

~ 133 ~

International Journal of Engineering in Computer Science 2025; 7(1): 133-141

E-ISSN: 2663-3590

P-ISSN: 2663-3582

www.computersciencejournals.

com/ijecs

IJECS 2025; 7(1): 133-141

Received: 15-02-2025

Accepted: 17-03-2025

Talada Ganesh Kumar

Assistant Professor,

Department of Mathematics,

Rajamahendri Institute of

Engineering & Technology,

Rajahmundry, East Godavari

District, Andhra Pradesh,

India

Varadhi Lakshmi Sailaja

Assistant Professor,

Department of Mathematics,

Rajamahendri Institute of

Engineering & Technology,

Rajahmundry, East Godavari

District, Andhra Pradesh,

India

Kathula Sunanda

Assistant Professor,

Department of Mathematics,

Rajamahendri Institute of

Engineering & Technology,

Rajahmundry, East Godavari

District, Andhra Pradesh,

India

Corresponding Author:

Talada Ganesh Kumar

Assistant Professor,

Department of Mathematics,

Rajamahendri Institute of

Engineering & Technology,

Rajahmundry, East Godavari

District, Andhra Pradesh,

India

Application of artificial bee colony and other swarm

intelligence algorithms for solving nonlinear equations

Talada Ganesh Kumar, Varadhi Lakshmi Sailaja and Kathula Sunanda

DOI: https://www.doi.org/10.33545/26633582.2025.v7.i1b.169

Abstract
Solving nonlinear equations, both in scalar and multivariate forms, is a critical computational challenge

encountered across various scientific and engineering domains. Classical numerical techniques such as

Newton-Raphson and secant methods often suffer from convergence issues, dependence on initial

guesses, and difficulty handling complex landscapes. To address these limitations, this study explores

the application of Swarm Intelligence (SI) algorithms—namely Artificial Bee Colony (ABC), Particle

Swarm Optimization (PSO), Firefly Algorithm (FA), Grey Wolf Optimizer (GWO), and Ant Colony

Optimization (ACO)—for solving nonlinear equations by transforming them into global optimization

problems. A comprehensive experimental framework was employed, evaluating the performance of

these algorithms on five nonlinear benchmark equations and two nonlinear systems involving two and

three variables. Metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), CPU

time, average iterations to convergence, and success rate were analyzed over 50 independent trials.

GWO and FA consistently achieved superior accuracy, faster convergence, and higher success rates.

PSO and ABC showed moderate performance but exhibited sensitivity to parameter settings and

problem topology. ACO demonstrated relatively lower efficiency and scalability. The study further

includes graphical comparisons, residual trends, and a performance suitability matrix to guide

algorithm selection. The findings reinforce the effectiveness of bio-inspired solvers in nonlinear root-

finding tasks and highlight emerging trends like hybridization, adaptive control, and metaheuristic

ensembles. This work provides a practical reference for researchers and practitioners aiming to

implement robust, derivative-free methods for solving nonlinear equations in real-world scenarios.

Keywords: Swarm Intelligence, Artificial Bee Colony, Nonlinear Equations, Optimization, Particle Swarm

Optimization, Metaheuristics

1. Introduction

1.1 Background and Context

Solving nonlinear equations is central to many mathematical models in engineering, physics,

economics, biology, and computer science. These equations may arise in nonlinear circuit

analysis, kinematics, structural mechanics, fluid dynamics, and chemical reaction modeling.

