
~ 67 ~ 

International Journal of Engineering in Computer Science 2022; 4(2): 67-74 

 
 

E-ISSN: 2663-3590 

P-ISSN: 2663-3582 

IJECS 2022; 4(2): 67-74 

Received: 04-08-2022 

Accepted: 25-08-2022 
 

Shylaja Chityala 

Lead Data Engineer, 

Multiplan, Inc 4423 Landsdale 

Pkwy, Monrovia MD 21770, 

United States 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correspondence 

Shylaja Chityala 

Lead Data Engineer, 

Multiplan, Inc 4423 Landsdale 

Pkwy, Monrovia MD 21770, 

United States 

 

AgroFusionNet: A multi-modal AI framework for 

predictive crop yield modeling using satellite imagery, 

weather patterns, and soil data 

 
Shylaja Chityala 

 
Abstract 
Accurate crop yield prediction is fundamental to sustainable agriculture, informed policymaking, and 

global food security. Traditional statistical models are inadequate in harnessing the increasing volume 

of complex, high-dimensional agricultural data, including satellite imagery, granular weather records, 

and detailed soil profiles. To address this, we propose MCYP-Net, a novel multi-modal AI framework 

that integrates these heterogeneous data sources using a hybrid deep learning architecture. The model 

combines convolutional neural networks for spatial feature extraction, recurrent neural networks for 

temporal modeling, and a cross-attention-based fusion mechanism to learn inter-modal dependencies. 

Comprehensive experiments were conducted across diverse agro-climatic regions in the USA (Iowa, 

Nebraska) and India (Punjab, Maharashtra) on three staple crops—maize, wheat, and soybean—using 

multi-year datasets comprising Sentinel-2 imagery, NOAA weather data, and ISRIC soil profiles. 

MCYP-Net consistently outperformed traditional machine learning (Linear Regression, Random 

Forest) and unimodal deep learning baselines (CNN-only, LSTM-only), achieving an R² of 0.91, 

RMSE of 0.42, and MAE of 0.35. Ablation studies confirmed that removing any modality reduced 

performance significantly, validating the synergistic effect of multi-modal integration. Cross-attention 

fusion proved more effective than simpler alternatives, boosting R² by 6%. Region-wise feature 

importance analysis revealed that weather features dominated in temperate zones, while soil and 

vegetation indices were more critical in semi-arid regions, highlighting the model’s context-aware 

adaptability. Visualizations demonstrated strong alignment between predicted and actual yields, 

underscoring the model’s robustness. Overall, MCYP-Net advances state-of-the-art in crop yield 

prediction with high accuracy, interpretability, and scalability for real-world precision agriculture 

applications. 

 

Keywords: Crop yield prediction, multi-modal AI, precision agriculture, satellite imagery, weather 

forecasting, soil data, deep learning, data fusion 

 

1. Introduction 

The agricultural sector stands at the nexus of global food security and environmental 

sustainability. As the world’s population accelerates toward 10 billion by 2040, the demand 

for food is expected to increase by over 70%, placing unprecedented pressure on global 

agricultural systems. In this context, accurate and timely prediction of crop yields is not only 

a scientific necessity but also a socio-economic imperative. Crop yield forecasts inform a 

wide array of decisions, ranging from food supply chain logistics and commodity trading to 

the formulation of government subsidies, insurance premiums, and disaster relief strategies. 

Furthermore, yield prediction models play a pivotal role in anticipating food shortages, 

enabling preemptive action in the face of climatic anomalies or geopolitical instabilities. 

Crop productivity, however, is influenced by a multifaceted interplay of factors, including 

but not limited to soil fertility, climatic conditions, agricultural management practices, 

disease and pest infestations, and genetic traits of the crops themselves. These parameters 

exhibit both spatial and temporal heterogeneity, introducing considerable variability and 

uncertainty into the yield prediction task. Traditional modeling approaches, such as linear 

regression, autoregressive integrated moving average (ARIMA) models, and crop growth 

simulation models like DSSAT and APSIM, have provided valuable insights in the past. 

Nevertheless, these methods suffer from inherent limitations. They often assume stationarity, 

linearity, or idealized crop-environment interactions, and rely on heavily curated datasets 

that do not generalize well across regions or crop types. 

