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Abstract 
Solving nonlinear equations, both in scalar and multivariate forms, is a critical computational challenge 

encountered across various scientific and engineering domains. Classical numerical techniques such as 

Newton-Raphson and secant methods often suffer from convergence issues, dependence on initial 

guesses, and difficulty handling complex landscapes. To address these limitations, this study explores 

the application of Swarm Intelligence (SI) algorithms—namely Artificial Bee Colony (ABC), Particle 

Swarm Optimization (PSO), Firefly Algorithm (FA), Grey Wolf Optimizer (GWO), and Ant Colony 

Optimization (ACO)—for solving nonlinear equations by transforming them into global optimization 

problems. A comprehensive experimental framework was employed, evaluating the performance of 

these algorithms on five nonlinear benchmark equations and two nonlinear systems involving two and 

three variables. Metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), CPU 

time, average iterations to convergence, and success rate were analyzed over 50 independent trials. 

GWO and FA consistently achieved superior accuracy, faster convergence, and higher success rates. 

PSO and ABC showed moderate performance but exhibited sensitivity to parameter settings and 

problem topology. ACO demonstrated relatively lower efficiency and scalability. The study further 

includes graphical comparisons, residual trends, and a performance suitability matrix to guide 

algorithm selection. The findings reinforce the effectiveness of bio-inspired solvers in nonlinear root-

finding tasks and highlight emerging trends like hybridization, adaptive control, and metaheuristic 

ensembles. This work provides a practical reference for researchers and practitioners aiming to 

implement robust, derivative-free methods for solving nonlinear equations in real-world scenarios. 

 

Keywords: Swarm Intelligence, Artificial Bee Colony, Nonlinear Equations, Optimization, Particle Swarm 

Optimization, Metaheuristics 

 

1. Introduction 

1.1 Background and Context 

Solving nonlinear equations is central to many mathematical models in engineering, physics, 

economics, biology, and computer science. These equations may arise in nonlinear circuit 

analysis, kinematics, structural mechanics, fluid dynamics, and chemical reaction modeling. 

A general form of a nonlinear equation is: 

F(x) = 0 

or in a system form: 

 

 
 

Classical numerical methods for solving such equations include Newton-Raphson, 

Broyden’s method, bisection, and secant methods (Ralston and Rabinowitz, 2001; Butcher,
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2016) [6, 24]. While effective in many cases, these methods 

suffer from several limitations: 

 Need for differentiability 

 Local convergence 

 Sensitivity to initial guesses 

 Difficulty in handling discontinuities or noisy data 

 

1.2 Emergence of Swarm Intelligence Algorithms 

Swarm Intelligence (SI) algorithms are inspired by the 

collective behavior of biological systems, such as bee 

swarms, bird flocks, and ant colonies. These algorithms are 

derivative-free, stochastic in nature, and suitable for high-

dimensional, non-differentiable, or multimodal optimization 

landscapes. Since the introduction of Particle Swarm 

Optimization (PSO) by Kennedy and Eberhart (1995) [15], 

various SI techniques have been developed, including: 

 Artificial Bee Colony (ABC) 

 Ant Colony Optimization (ACO) 

 Firefly Algorithm (FA) 

 Grey Wolf Optimizer (GWO) 

 Bat Algorithm 

 Cuckoo Search 

 

These algorithms treat the task of solving nonlinear 

equations as an optimization problem by minimizing an 

objective function defined as: 

 

 
 

1.3 Objectives of the Study 

This article aims to: 

 Review the principles and structure of key SI 

algorithms used for nonlinear equation solving. 

 Implement and compare ABC, PSO, FA, GWO, and 

ACO on benchmark equations. 

 Analyze performance in terms of convergence speed, 

robustness, and accuracy. 

 Recommend suitable algorithms for specific classes of 

nonlinear problems. 

 Identify current trends and future directions in SI-based 

nonlinear solvers. 

 

1.4 Scope and Limitations 

This study focuses on single-variable and multi-variable 

nonlinear systems in deterministic settings. The article does 

not cover symbolic or analytical solvers, nor does it include 

hybrid neural-symbolic approaches or quantum swarm 

algorithms, which remain emerging topics for future 

exploration. 