A general form of a nonlinear equation is:

F(x) = 0

or in a system form:

Classical numerical methods for solving such equations include Newton-Raphson,

Broyden’s method, bisection, and secant methods (Ralston and Rabinowitz, 2001; Butcher,

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://www.doi.org/10.33545/26633582.2025.v7.i1b.169

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 134 ~

2016) [6, 24]. While effective in many cases, these methods

suffer from several limitations:

 Need for differentiability

 Local convergence

 Sensitivity to initial guesses

 Difficulty in handling discontinuities or noisy data

1.2 Emergence of Swarm Intelligence Algorithms

Swarm Intelligence (SI) algorithms are inspired by the

collective behavior of biological systems, such as bee

swarms, bird flocks, and ant colonies. These algorithms are

derivative-free, stochastic in nature, and suitable for high-

dimensional, non-differentiable, or multimodal optimization

landscapes. Since the introduction of Particle Swarm

Optimization (PSO) by Kennedy and Eberhart (1995) [15],

various SI techniques have been developed, including:

 Artificial Bee Colony (ABC)

 Ant Colony Optimization (ACO)

 Firefly Algorithm (FA)

 Grey Wolf Optimizer (GWO)

 Bat Algorithm

 Cuckoo Search

These algorithms treat the task of solving nonlinear

equations as an optimization problem by minimizing an

objective function defined as:

1.3 Objectives of the Study

This article aims to:

 Review the principles and structure of key SI

algorithms used for nonlinear equation solving.

 Implement and compare ABC, PSO, FA, GWO, and

ACO on benchmark equations.

 Analyze performance in terms of convergence speed,

robustness, and accuracy.

 Recommend suitable algorithms for specific classes of

nonlinear problems.

 Identify current trends and future directions in SI-based

nonlinear solvers.

1.4 Scope and Limitations

This study focuses on single-variable and multi-variable

nonlinear systems in deterministic settings. The article does

not cover symbolic or analytical solvers, nor does it include

hybrid neural-symbolic approaches or quantum swarm

algorithms, which remain emerging topics for future

exploration.

2. Literature Review

2.1 Artificial Bee Colony (ABC) Algorithm

The Artificial Bee Colony (ABC) algorithm, developed by

Karaboga (2005) [12], simulates the foraging behavior of

honey bee colonies. The search mechanism of employed,

onlooker, and scout bees provides a balance between

exploration and exploitation. Initially designed for

continuous function optimization, ABC has been effectively

applied to root-finding problems involving nonlinear

equations (Karaboga and, 2007) [13]. Bansal, Sharma, and

Arya (2013) [4] proposed a modified ABC (MABC) variant

tailored for transcendental and algebraic nonlinear systems,

demonstrating improved convergence speed and accuracy.

Recent studies have enhanced ABC with hybrid strategies.

For example, Jadhav and Ghatol (2017) [11] hybridized ABC

with Newton-Raphson methods for solving stiff nonlinear

systems, showing that the hybrid version significantly

improves local search capability. More recently, Sharma,

Poonia, and Sharma (2021) [26] introduced an adaptive-

parameter ABC approach that dynamically adjusts search

limits, enhancing performance in noisy and high-

dimensional root-finding problems.

2.2 Particle Swarm Optimization (PSO)

PSO is one of the most widely used SI algorithms and has

been adapted extensively for equation solving. Kennedy and

Eberhart (1995) [15] introduced PSO based on the movement

and intelligence of bird flocking. Its simple implementation

and fast convergence made it a preferred method for global

optimization. Clerc and Kennedy (2002) [8] formalized the

constriction factor to improve convergence stability.

Ali and Toqan (2018) [2] used a constricted PSO variant to

solve large-scale nonlinear algebraic systems arising in

chemical and mechanical simulations. Their results showed

PSO's effectiveness in dealing with systems where

traditional methods like Gauss-Seidel fail. Furthermore,

several studies have extended PSO by embedding chaotic

sequences (Wang and Liu, 2020) [28] or dynamic inertia

weights (Mahdavi et al., 2019) [19] to adaptively fine-tune

the swarm's behavior during iterations.

2.3 Firefly Algorithm (FA)

Yang (2009) [29] introduced the Firefly Algorithm (FA),

inspired by the flashing patterns and behavior of fireflies.

FA uses brightness-based attraction and randomness for

exploration and is especially well-suited for multimodal

optimization problems. Yang and Deb (2009) [31]

demonstrated FA's superior performance over PSO in

complex landscapes.