Moreover, conventional yield prediction models tend to be unimodal in nature, focusing  



International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs 

~ 68 ~ 

solely on either historical yield trends or isolated 

environmental parameters. Such models are ill-equipped to 

handle high-dimensional, non-linear relationships across 

heterogeneous data sources, resulting in limited predictive 

accuracy and poor scalability. For instance, a regression 

model trained on tabular weather data from a single region 

might perform poorly when applied to another with different 

agro-climatic characteristics. Additionally, many existing 

models overlook the dynamic progression of crop growth 

and the phenological changes observable through satellite 

remote sensing, which contain rich temporal and spatial 

signals relevant to yield estimation. 

In recent years, the proliferation of Earth Observation (EO) 

data, advances in climate modeling, and widespread 

digitization of agricultural practices have created a fertile 

ground for the development of next-generation yield 

prediction models. Remote sensing technologies now 

provide high-resolution multi-spectral and hyper-spectral 

imagery at frequent intervals, capturing vegetation indices 

such as NDVI (Normalized Difference Vegetation Index), 

EVI (Enhanced Vegetation Index), and SAVI (Soil Adjusted 

Vegetation Index) that serve as proxies for plant health, 

biomass, and photosynthetic activity. Concurrently, ground-

based weather stations and global reanalysis datasets offer 

fine-grained meteorological data, including temperature, 

rainfall, solar radiation, and humidity. Soil characteristics, 

traditionally collected through expensive and infrequent 

field sampling, are now available in standardized digital 

formats through global databases such as ISRIC and 

SoilGrids, offering spatially-resolved insights into pH, 

organic carbon content, and texture. 

The convergence of these diverse data streams presents a 

unique opportunity to rethink crop yield modeling through 

the lens of artificial intelligence (AI), particularly deep 

learning and multi-modal data fusion. Multi-modal AI refers 

to systems capable of processing and integrating inputs from 

disparate modalities such as images, text, time-series, and 

structured tabular data to derive enriched representations 

and perform complex decision-making tasks. In the context 

of agriculture, this entails the fusion of satellite imagery, 

climate time-series, and soil attributes to capture a 

comprehensive, context-aware view of crop growth 

conditions. 

Deep learning models, especially convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), 

have shown remarkable success in domains such as 

computer vision and natural language processing. CNNs are 

particularly adept at extracting spatial hierarchies from 

images, making them well-suited for analyzing satellite 

imagery. On the other hand, RNNs, especially Long Short-

Term Memory (LSTM) networks and their variants, are 

designed to handle sequential data, capturing long-term 

dependencies in temporal weather patterns. Dense or fully 

connected networks are effective for handling low-

dimensional structured inputs such as soil properties. The 

challenge, however, lies in integrating these architectures 

into a unified, end-to-end trainable system that can 

harmonize the spatial, temporal, and static features into a 

coherent predictive model. 

Despite the transformative potential of multi-modal AI, 

several challenges persist. First, data alignment across 

modalities is non-trivial. Satellite imagery may be available 

at different spatial and temporal resolutions than weather or 

soil data, requiring sophisticated pre-processing techniques 

for synchronization. Second, missing data and noise are 

prevalent in real-world agricultural datasets, especially in 

developing regions where infrastructure may be inadequate. 

Third, modality-specific biases can dominate the learning 

process if not carefully normalized and regularized, leading 

to suboptimal fusion outcomes. Finally, interpretability and 

explainability critical for user trust and adoption among 

farmers and policymakers remain open problems in deep 

learning models, especially those operating on black-box 

architectures. 

In light of these challenges, this paper proposes a unified 

multi-modal AI framework for predictive crop yield 

modeling that effectively captures the complex spatio-

temporal and geophysical interactions underlying 

agricultural productivity. Our model is structured around a 

three-branch architecture tailored to each data modality. The 

first branch processes remote sensing imagery through a 

deep convolutional neural network, leveraging a ResNet-50 

backbone pretrained on ImageNet and fine-tuned on 

agricultural datasets. This branch extracts vegetation-related 

spatial features that serve as proxies for crop health and 

biomass accumulation. 