 

2. Literature Review  

2.1 Artificial Bee Colony (ABC) Algorithm 

The Artificial Bee Colony (ABC) algorithm, developed by 

Karaboga (2005) [12], simulates the foraging behavior of 

honey bee colonies. The search mechanism of employed, 

onlooker, and scout bees provides a balance between 

exploration and exploitation. Initially designed for 

continuous function optimization, ABC has been effectively 

applied to root-finding problems involving nonlinear 

equations (Karaboga and, 2007) [13]. Bansal, Sharma, and 

Arya (2013) [4] proposed a modified ABC (MABC) variant 

tailored for transcendental and algebraic nonlinear systems, 

demonstrating improved convergence speed and accuracy. 

Recent studies have enhanced ABC with hybrid strategies. 

For example, Jadhav and Ghatol (2017) [11] hybridized ABC 

with Newton-Raphson methods for solving stiff nonlinear 

systems, showing that the hybrid version significantly 

improves local search capability. More recently, Sharma, 

Poonia, and Sharma (2021) [26] introduced an adaptive-

parameter ABC approach that dynamically adjusts search 

limits, enhancing performance in noisy and high-

dimensional root-finding problems. 

 

2.2 Particle Swarm Optimization (PSO) 

PSO is one of the most widely used SI algorithms and has 

been adapted extensively for equation solving. Kennedy and 

Eberhart (1995) [15] introduced PSO based on the movement 

and intelligence of bird flocking. Its simple implementation 

and fast convergence made it a preferred method for global 

optimization. Clerc and Kennedy (2002) [8] formalized the 

constriction factor to improve convergence stability. 

Ali and Toqan (2018) [2] used a constricted PSO variant to 

solve large-scale nonlinear algebraic systems arising in 

chemical and mechanical simulations. Their results showed 

PSO's effectiveness in dealing with systems where 

traditional methods like Gauss-Seidel fail. Furthermore, 

several studies have extended PSO by embedding chaotic 

sequences (Wang and Liu, 2020) [28] or dynamic inertia 

weights (Mahdavi et al., 2019) [19] to adaptively fine-tune 

the swarm's behavior during iterations. 

 

2.3 Firefly Algorithm (FA) 

Yang (2009) [29] introduced the Firefly Algorithm (FA), 

inspired by the flashing patterns and behavior of fireflies. 

FA uses brightness-based attraction and randomness for 

exploration and is especially well-suited for multimodal 

optimization problems. Yang and Deb (2009) [31] 

demonstrated FA's superior performance over PSO in 

complex landscapes. 

Gandomi, Yang, Talatahari, and Alavi (2013) [10] applied FA 

to solve nonlinear equations involving discontinuous and ill-

conditioned systems. Their version incorporated chaotic 

maps to diversify the swarm and avoid premature 

convergence. More recently, Kaur and Rani (2022) [14] 

designed a multi-phase FA hybridized with genetic 

operators to solve nonlinear differential-algebraic equations, 

finding enhanced accuracy and convergence compared to 

classical FA. 

 

2.4 Grey Wolf Optimizer (GWO) 

Introduced by Mirjalili, Mirjalili, and Lewis (2014) [20], 

GWO simulates the leadership and social hierarchy in grey 

wolf packs. The algorithm balances convergence and 

diversity through alpha, beta, delta, and omega wolves. 

GWO has quickly gained popularity for its simplicity and 

strong global search capability. 

Rahnamayan and Derakhshanfar (2020) [23] extended GWO 

for constrained nonlinear systems, using adaptive leadership 

weighting. Their study, involving several engineering 

equations, reported higher convergence rates than ABC and 

FA. Asgharzadeh and Mahmoodabadi (2023) [3] 

implemented a binary GWO for root isolation in systems 
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with discrete solution spaces. 

GWO is now being integrated into hybrid frameworks. For 

instance, Khanna and Sethi (2024) [16] developed a hybrid 

GWO-Newton method, where GWO provides initial 

estimates and Newton’s method accelerates convergence in 

final iterations. This approach reduced CPU time while 

maintaining high accuracy. 

 

2.5 Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO), originally designed by 

Dorigo and Di Caro (1999) [9] for discrete combinatorial 

problems, has been adapted to continuous domains by 

several researchers. Socha and Dorigo (2008) [27] proposed a 

continuous ACO variant where the solution space is 

sampled using Gaussian functions influenced by pheromone 

intensity. 

Kumar and Bhattacharya (2015) [18] modified ACO for 

solving nonlinear algebraic equations by encoding variables 

as pheromone trails and using elitist ants for enhanced 

convergence. A recent study by Kim, Yoon, and Koo (2022) 

[17] incorporated fuzzy pheromone updating to make ACO 

robust in uncertain and under-determined nonlinear systems. 

Despite these advances, ACO remains computationally 

intensive and highly sensitive to parameter tuning, 

especially for high-dimensional systems. 

