your API
endpoints from abuse (both intentional and unintentional) by
implementing clear rate limits (requests per time window)
and quotas. These can be applied at the IP level, user level,
or APl key level. Clearly communicate these limits to
clients, often via HTTP response headers like X-RateLimit-
Limit, X-RateLimit-Remaining, and X-RateLimit-Reset
(providing the Unix timestamp when the quota will reset).

Unbatched Network Calls
Over-Fetching Data

Lack of GZIP Compression
Missing Field Projections

High Payload Size

Top Performance Bottlenecks in Ul-Facing APIs (%)

7. Security Best Practices

Security is paramount for any API, especially those
exposed to user interfaces

Robust Token-Based Authentication (OAuth 2.0 and
JWT): Secure your APIs using industry-standard
token-based authentication mechanisms, typically
OAuth 2.0 for authorization flows and JSON Web
Tokens (JWTSs) as bearer tokens. Enforce practices like
using short-lived access tokens, implementing secure
refresh token mechanisms, regularly rotating secrets
and signing keys, and validating token signatures and
claims (e.g., iss, aud, exp) on every request.
Fine-Grained Role-Based Access Control (RBAC)

~76 ~

and Scope Validation: Beyond authentication (who the
user is), implement robust authorization (what the user
is allowed to do). Enforce fine-grained permissions
based on user roles or OAuth scopes associated with the
access token. Ensure that users can only access
resources and perform actions appropriate for their
assigned privileges.

Rigorous Input Sanitization and Validation: Protect
against common injection vulnerabilities (e.g., SQL
injection, NoSQL injection, XSS if API responses are
rendered directly as HTML, command injection) by
validating all incoming data (path parameters, query
parameters, request bodies) against strict schemas and

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

sanitizing inputs where appropriate before they are used
in queries or commands. Use well-vetted libraries for
validation.

o Effective Rate Limits, Throttling, and Spike Arrest:
Implement robust mechanisms to protect your API
endpoints from various forms of abuse, including
denial-of-service attacks or runaway client scripts. This
includes IP-level or token-level rate limits, request
throttling to smooth out traffic bursts, and potentially
spike arrest policies to block sudden, abnormally high
traffic from a single source.

e TLS Everywhere for Data in Transit: Mandate the
use of HTTPS (HTTP over TLS) for all API
communication to encrypt data in transit and protect
against man-in-the-middle attacks. Use strong, up-to-
date TLS ciphers and protocols. Implement
mechanisms for automatic SSL/TLS certificate renewal
and consider features like HTTP Strict Transport
Security (HSTS) to enforce HTTPS usage by clients.

e Principle of Least Privilege for APl Keys/Service
Accounts: If the API itself needs to communicate with
other downstream services using APl keys or service
accounts, ensure these identities are configured with the
absolute minimum set of permissions required for their
function.

8. Testing and CI/CD Integration

Thorough testing and seamless CI/CD integration are vital

for maintaining APl quality and enabling rapid, reliable

delivery.

e Comprehensive Unit Testing: Write unit tests to
validate the individual components that drive your API,
such as request handlers, controllers, data
serializers/deserializers, business logic services, and
custom validation rules. These tests should be fast,
isolated, and cover both positive and negative
scenarios, including edge cases.

e Rigorous Schema & Contract Testing: Implement
automated tests to ensure that your API adheres to its
defined OpenAPI/Swagger specification and that no

https://www.computersciencejournals.com/ijecs

unintended contract drift occurs between the API
provider and its Ul consumers. Tools like Pact (for
consumer-driven contract testing) or Dredd (for
validating against OpenAPI specs) can be invaluable
here. These tests catch breaking changes early.

Focused Integration Testing: Conduct integration
tests to verify the interactions between your API layer
and its immediate dependencies, such as databases,
message queues, or other backend services. For these
tests, it's common to use mock or stubbed versions of
downstream services to ensure test isolation, speed, and
determinism, focusing on the contract and interaction
logic rather than the full behavior of the dependency.
Targeted E2E Tests for API-Ul Alignment and
Critical Flows: While extensive E2E testing is often
complex, include a select suite of E2E tests that confirm
critical real-world user flows involving both the Ul and
the API. These tests might simulate actions like user
registration, form submission, complex data
synchronization, or multi-step checkout processes,
ensuring that the APl and Ul are correctly aligned in
practice.

Automated CI Pipelines: Integrate all types of tests
(unit, contract, integration) into your Continuous
Integration (CI) pipelines using tools like GitHub
Actions, Jenkins, GitLab CI, or Azure DevOps.
Automate the validation of your OpenAPI specification
within these pipelines using linters and contract testing
tools. Ensure that builds fail if any tests or validation
checks do not pass.

Stable and Isolated Test Environments: Maintain
stable, isolated, and reproducible test environments
(e.g., dev, QA, staging) that mirror your production
environment as closely as possible. These environments
should have appropriately seeded test data to facilitate
comprehensive API verification by both automated tests
and manual exploratory testing. Consider using
containerization or laC for managing these
environments.