The second branch ingests time-series weather data using a 

stacked Bi-LSTM architecture. This sequence modeling 

layer captures phenological dynamics, climate stress events 

(e.g., heat waves, droughts), and cumulative growing degree 

days, all of which critically affect yield outcomes. The third 

branch processes static soil parameters through a fully 

connected feedforward network, capturing fundamental 

properties such as pH, texture, and nutrient content that 

condition plant growth potential. The outputs from these 

modality-specific encoders are concatenated and passed 

through a novel cross-attention fusion module, which allows 

the model to learn interdependencies and assign adaptive 

weights to different feature types based on context. 

This fused representation is then forwarded to a regression 

head, comprising densely connected layers with dropout and 

batch normalization, to produce final yield predictions at the 

field level. The model is trained end-to-end using the Mean 

Squared Error (MSE) loss function, with the Adam 

optimizer and cyclical learning rate schedule to ensure 

convergence and prevent overfitting. Data augmentation 

techniques, such as random cropping and temporal jittering, 

are applied to improve generalization across geographies 

and growing seasons. 

To evaluate the performance of the proposed framework, we 

conduct experiments on publicly available datasets 

encompassing multiple crop types—including maize, wheat, 

and soybean—across different agro-climatic zones in India 

and the United States. The satellite data is sourced from 

Sentinel-2, while weather data is obtained from NOAA 

repositories. Soil attributes are extracted from the ISRIC 

SoilGrids database. Our experiments benchmark the 

proposed model against conventional baselines including 

linear regression, Random Forests, and unimodal deep 

learning models (e.g., CNN-only and LSTM-only 

architectures). 

The results demonstrate significant performance gains for 

the multi-modal model. Notably, the proposed system 

achieves a coefficient of determination (R²) exceeding 0.90 

in several test regions, representing a substantial 

improvement over baseline models. Ablation studies 

confirm that each modality contributes uniquely to the 

model’s performance, with the removal of any single branch 
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leading to a noticeable degradation in accuracy. 

Furthermore, attention heatmaps reveal interpretable 

insights into how the model weighs different modalities 

under varying conditions—e.g., relying more on satellite 

imagery during flowering stages and on soil characteristics 

in nutrient-deficient regions. 

 

2. Recent Survey and Related Work 

Crop yield prediction has long been a critical area of 

research in agriculture, driven by the need for food security, 

efficient resource management, and climate resilience. Early 

approaches relied heavily on statistical methods such as 

linear regression and time-series models, which were 

limited by their dependence on simplistic tabular data and 

assumptions of linear relationships between variables. For 

instance, [13] demonstrated the use of regression models 

incorporating temperature and precipitation data to predict 

maize yields, but these models struggled with 

generalizability due to their inability to capture complex 

agro-environmental interactions. Similarly, traditional crop 

growth simulation models like CERES-Wheat and CERES-

Maize, as reviewed by [1], provided mechanistic insights but 

were computationally intensive and often failed to scale 

across diverse geographies. 

To address the limitations of linear models, machine 

learning techniques such as Random Forests and Support 

Vector Regression (SVR) gained prominence for their 

ability to model non-linear dependencies [7]. applied 

Random Forests to global and regional yield prediction, 

demonstrating improved accuracy by incorporating multiple 

weather and soil variables. However, these models still 

lacked spatial awareness, as they did not fully leverage 

high-resolution satellite imagery, which contains rich 

spectral information about crop health and growth stages [3]. 

Highlighted this gap in their review, emphasizing that while 

machine learning improved yield estimation, most 

approaches remained unimodal, focusing solely on 

structured tabular data without integrating remote sensing or 

temporal sequences. 

The advent of deep learning revolutionized crop yield 

prediction by enabling the analysis of high-dimensional, 

multi-modal datasets. Convolutional Neural Networks 

(CNNs) emerged as a powerful tool for processing satellite 

imagery, as demonstrated by [24], who used deep CNNs to 

extract crop-specific features from multi-temporal remote 

sensing data. Similarly, [16] showed that CNNs could achieve 

high accuracy in yield prediction by learning spatial patterns 

from Sentinel-2 imagery. Concurrently, Recurrent Neural 

Networks (RNNs), particularly Long Short-Term Memory 

(LSTM) networks, were employed to model temporal 

dependencies in climate data [21]. Developed a CNN-LSTM 

hybrid model for soybean yield prediction, capturing both 

spatial and temporal dynamics. Despite these advancements, 

a significant limitation persisted: most deep learning models 

operated in isolation, either processing satellite images or 

weather data separately, without a unified framework for 

multi-modal fusion. 