 

2.6 Other Emerging SI Algorithms 

Besides the core algorithms, recent SI methods such as the 

Bat Algorithm (BA) (Yang, 2010) [30], Cuckoo Search (CS) 

(Yang and Deb, 2009) [31], and Whale Optimization 

Algorithm (WOA) (Mirjalili and Lewis, 2016) [16] have been 

explored for equation solving. 

 CS has been shown to outperform ABC and PSO in 

certain highly nonlinear, noisy systems due to its Lévy 

flight-based step generation. 

 WOA mimics the bubble-net hunting strategy of 

humpback whales and has been applied by Choudhary 

and Dutta (2023) [7] for solving nonlinear integral 

equations with encouraging results. 

 

These newer methods remain underexplored in the context 

of nonlinear algebraic systems but offer promising 

directions. 

 

2.7 Comparative Evaluations and Trends 

Several comparative studies highlight the strengths and 

weaknesses of SI methods in nonlinear root finding: 

 Basu and Das (2016) [5] evaluated ABC, PSO, and ACO 

on transcendental equations, concluding that PSO had 

faster convergence but ABC was more robust to local 

minima. 

 Sharma, Tyagi, and Aggarwal (2019) [25] benchmarked 

five SI algorithms and found that GWO and FA had the 

highest success rates in multimodal landscapes. 

 Aggarwal and Tripathi (2022) [1] performed a statistical 

analysis of convergence behavior across 100 random 

nonlinear systems and found GWO-FA hybrids yielded 

the best balance of accuracy and speed. 

 

Emerging trends point toward 

 Hybridization of SI methods with local search (e.g., 

Newton’s method, Broyden’s method) 

 Adaptive control of parameters using reinforcement 

learning 

 GPU acceleration of population-based algorithms for 

large-scale systems 

 Problem-specific tuning through automated meta-

parameter learning (Poonia et al., 2023) [22] 

 

2.8 Research Gaps 

Despite significant progress, several research gaps persist: 

 Lack of standardized benchmarking datasets and 

uniform evaluation metrics across studies. 

 Few real-world applications beyond toy problems or 

artificial systems. 

 Scarce investigation into hybrid frameworks that utilize 

domain-specific heuristics. 

 Limited exploration of SI algorithms under dynamic or 

time-varying nonlinear environments. 

 

This article addresses these gaps by providing a comparative 

framework using standard benchmarks and extending the 

analysis to higher-order systems with real-world relevance. 

 

3. Methods and Materials  

3.1 Study Design and Objective 

The goal of this study is to evaluate the performance of 

Swarm Intelligence (SI) algorithms for solving both single-

variable nonlinear equations and multi-variable nonlinear 

systems. The comparative framework includes: 

 Five popular SI algorithms: ABC, PSO, FA, GWO, and 

ACO 

 Seven nonlinear benchmark problems (5 scalar 

equations + 2 systems) 

 Evaluation based on accuracy, convergence, and 

robustness 

 Execution under identical settings for fair comparison 

 

All simulations were implemented in Python 3.11 using 

NumPy and SciPy libraries. Each algorithm was executed 

independently for 50 trials to ensure statistical significance. 

 

3.2 Benchmark Nonlinear Equations 

To assess the universality and reliability of the algorithms, 

we selected five scalar nonlinear equations with different 

characteristics: 
 

Equation No. Equation Characteristics 

f1 x3 - x - 1 = 0 Polynomial, single root 

f2 Cos (x) - x = 0 Transcendental, iterative 

f3 x.ex - 1 = 0 Exponential, steep slope 

f4 
Sin(x) -  = 0 

Oscillatory, multiple roots 

f5 x3 - 2x2 + 4x- 8 = 0 Polynomial, root near inflection 

 

Each function was converted into a minimization objective 

function of the form: 

 

 
 

3.3 Multi-Variable Nonlinear Systems 

To test robustness in higher dimensions, two systems were 

included: 
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System A (2 variables) 

 

 
 

System B (3 variables) 
 

  

3.4 Algorithm Implementation and Parameters 

Table 1: Algorithm Settings 
 

Algorithm Population Iterations Specific Parameters 

ABC 50 200 Limit = 100, φ ∈ [-1,1] 

PSO 50 200 inertia ω = 0.7, c1=c2 = 1.5 

FA 50 200 α = 0.5, β = 1, γ = 1 

GWO 50 200 a ∈ [2, 0] linearly decreasing 

ACO 50 200 pheromone decay = 0.1, Q = 1 

 

Each algorithm minimizes the respective objective function 

using standard update rules. All runs were initialized with 

randomly generated populations within suitable bounds 

(e.g., [−5,5] for most scalar problems). 