Test Coverage Distribution Across API Layers

9. Maintainability and Evolution

Designing an API for long-term maintainability and graceful

evolution is crucial for its sustained success.

e Modular and Domain-Driven API Design: Structure
your API endpoints and underlying service logic by
cohesive business domains or distinct features, rather
than by technical layers or CRUD operations on single
database tables. This modular approach makes the API
easier to understand, manage, and scale as new features
are added or existing ones are modified. It also allows
different teams to own different parts of the APl more
effectively.

e Strict Adherence to Backwards Compatibility (or
Versioning): For any given APl version, never
introduce breaking changes that would disrupt existing
Ul clients. If a breaking change is unavoidable (e.g.,

~77 ~

removing a field, changing a data type, altering an
endpoint path), introduce it in a new API version (e.g.,
/v2/) and provide a clear migration path and deprecation
timeline for the older version.

Synchronized and Accessible Documentation: Ensure
that your APl documentation is always accurate,
comprehensive, and easily accessible to Ul developers
and other consumers. Ideally, b (e.g., using tools like
Swagger Ul, ReDoc, or SpringDoc). This guarantees
that the documentation reflects the actual API contract
and stays in sync with code changes.

Proactive Monitoring, Logging, and Alerting:
Implement comprehensive monitoring and alerting
using Application Performance Management (APM)
tools (e.g., Datadog, New Relic, Dynatrace) or cloud
provider-native solutions. Track key APl metrics such

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

as request latency (p50, p90, p99), error rates (by status
code and endpoint), request throughput, and resource
utilization. Set up alerts for unusual traffic patterns,
spikes in error rates, or performance degradation to
enable proactive issue detection and resolution.

Deep Observability with Distributed Tracing:
Enhance observability by ensuring that unique trace IDs
are generated or ingested at the API gateway or initial
request handler. These trace IDs should be included in
all structured logs and propagated through headers to
any downstream services called by the API. This allows
for distributed tracing, making it possible to follow a
single request's journey across multiple microservices
or components, which is invaluable for debugging
complex issues in a distributed environment.

Clear Deprecation Strategy and Communication:
When an older API version or specific endpoints need
to be retired, establish and clearly communicate a
deprecation strategy. This should include publishing a
deprecation timeline, providing a comprehensive
migration guide to the new version or alternative
endpoints, and potentially offering temporary support
or brownout periods to encourage consumers to
migrate. Proactive =~ communication minimizes
disruption for your APl consumers.

10. Conclusion

The REST API layer that serves as the critical interface
between sophisticated User Interfaces and backend systems
holds significantly more responsibility than just shuttling
data back and forth it meticulously embodies the
application's presentation logic, defines the structure of
client-server interactions, and underpins the overall
reliability and responsiveness required to deliver rich,
engaging, and seamless user experiences. Building this
intermediary layer with unwavering clarity in its contracts,
consistency in its design patterns, and long-term
maintainability as core tenets profoundly reduces frontend
development complexity, accelerates parallel development
efforts across teams, and makes the inevitable process of
troubleshooting and issue resolution significantly faster and
more efficient.

From the meticulous enforcement of API contracts and
thoughtful schema design to strategic performance
optimizations and the embedding of comprehensive
Observability, a well-architected Ul-facing REST API
becomes a powerful enabler. It enhances collaboration and
understanding between frontend and backend teams,
facilitates rapid feedback loops within automated CI/CD
pipelines, and ensures remarkable stability and resilience
even as applications undergo continuous evolution and scale
to meet growing demands. Adhering to the principles, best
practices, and considerations outlined throughout this
document empowers engineering teams to consistently
deliver scalable, secure, performant, and future-proof REST
APIs specifically tailored and optimized for the unique
demands of modern Ul consumption, ultimately
contributing to a superior end-user experience.

11. References

1. Fielding RT. Architectural Styles and the Design of
Network-based Software Architectures. [Doctoral
dissertation]. University of California, Irvine; 2000.
Auvailable from:

~78 ~

10.

11.

https://www.computersciencejournals.com/ijecs

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.
htm

Richardson L, Ruby S. Restful
Sebastopol: O'Reilly Media, 2007.
OpenAPI Initiative. OpenAPI Specification v3.0.0,
2017. Available from:
https://github.com/OAI/OpenAPI-
Specification/blob/main/versions/3.0.0.md

Hardt D. The OAuth 2.0 Authorization Framework
(RFC 6749). Internet Engineering Task Force (IETF);
2012. Available from: https://tools.ietf.org/html/rfc6749
Jones MB, Bradley J, Sakimura N. JSON Web Token
(JWT), RFC 7519. IETF, 2015. Available from:
https://tools.ietf.org/html/rfc7519

Zalando. Restful API Guidelines, 2016. Available from:
https://opensource.zalando.com/restful -api-guidelines
Microsoft Docs. Versioning a REST API, 2019.
Available from: https://learn.microsoft.com/en-
us/azure/architecture/best-practices/api-design
Postman. The State of the API: Developer Survey
Results, 2018. Available from:
https://www.postman.com/state-of-api/api-testing
Stoplight. API Style Guide: Spectral Linting Rules,
2020. Available from:
https://docs.stoplight.io/docs/spectral

Reddy PR, Chakravarthi P. An Approach for testing
restful web services using dynamic test case generation.
Int J Web Semant Technol. 2016;7(1):1-12. DOI:
10.5121/ijwest.2016.7101

Arcuri A, Briand LC. A Hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software
engineering. Softw Test Verif Reliab. 2014;24(3):219-
250. DOI: 10.1002/stvr.1486

Github Engineering. API Versioning at GitHub, 2016.
Available from: https://github.blog/2013-05-16-api-v3-
is-officially-out-of-beta

Web Services.

https://www.computersciencejournals.com/ijecs