Recent studies have explored multi-modal approaches to 

bridge this gap [15] demonstrated the potential of combining 

UAV-based imagery with soil and weather data using deep 

learning, achieving robust yield predictions for soybean. 

However, their framework was limited to small-scale UAV 

data and lacked scalability for regional or global 

applications. Similarly, [19] proposed a 3D CNN-LSTM 

model for multi-spectral satellite time-series analysis, but 

the model did not incorporate soil properties or advanced 

fusion mechanisms [20] made progress by coupling machine 

learning with crop modeling in the US Corn Belt, yet their 

approach relied heavily on simulated data rather than real-

time sensor inputs. 

A major challenge in multi-modal yield prediction is the 

effective integration of heterogeneous data sources. Satellite 

imagery, weather time-series, and soil data differ in 

resolution, temporal frequency, and feature representation [2] 

addressed this by fusing Sentinel-2 and climate data for 

wheat yield prediction in Australia, but their model required 

extensive feature engineering [11] proposed a CNN-RNN 

framework to automate feature extraction, yet the fusion 

mechanism remained simplistic, lacking adaptive weighting 

for different modalities [22] conducted a systematic review of 

machine learning in yield prediction, concluding that while 

multi-modal approaches show promise, no existing 

framework fully leverages the synergies between spatial, 

temporal, and geophysical data. 

Another critical issue is data quality and availability. 

Remote sensing data can be affected by cloud cover, sensor 

noise, and missing values, as noted by [5]. Soil data, often 

static and coarse-resolution, may not capture intra-field 

variability, as discussed by [18]. To mitigate these challenges, 
[10] and [12] explored self-learning and data governance 

techniques to improve model robustness in noisy 

environments [6] emphasized the role of AI-based data 

governance in ensuring reliable inputs for predictive 

modeling, particularly in regions with sparse ground truth 

data. 

Recent advancements in attention mechanisms and 

transformer architectures offer new opportunities for multi-

modal fusion [23] applied transfer learning to satellite-based 

yield prediction, showing that pre-trained CNNs could 

generalize across regions. However, their model did not 

incorporate weather or soil data [25] explored deep learning 

for multi-temporal crop classification but did not extend 

their approach to yield regression. The work of [14] surveyed 

deep learning applications in remote sensing, highlighting 

the untapped potential of cross-modal attention for 

agricultural analytics. Similarly, [4] and [9] discussed the need 

for adaptive models that continuously learn from new data 

streams, a feature absent in most current systems. 

Despite progress, key research gaps remain. First, most 

multi-modal frameworks focus on specific crops or regions, 

limiting generalizability. For example, [17] developed a deep 

learning model for Indian wheat yields but did not validate 

it across diverse agro-climatic zones. Second, 

interpretability is often sacrificed for performance, as noted 

by [8], who highlighted the "black-box" nature of deep 

learning in agricultural applications. Third, real-time 

scalability is hindered by computational constraints, 

particularly when processing high-resolution satellite time-

series, as discussed by [19]. 

 

3. Proposed Methodology 

We propose MCYP-Net (Multi-modal Crop Yield 

Prediction Network), a novel deep learning framework 

designed to integrate heterogeneous agricultural data for 

accurate and scalable crop yield estimation. The architecture 

is modular, consisting of three parallel branches tailored to 

different data modalities—satellite imagery, temporal 

weather sequences, and static soil attributes. These 
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modality-specific encoders are followed by a cross-

attention-based fusion mechanism, which dynamically 

learns inter-modal dependencies, enabling contextual yield 

predictions under diverse agro-climatic conditions. 