 

3.5 Evaluation Metrics 

The following metrics were used to assess performance: 

 Root Mean Squared Error (RMSE) 

 

 
 

 Mean Absolute Error (MAE) 

 Average Iterations to Convergence 

 CPU Time (seconds) 

 Success Rate (%): Proportion of runs with final error < 

10−610^{-6}10−6 

 

All metrics were averaged over 50 independent runs for 

statistical reliability. 

 

3.6 Experimental Environment 

All experiments were performed on the same hardware to 

ensure uniformity: 

 Processor: Intel® Core™ i7 11th Gen 

 RAM: 16 GB 

 Software: Python 3.11, NumPy 1.25, SciPy 1.11 

 Platform: Windows 11 (64-bit) 

 

The CPU time was measured using the time module, and 

convergence diagnostics were generated using matplotlib 

and seaborn libraries. 

 

5.7 Algorithm Flow Summaries 

 

 
 

Flow chart 1: Flow chart of the Artificial Bee Colony (ABC) Algorithm  

(Depicts employed bees, onlooker phase, scout replacement, and selection logic) 
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Flow chart 2: Comparative Flow Structures of SI Algorithms 

(Illustrates convergence behavior: exploration → exploitation) 

 

3.8 Validation Protocol 

 All root results were compared against known 

analytical solutions where possible. 

 The same initial seed ranges were used for all 

algorithms to ensure fairness. 

 Each experiment was repeated 50 times to mitigate 

randomness-induced variance. 

 

3.9 Validation Protocol 

 All root results were compared against known 

analytical solutions where possible. 

 The same initial seed ranges were used for all 

algorithms to ensure fairness. 

 Each experiment was repeated 50 times to mitigate 

randomness-induced variance. 

 

4. Results 

 

 

 
 

Fig 1: Average Iterations to Convergence (Single-Variable Problems) 

 

Figure 1 shows the average iterations to convergence for 

each swarm intelligence algorithm on single-variable 

nonlinear equations. GWO and FA required fewer iterations 

compared to others, highlighting their efficiency. 
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Fig 2: Success Rate (%) for Single-Variable Problems 

 

Figure 2 illustrates the success rates of the algorithms for 

single-variable nonlinear problems. All methods achieved 

high success rates, with ABC, PSO, FA, and GWO reaching 

100%, while ACO trailed slightly at 96%. 

 

 
 

Fig 3: RMSE for Multi-Variable Systems 

 

Figure 3 presents the Root Mean Squared Error (RMSE) for 

multi-variable nonlinear systems. GWO and FA achieved 

the lowest errors, indicating higher precision in estimating 

multiple roots compared to ABC and ACO. 

 

 
 

Fig 4: Average CPU Time (Multi-Variable Systems
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Figure 4 compares the average CPU time taken by each 

algorithm for solving multi-variable nonlinear systems. 

GWO and FA not only offered better accuracy but also 

executed faster than the other algorithms, particularly 

outperforming ACO in computation time. 

 
Table 2: Performance Metrics on Single-Variable Nonlinear Equations  

(Average over 50 runs) 
 

Algorithm RMSE MAE Avg. Iterations CPU Time (s) Success Rate (%) 

ABC 1.2×10⁻⁶ 9.5×10⁻⁷ 132 0.83 100 

PSO 1.1×10⁻⁶ 9.0×10⁻⁷ 126 0.78 100 

FA 9.8×10⁻⁷ 7.9×10⁻⁷ 112 0.75 100 

GWO 7.4×10⁻⁷ 6.1×10⁻⁷ 108 0.72 100 

ACO 1.3×10⁻⁶ 1.0×10⁻⁶ 158 0.95 96 

 
Table 3: Performance Metrics on Multi-Variable Nonlinear Systems 

(Average over 50 runs) 
 

Algorithm RMSE CPU Time (s) Success Rate (%) 

ABC 2.1×10⁻⁶ 1.31 98 

PSO 1.7×10⁻⁶ 1.19 100 

FA 1.4×10⁻⁶ 1.08 100 

GWO 9.8×10⁻⁷ 0.94 100 

ACO 2.4×10⁻⁶ 1.53 95 

 

5. Discussion  

5.1 Comparative Performance in Context of Literature 

The experimental results demonstrate distinct behavioral 

characteristics across the five Swarm Intelligence (SI) 

algorithms applied to nonlinear equations. These findings 

strongly align with earlier theoretical and empirical 

observations reported in the literature. 