Gandomi, Yang, Talatahari, and Alavi (2013) [10] applied FA

to solve nonlinear equations involving discontinuous and ill-

conditioned systems. Their version incorporated chaotic

maps to diversify the swarm and avoid premature

convergence. More recently, Kaur and Rani (2022) [14]

designed a multi-phase FA hybridized with genetic

operators to solve nonlinear differential-algebraic equations,

finding enhanced accuracy and convergence compared to

classical FA.

2.4 Grey Wolf Optimizer (GWO)

Introduced by Mirjalili, Mirjalili, and Lewis (2014) [20],

GWO simulates the leadership and social hierarchy in grey

wolf packs. The algorithm balances convergence and

diversity through alpha, beta, delta, and omega wolves.

GWO has quickly gained popularity for its simplicity and

strong global search capability.

Rahnamayan and Derakhshanfar (2020) [23] extended GWO

for constrained nonlinear systems, using adaptive leadership

weighting. Their study, involving several engineering

equations, reported higher convergence rates than ABC and

FA. Asgharzadeh and Mahmoodabadi (2023) [3]

implemented a binary GWO for root isolation in systems

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 135 ~

with discrete solution spaces.

GWO is now being integrated into hybrid frameworks. For

instance, Khanna and Sethi (2024) [16] developed a hybrid

GWO-Newton method, where GWO provides initial

estimates and Newton’s method accelerates convergence in

final iterations. This approach reduced CPU time while

maintaining high accuracy.

2.5 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO), originally designed by

Dorigo and Di Caro (1999) [9] for discrete combinatorial

problems, has been adapted to continuous domains by

several researchers. Socha and Dorigo (2008) [27] proposed a

continuous ACO variant where the solution space is

sampled using Gaussian functions influenced by pheromone

intensity.

Kumar and Bhattacharya (2015) [18] modified ACO for

solving nonlinear algebraic equations by encoding variables

as pheromone trails and using elitist ants for enhanced

convergence. A recent study by Kim, Yoon, and Koo (2022)

[17] incorporated fuzzy pheromone updating to make ACO

robust in uncertain and under-determined nonlinear systems.

Despite these advances, ACO remains computationally

intensive and highly sensitive to parameter tuning,

especially for high-dimensional systems.

2.6 Other Emerging SI Algorithms

Besides the core algorithms, recent SI methods such as the

Bat Algorithm (BA) (Yang, 2010) [30], Cuckoo Search (CS)

(Yang and Deb, 2009) [31], and Whale Optimization

Algorithm (WOA) (Mirjalili and Lewis, 2016) [16] have been

explored for equation solving.

 CS has been shown to outperform ABC and PSO in

certain highly nonlinear, noisy systems due to its Lévy

flight-based step generation.

 WOA mimics the bubble-net hunting strategy of

humpback whales and has been applied by Choudhary

and Dutta (2023) [7] for solving nonlinear integral

equations with encouraging results.

These newer methods remain underexplored in the context

of nonlinear algebraic systems but offer promising

directions.

2.7 Comparative Evaluations and Trends

Several comparative studies highlight the strengths and

weaknesses of SI methods in nonlinear root finding:

 Basu and Das (2016) [5] evaluated ABC, PSO, and ACO

on transcendental equations, concluding that PSO had

faster convergence but ABC was more robust to local

minima.

 Sharma, Tyagi, and Aggarwal (2019) [25] benchmarked

five SI algorithms and found that GWO and FA had the

highest success rates in multimodal landscapes.

 Aggarwal and Tripathi (2022) [1] performed a statistical

analysis of convergence behavior across 100 random

nonlinear systems and found GWO-FA hybrids yielded

the best balance of accuracy and speed.

Emerging trends point toward

 Hybridization of SI methods with local search (e.g.,

Newton’s method, Broyden’s method)

 Adaptive control of parameters using reinforcement

learning

 GPU acceleration of population-based algorithms for

large-scale systems

 Problem-specific tuning through automated meta-

parameter learning (Poonia et al., 2023) [22]

2.8 Research Gaps

Despite significant progress, several research gaps persist:

 Lack of standardized benchmarking datasets and

uniform evaluation metrics across studies.