The complete data processing and inference pipeline of 

MCYP-Net is illustrated in Fig. 1: Flowchart of the 

Proposed Methodology and Fig 2: Mind Map Diagram for 

Proposed Methodology 

 

 
 

Fig 1: Flow Chart of Proposed Methodology 

 

4. Multi-Branch Architecture 

Satellite Imagery Branch 

This branch processes high-resolution multi-spectral 

satellite images (e.g., Sentinel-2) and vegetation indices 

(NDVI, EVI) using a ResNet-50 backbone pre-trained on 

ImageNet and fine-tuned on agricultural datasets. To adapt 

ResNet-50 for remote sensing, we replace the initial RGB 

input layer with a 6-channel convolutional layer to 

accommodate multi-spectral bands (B2-B8A) and NDVI 

layers. The CNN extracts hierarchical spatial features, 

capturing crop health, canopy structure, and field 

heterogeneity through 3×3 convolutions, batch 

normalization, and ReLU activations. Global Average 

Pooling (GAP) condenses these features into a 512-

dimensional vector, preserving spatial invariance while 

reducing computational overhead. 

 

Weather Sequence Branch 
Daily weather data (temperature, precipitation, solar 

radiation, humidity) are fed into a stacked Bi-directional 

LSTM (Bi-LSTM) network with two layers (128 units 

each). This architecture captures both forward and backward 

temporal dependencies, enabling the model to contextualize 

short-term weather events (e.g., droughts) within the 

broader growing season. To handle missing data, we employ 

linear interpolation and masking layers. The Bi-LSTM 

outputs a 256-dimensional sequential embedding, which is 

further compressed via temporal attention to emphasize 

phenologically critical periods (e.g., flowering or grain-

filling stages). 

 

Soil Data Branch 

Static soil properties (pH, organic carbon, texture, CEC) are 

processed by a 4-layer MLP (256-128-64-32 units) with 

batch normalization and dropout (rate=0.3). Categorical 

variables (e.g., soil type) are encoded via embeddings, while 

continuous features are standardized. This branch generates 

a 32-dimensional representation of geophysical conditions 

that influence root growth and nutrient availability. 

 

Cross-Modal Fusion Mechanism 

The modality-specific embeddings (satellite: 512D, weather: 

256D, soil: 32D) are concatenated into an 800-dimensional 

vector and passed through a cross-attention fusion 

layer inspired by transformer architectures. This layer 

computes attention scores between features of different 

modalities, allowing the model to dynamically weigh the 

importance of satellite pixels relative to weather events or 

soil deficiencies. For example, during a drought, the 

attention mechanism may prioritize weather data over less 

discriminative NDVI values. The fused output is a 512-

dimensional context vector that encapsulates spatio-

temporal and geophysical interactions. 

 

Regression Head and Optimization 

The fused features are fed into a 3-layer regression 

head (256-128-1 units) with dropout (rate=0.4) and Swish 

activations to predict yield at the field level. We use Mean 

Squared Error (MSE) loss, optimized via Adam W (learning 

rate=3e−4, weight decay=1e−5) with a cosine annealing 

scheduler to escape local minima. To enhance 

generalization, we apply data augmentation techniques: 

Spatial: Random cropping and rotation of satellite patches. 

Temporal: Jittering weather sequences with Gaussian noise 

(σ=0.1). 

Soil: Synthetic oversampling of rare soil profiles using 

SMOTE. 

 

Modularity and Scalability 

MCYP-Net is designed for extensibility: 
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New Modalities: Additional branches (e.g., drone imagery, 

irrigation logs) can be integrated by aligning their 

embeddings with the fusion layer. 

 

Regional Adaptation: Pretrained weights for 

satellite/weather branches can be fine-tuned on local data 

with minimal labeled examples. 

 

Edge Deployment: Model distillation techniques reduce 

computational costs for real-time field deployment. 

 

 
 

Fig 2: Mind Map Diagram for Proposed Methodology 

 

5. Results and Analysis 

To evaluate the efficacy of the proposed MCYP-Net 

framework, we conducted comprehensive experiments using 

multi-year datasets from diverse agro-climatic regions, 

specifically Iowa and Nebraska in the United States and 

Punjab and Maharashtra in India. The evaluation covered 

three major crops—maize, wheat, and soybean—over 

multiple growing seasons. These datasets included Sentinel-

2 satellite imagery, NOAA-based daily weather data, and 

ISRIC soil profiles, which were rigorously aligned using 

geospatial referencing and temporally normalized to ensure 

modality coherence. 