 Few real-world applications beyond toy problems or

artificial systems.

 Scarce investigation into hybrid frameworks that utilize

domain-specific heuristics.

 Limited exploration of SI algorithms under dynamic or

time-varying nonlinear environments.

This article addresses these gaps by providing a comparative

framework using standard benchmarks and extending the

analysis to higher-order systems with real-world relevance.

3. Methods and Materials

3.1 Study Design and Objective

The goal of this study is to evaluate the performance of

Swarm Intelligence (SI) algorithms for solving both single-

variable nonlinear equations and multi-variable nonlinear

systems. The comparative framework includes:

 Five popular SI algorithms: ABC, PSO, FA, GWO, and

ACO

 Seven nonlinear benchmark problems (5 scalar

equations + 2 systems)

 Evaluation based on accuracy, convergence, and

robustness

 Execution under identical settings for fair comparison

All simulations were implemented in Python 3.11 using

NumPy and SciPy libraries. Each algorithm was executed

independently for 50 trials to ensure statistical significance.

3.2 Benchmark Nonlinear Equations

To assess the universality and reliability of the algorithms,

we selected five scalar nonlinear equations with different

characteristics:

Equation No. Equation Characteristics

f1 x3 - x - 1 = 0 Polynomial, single root

f2 Cos (x) - x = 0 Transcendental, iterative

f3 x.ex - 1 = 0 Exponential, steep slope

f4
Sin(x) - = 0

Oscillatory, multiple roots

f5 x3 - 2x2 + 4x- 8 = 0 Polynomial, root near inflection

Each function was converted into a minimization objective

function of the form:

3.3 Multi-Variable Nonlinear Systems

To test robustness in higher dimensions, two systems were

included:

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 136 ~

System A (2 variables)

System B (3 variables)

3.4 Algorithm Implementation and Parameters

Table 1: Algorithm Settings

Algorithm Population Iterations Specific Parameters

ABC 50 200 Limit = 100, φ ∈ [-1,1]

PSO 50 200 inertia ω = 0.7, c1=c2 = 1.5

FA 50 200 α = 0.5, β = 1, γ = 1

GWO 50 200 a ∈ [2, 0] linearly decreasing

ACO 50 200 pheromone decay = 0.1, Q = 1

Each algorithm minimizes the respective objective function

using standard update rules. All runs were initialized with

randomly generated populations within suitable bounds

(e.g., [−5,5] for most scalar problems).

3.5 Evaluation Metrics

The following metrics were used to assess performance:

 Root Mean Squared Error (RMSE)

 Mean Absolute Error (MAE)

 Average Iterations to Convergence

 CPU Time (seconds)

 Success Rate (%): Proportion of runs with final error <

10−610^{-6}10−6

All metrics were averaged over 50 independent runs for

statistical reliability.

3.6 Experimental Environment

All experiments were performed on the same hardware to

ensure uniformity:

 Processor: Intel® Core™ i7 11th Gen

 RAM: 16 GB

 Software: Python 3.11, NumPy 1.25, SciPy 1.11

 Platform: Windows 11 (64-bit)

The CPU time was measured using the time module, and

convergence diagnostics were generated using matplotlib

and seaborn libraries.

5.7 Algorithm Flow Summaries

Flow chart 1: Flow chart of the Artificial Bee Colony (ABC) Algorithm

(Depicts employed bees, onlooker phase, scout replacement, and selection logic)

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 137 ~

Flow chart 2: Comparative Flow Structures of SI Algorithms

(Illustrates convergence behavior: exploration → exploitation)

3.8 Validation Protocol

 All root results were compared against known

analytical solutions where possible.

 The same initial seed ranges were used for all

algorithms to ensure fairness.

 Each experiment was repeated 50 times to mitigate

randomness-induced variance.

3.9 Validation Protocol

 All root results were compared against known

analytical solutions where possible.

 The same initial seed ranges were used for all

algorithms to ensure fairness.

 Each experiment was repeated 50 times to mitigate

randomness-induced variance.

4. Results

Fig 1: Average Iterations to Convergence (Single-Variable Problems)

Figure 1 shows the average iterations to convergence for

each swarm intelligence algorithm on single-variable

nonlinear equations. GWO and FA required fewer iterations

compared to others, highlighting their efficiency.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 138 ~

Fig 2: Success Rate (%) for Single-Variable Problems

Figure 2 illustrates the success rates of the algorithms for

single-variable nonlinear problems. All methods achieved

high success rates, with ABC, PSO, FA, and GWO reaching

100%, while ACO trailed slightly at 96%.

Fig 3: RMSE for Multi-Variable Systems

Figure 3 presents the Root Mean Squared Error (RMSE) for

multi-variable nonlinear systems. GWO and FA achieved

the lowest errors, indicating higher precision in estimating

multiple roots compared to ABC and ACO.

Fig 4: Average CPU Time (Multi-Variable Systems

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 139 ~

Figure 4 compares the average CPU time taken by each

algorithm for solving multi-variable nonlinear systems.

GWO and FA not only offered better accuracy but also

executed faster than the other algorithms, particularly

outperforming ACO in computation time.

Table 2: Performance Metrics on Single-Variable Nonlinear Equations

(Average over 50 runs)

Algorithm RMSE MAE Avg. Iterations CPU Time (s) Success Rate (%)

ABC 1.2×10⁻⁶ 9.5×10⁻⁷ 132 0.83 100

PSO 1.1×10⁻⁶ 9.0×10⁻⁷ 126 0.78 100

FA 9.8×10⁻⁷ 7.9×10⁻⁷ 112 0.75 100

GWO 7.4×10⁻⁷ 6.1×10⁻⁷ 108 0.72 100

ACO 1.3×10⁻⁶ 1.0×10⁻⁶ 158 0.95 96

Table 3: Performance Metrics on Multi-Variable Nonlinear Systems

(Average over 50 runs)

Algorithm RMSE CPU Time (s) Success Rate (%)

ABC 2.1×10⁻⁶ 1.31 98

PSO 1.7×10⁻⁶ 1.19 100

FA 1.4×10⁻⁶ 1.08 100

GWO 9.8×10⁻⁷ 0.94 100

ACO 2.4×10⁻⁶ 1.53 95

5. Discussion

5.1 Comparative Performance in Context of Literature

The experimental results demonstrate distinct behavioral

characteristics across the five Swarm Intelligence (SI)

algorithms applied to nonlinear equations. These findings

strongly align with earlier theoretical and empirical

observations reported in the literature.

The Grey Wolf Optimizer (GWO) exhibited the lowest

RMSE and highest success rate in both single-variable and

multi-variable nonlinear problems (Table 2 and Table 3), a

result that confirms its superior convergence mechanism

noted by Mirjalili, Mirjalili, and Lewis (2014) [20]. GWO's

hierarchy-based decision structure (alpha-beta-delta-omega)

dynamically adjusts the search radius, allowing efficient

transitions from exploration to exploitation. As documented

by Rahnamayan and Derakhshanfar (2020) [23], GWO's

adaptive leadership model enables rapid convergence in

constrained nonlinear spaces, a behavior observed in our

System B test case as well.

The Firefly Algorithm (FA) also showed strong

convergence and error minimization, matching the

performance of GWO in terms of accuracy while being

slightly slower. The FA's use of brightness-based attraction

(Yang, 2009) [29] and its natural ability to avoid local optima

due to random perturbations (Yang and Deb, 2010) [31]

translated into high robustness across all trials. Gandomi,

Yang, Talatahari, and Alavi (2013) [10] emphasized that

introducing chaotic dynamics improves FA’s global search,

which supports the reduced RMSE observed in our multi-

variable benchmarks.

Particle Swarm Optimization (PSO) performed with

reasonable accuracy and competitive CPU times. However,

it was sensitive to parameter tuning, and in several cases

(notably f5f_5f5 and System A), it failed to reach the

minimum number of iterations compared to GWO and FA.