We benchmarked the performance of MCYP-Net against 

several traditional and deep learning-based baselines: Linear 

Regression (LR), Random Forest (RF), a CNN-only model 

using satellite data, and an LSTM-only model trained on 

temporal weather sequences. Across all evaluated metrics—

R² score, Root Mean Square Error (RMSE), and Mean 

Absolute Error (MAE)—MCYP-Net consistently 

outperformed the baseline models. Specifically, the R² score 

improved from 0.61 (LR) to 0.91 with MCYP-Net, while 

RMSE decreased from 0.85 to 0.42, and MAE dropped from 

0.72 to 0.35. These comparative results are summarized in 

Fig. 3, which presents bar plots for the key performance 

metrics across all models. 

To further validate the predictive reliability of MCYP-Net, 

we visualized the predicted crop yields against ground truth 

values using a scatter plot (see Fig. 4). The tight clustering 

of predicted points around the identity line indicates a high 

correlation and low bias, showcasing the model's capacity 

for generalization across both spatial and temporal 

dimensions. 

An ablation study was conducted to quantify the 

contribution of each data modality to the model’s overall 

performance. We evaluated three reduced variants of 

MCYP-Net, each omitting one modality (satellite, weather, 

or soil). The results revealed significant degradation in 

performance when any modality was excluded, confirming 

the synergistic benefit of multi-modal integration. 

Specifically, the full model (R² = 0.91) dropped to 0.83, 

0.79, and 0.75 when satellite, weather, and soil data were 

respectively excluded. These results are illustrated in Fig. 5, 
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which clearly demonstrates the importance of each data 

stream in achieving high predictive accuracy. 

We also experimented with alternative fusion mechanisms, 

including simple concatenation and gating strategies, as 

replacements for the proposed cross-attention fusion layer. 

The results showed that cross-attention consistently 

outperformed other methods by approximately 6% in R², 

highlighting its effectiveness in capturing complex inter-

modal dependencies. 

In addition, we conducted a feature importance analysis 

across different agro-ecological regions. In temperate zones 

such as Iowa and Nebraska, weather variables (e.g., 

temperature and rainfall) were found to be the most 

predictive of crop yield. In contrast, in semi-arid regions 

like Punjab and Maharashtra, soil texture and vegetation 

indices derived from satellite imagery had greater influence. 

These observations support the context-aware adaptability 

of MCYP-Net and underscore the relevance of localized 

multi-modal fusion strategies. The regional variation in 

feature importance is depicted in Fig. 6. 

Overall, these results demonstrate that MCYP-Net not only 

delivers state-of-the-art accuracy but also provides 

interpretability and adaptability across geographies and crop 

types, making it a robust solution for precision agriculture 

applications globally. 

 

 
 

 
 

 
 

Fig 3: Bar plots comparing R², RMSE, and MAE across different baseline models and MCYP-Net. 
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Fig 4: Scatter plot of MCYP-Net predictions vs. ground truth, showing high correlation and low variance 

 

 
 

Fig 5: Ablation study results showing R² drop when individual modalities (satellite, weather, or soil) are removed. 

 

 
 

Fig 6: Feature importance visualized across temperate and semi-arid regions, illustrating modality relevance by location. 

 

6. Conclusion 

This paper introduces a novel AI-based framework for crop 

yield prediction that leverages multi-modal data sources—

satellite imagery, sequential weather data, and soil 

features—through a deep learning architecture designed for 

fusion and regression. Our model, MCYP-Net, effectively 

integrates these diverse modalities using domain-specific 

processing streams and a unified fusion strategy, resulting in 

high accuracy and generalizability across crops and 

geographies. 

Experimental evaluations demonstrate significant 

performance improvements over traditional statistical 

models and unimodal deep learning approaches. The model 

not only enhances prediction reliability but also offers 

interpretability and scalability for deployment in real-world 

agricultural decision-making systems. Future work will 

focus on real-time deployment using edge computing 

devices, integration with socio-economic indicators, and 
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expansion to cover yield quality and profitability in addition 

to quantity. 
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