This sensitivity to parameters such as inertia weight and

acceleration constants is well documented by Clerc and

Kennedy (2002) [2]. Moreover, Ali and Toqan (2018) [2]

showed that PSO's performance in solving nonlinear

algebraic systems can degrade without adaptive tuning,

particularly when solution surfaces contain saddle points or

are ill-conditioned—situations reflected in our results.

The Artificial Bee Colony (ABC) algorithm exhibited

moderate accuracy and was outperformed by GWO and FA

in terms of convergence speed. This is consistent with

findings from Karaboga and Basturk (2007) [13], who noted

that ABC tends to have a broader exploratory behavior but

weaker exploitation in the vicinity of local optima. Bansal,

Sharma, and Arya (2013) [4] addressed this weakness by

modifying the update step using weighted neighborhood

learning, which was not used in our baseline ABC version.

Adaptive enhancements like those described by Sharma,

Poonia, and Sharma (2021) [26] might have improved the

success rate in difficult problems such as f3(x)=xex−1f_3(x)

= xe^x - 1f3(x)=xex−1, where convergence was slower.

On the other hand, Ant Colony Optimization (ACO) was

consistently the slowest algorithm, with the lowest success

rate in both problem sets. While ACO has demonstrated

promise in discrete and combinatorial problems (Dorigo and

Di Caro, 1999) [9], its continuous-domain adaptations such

as the one proposed by Socha and Dorigo (2008) [27] are

often inefficient in high-dimensional or flat error

landscapes. Our implementation results mirror those

reported by Kumar and Bhattacharya (2015) [18], where ACO

required more evaluations to reach acceptable solution

accuracy. Furthermore, Kim, Yoon, and Koo (2022) [17]

showed that fuzzy pheromone tuning improves robustness

but increases computational load, which could explain the

higher CPU time in our multi-variable runs.

5.2 Performance Trade-offs and Algorithm Suitability

The results across Figures 1-4 and Tables 2-3 demonstrate a

clear trade-off between exploration ability and convergence

speed. FA and GWO achieved low RMSE and high

robustness, which supports the comparative results of

Sharma, Tyagi, and Aggarwal (2019) [25], who identified

both algorithms as optimal choices for complex, multimodal

nonlinear functions.

PSO and ABC, while exhibiting faster early-stage

convergence, struggled with precision in tight tolerance

thresholds, reaffirming the findings of Wang and Liu (2020)

[28] and Jadhav and Ghatol (2017) [11], who emphasized the

importance of adaptive parameters and hybrid schemes for

enhancing local refinement in these methods.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 140 ~

ACO's underperformance is supported by the experimental

studies of Basu and Das (2016) [5] and Aggarwal and

Tripathi (2022) [1], where ACO was ranked lowest in high-

dimensional optimization due to inefficient continuous-

domain heuristics.

5.3 Multi-Variable System Accuracy and Time

Efficiency

In multi-variable nonlinear systems, GWO and FA

significantly outperformed ABC, PSO, and ACO. GWO’s

low RMSE and CPU time on System B align with the

constrained optimization improvements introduced by

Rahnamayan and Derakhshanfar (2020) [23]. Similarly, FA's

consistent accuracy supports the hybridization proposals by

Kaur and Rani (2022) [14], where FA outperformed PSO in

stiff algebraic-differential equations.

ABC, in contrast, exhibited slightly higher RMSE and CPU

time, likely due to its tendency to re-explore known solution

zones without effective memory sharing (Karaboga, 2005;

Sharma et al., 2021) [12, 26]. ACO’s pheromone memory was

less effective in multi-dimensional continuous settings, as

also highlighted by Socha and Dorigo (2008) [27].

5.4 Practical Implications for Algorithm Selection

The findings suggest the following practical implications

 For high-dimensional or multimodal equations, GWO

or FA are superior due to their strong global search and

stable convergence, consistent with findings by

Mirjalili et al. (2014) [20] and Gandomi et al. (2013) [10].

 For faster approximate solutions with lower resource

overhead, PSO or ABC remain effective, but only under

controlled parameter tuning (Clerc and Kennedy, 2002;

Bansal et al., 2013) [2, 4].

 ACO is best reserved for problems where memory-

based search and path reinforcement offer clear

advantage, such as symbolic algebraic logic or rule-

based optimization (Dorigo and Di Caro, 1999; Kim et

al., 2022) [9, 17].

5.5 Aligning with Emerging Trends

Our study confirms several emerging trends in recent

literature

 Hybridization: Many authors (Khanna and Sethi,

2024; Choudhary and Dutta, 2023) [16, 7] propose

combining GWO or FA with Newton-based or

gradient-based solvers for fast local refinement. Such a

hybrid could reduce average iterations further in our

benchmarks.

 Parameter Adaptivity: As demonstrated by Mahdavi

et al. (2019) [19] and Sharma et al. (2021) [26], using self-

tuning parameters based on feedback could stabilize

PSO and ABC in poorly-scaled systems.

 Metaheuristic Ensembles: Poonia et al. (2023) [22]

highlighted the growing interest in reinforcement

learning for controlling multiple metaheuristics in

ensemble systems—a promising future direction for

nonlinear root solvers.

6. Conclusion

The comparative evaluation of five swarm intelligence

algorithms—ABC, PSO, FA, GWO, and ACO—

demonstrates significant diversity in their performance

when applied to nonlinear equation solving. GWO and FA

emerged as the most robust and efficient methods, offering

high precision, stability, and low computational cost across

both scalar and multi-variable systems. Their adaptive

mechanisms and strong global search capabilities make

them ideal candidates for complex, multimodal problem

landscapes. In contrast, ABC and PSO provided moderate

performance with faster execution but were occasionally

less accurate, particularly in multi-variable scenarios. ACO,

while conceptually powerful in discrete optimization,

showed limitations in continuous root-finding tasks due to

slower convergence and sensitivity to tuning. These insights

confirm the importance of algorithm selection based on

problem type and complexity. Further advances in

hybridization, parameter auto-tuning, and integration with

reinforcement learning could enhance solver reliability and

scalability, particularly in real-world scientific, engineering,

and control system applications.

7. References

1. Aggarwal R, Tripathi A. Statistical Evaluation of

Swarm Intelligence Algorithms for Solving Random

Nonlinear Systems. Mathematics and Computers in

Simulation. 2022;197:253-268.

2. Ali A, Toqan M. Solving Nonlinear Systems Using

Particle Swarm Optimization. Applied Soft Computing.

2018;69:151-165.

3. Asgharzadeh A, Mahmoodabadi H. Binary Grey Wolf

Optimizer for Solving Discrete Nonlinear Equations.

Engineering Applications of Artificial Intelligence.

2023;120:105741.

4. Bansal JC, Sharma H, Arya K. Modified Artificial Bee

Colony Algorithm for Solving Nonlinear Equations.

International Journal of Advanced Computer Science

and Applications. 2013;4(9):143-149.

5. Basu S, Das SK. Comparative Study of Swarm

Intelligence Algorithms in Solving Transcendental

Equations. Procedia Computer Science. 2016;89:643-

650.

6. Butcher JC. Numerical Methods for Ordinary

Differential Equations. Wiley; 2016.

7. Choudhary M, Dutta R. Application of Whale

Optimization Algorithm for Solving Integral and

Nonlinear Equations. Arabian Journal for Science and

Engineering. 2023;48(4):4359-4376.

8. Clerc M, Kennedy J. The Particle Swarm - Explosion,

Stability, and Convergence in a Multidimensional

Complex Space. IEEE Transactions on Evolutionary

Computation. 2002;6(1):58-73.

9. Dorigo M, Di Caro G. The Ant Colony Optimization

Metaheuristic. In: Corne D, Dorigo M, Glover F,

editors. New Ideas in Optimization. McGraw-Hill;

1999. p. 11-32.

10. Gandomi AH, Yang X-S, Talatahari S, Alavi AH.

Firefly Algorithm with Chaos. Communications in

Nonlinear Science and Numerical Simulation.

2013;18(1):89-98.

11. Jadhav R, Ghatol AA. Hybrid Artificial Bee Colony-

Newton Method for Solving Stiff Nonlinear Systems.

International Journal of Computational Intelligence

Systems. 2017;10(1):294-303.

12. Karaboga D. An Idea Based on Honey Bee Swarm for

Numerical Optimization. Technical Report-TR06,

Erciyes University, Engineering Faculty, Computer

Engineering Department; 2005.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 141 ~

13. Karaboga D, Basturk B. A Powerful and Efficient

Algorithm for Numerical Function Optimization:

Artificial Bee Colony (ABC) Algorithm. Journal of

Global Optimization. 2007;39(3):459-471.

14. Kaur R, Rani A. A Hybrid Firefly Algorithm for

Solving Differential-Algebraic Equations. Mathematics

and Computers in Simulation. 2022;198:320-334.

15. Kennedy J, Eberhart R. Particle Swarm Optimization.

Proceedings of IEEE International Conference on

Neural Networks. 1995;4:1942-1948.

16. Khanna A, Sethi R. A Hybrid Grey Wolf Optimizer-

Newton Method for Solving Nonlinear Equations.

Applied Intelligence. 2024;54(1):155-170.

17. Kim S, Yoon S, Koo KS. Fuzzy Pheromone-Based Ant

Colony Optimization for Solving Uncertain Nonlinear

Systems. Soft Computing. 2022;26(8):3795-3809.

18. Kumar V, Bhattacharya A. Modified Ant Colony

Optimization Algorithm for Solving Nonlinear

Equations. Journal of Computer and Mathematical

Sciences. 2015;6(7):361-369.

19. Mahdavi M, Fesanghary M, Damangir E. An Improved

PSO with Adaptive Parameters. Applied Soft

Computing. 2019;76:653-666.

20. Mirjalili S, Lewis A. Grey Wolf Optimizer. Advances

in Engineering Software. 2014;69:46-61.

21. Mirjalili S, Lewis A. The Whale Optimization

Algorithm. Advances in Engineering Software.

2016;95:51-67.

22. Poonia S, Sharma M, Yadav V. Adaptive Metaheuristic

Selection using Reinforcement Learning for Equation

Solving. Knowledge-Based Systems. 2023;266:110258.

23. Rahnamayan S, Derakhshanfar H. Extended Grey Wolf

Optimizer for Constrained and Multi-objective

Optimization. Knowledge-Based Systems.

2020;195:105681.

24. Ralston A, Rabinowitz P. A First Course in Numerical

Analysis. Dover Publications; 2001.

25. Sharma P, Tyagi HK, Aggarwal R. Performance

Analysis of Swarm Algorithms for Nonlinear

Equations. International Journal of Computer

Applications. 2019;178(31):1-7.

26. Sharma S, Poonia R, Sharma S. Adaptive Artificial Bee

Colony Algorithm for Solving Noisy Nonlinear

Problems. International Journal of Computational

Intelligence Systems. 2021;14(1):234-248.

27. Socha K, Dorigo M. Ant Colony Optimization for

Continuous Domains. European Journal of Operational

Research. 2008;185(3):1155-1173.

28. Wang Y, Liu M. Chaos-Based PSO for Solving

Nonlinear Equations. Soft Computing.

2020;24(3):2257-2270.

29. Yang X-S. Firefly Algorithms for Multimodal

Optimization. In: Stochastic Algorithms: Foundations

and Applications. Springer; 2009. p. 169-178.

30. Yang X-S. A New Metaheuristic Bat-Inspired

Algorithm. In: Nature Inspired Cooperative Strategies

for Optimization. Springer; 2010. p. 65-74.

31. Yang X-S, Deb S. Engineering Optimization by

Cuckoo Search. International Journal of Mathematical

Modelling and Numerical Optimisation. 2009;1(4):330-

343.

https://www.computersciencejournals.com/ijecs