The Grey Wolf Optimizer (GWO) exhibited the lowest 

RMSE and highest success rate in both single-variable and 

multi-variable nonlinear problems (Table 2 and Table 3), a 

result that confirms its superior convergence mechanism 

noted by Mirjalili, Mirjalili, and Lewis (2014) [20]. GWO's 

hierarchy-based decision structure (alpha-beta-delta-omega) 

dynamically adjusts the search radius, allowing efficient 

transitions from exploration to exploitation. As documented 

by Rahnamayan and Derakhshanfar (2020) [23], GWO's 

adaptive leadership model enables rapid convergence in 

constrained nonlinear spaces, a behavior observed in our 

System B test case as well. 

The Firefly Algorithm (FA) also showed strong 

convergence and error minimization, matching the 

performance of GWO in terms of accuracy while being 

slightly slower. The FA's use of brightness-based attraction 

(Yang, 2009) [29] and its natural ability to avoid local optima 

due to random perturbations (Yang and Deb, 2010) [31] 

translated into high robustness across all trials. Gandomi, 

Yang, Talatahari, and Alavi (2013) [10] emphasized that 

introducing chaotic dynamics improves FA’s global search, 

which supports the reduced RMSE observed in our multi-

variable benchmarks. 

Particle Swarm Optimization (PSO) performed with 

reasonable accuracy and competitive CPU times. However, 

it was sensitive to parameter tuning, and in several cases 

(notably f5f_5f5 and System A), it failed to reach the 

minimum number of iterations compared to GWO and FA. 

This sensitivity to parameters such as inertia weight and 

acceleration constants is well documented by Clerc and 

Kennedy (2002) [2]. Moreover, Ali and Toqan (2018) [2] 

showed that PSO's performance in solving nonlinear 

algebraic systems can degrade without adaptive tuning, 

particularly when solution surfaces contain saddle points or 

are ill-conditioned—situations reflected in our results. 

The Artificial Bee Colony (ABC) algorithm exhibited 

moderate accuracy and was outperformed by GWO and FA 

in terms of convergence speed. This is consistent with 

findings from Karaboga and Basturk (2007) [13], who noted 

that ABC tends to have a broader exploratory behavior but 

weaker exploitation in the vicinity of local optima. Bansal, 

Sharma, and Arya (2013) [4] addressed this weakness by 

modifying the update step using weighted neighborhood 

learning, which was not used in our baseline ABC version. 

Adaptive enhancements like those described by Sharma, 

Poonia, and Sharma (2021) [26] might have improved the 

success rate in difficult problems such as f3(x)=xex−1f_3(x) 

= xe^x - 1f3(x)=xex−1, where convergence was slower. 

On the other hand, Ant Colony Optimization (ACO) was 

consistently the slowest algorithm, with the lowest success 

rate in both problem sets. While ACO has demonstrated 

promise in discrete and combinatorial problems (Dorigo and 

Di Caro, 1999) [9], its continuous-domain adaptations such 

as the one proposed by Socha and Dorigo (2008) [27] are 

often inefficient in high-dimensional or flat error 

landscapes. Our implementation results mirror those 

reported by Kumar and Bhattacharya (2015) [18], where ACO 

required more evaluations to reach acceptable solution 

accuracy. Furthermore, Kim, Yoon, and Koo (2022) [17] 

showed that fuzzy pheromone tuning improves robustness 

but increases computational load, which could explain the 

higher CPU time in our multi-variable runs. 

 

5.2 Performance Trade-offs and Algorithm Suitability 

The results across Figures 1-4 and Tables 2-3 demonstrate a 

clear trade-off between exploration ability and convergence 

speed. FA and GWO achieved low RMSE and high 

robustness, which supports the comparative results of 

Sharma, Tyagi, and Aggarwal (2019) [25], who identified 

both algorithms as optimal choices for complex, multimodal 

nonlinear functions. 

PSO and ABC, while exhibiting faster early-stage 

convergence, struggled with precision in tight tolerance 

thresholds, reaffirming the findings of Wang and Liu (2020) 

[28] and Jadhav and Ghatol (2017) [11], who emphasized the 

importance of adaptive parameters and hybrid schemes for 

enhancing local refinement in these methods. 
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ACO's underperformance is supported by the experimental 

studies of Basu and Das (2016) [5] and Aggarwal and 

Tripathi (2022) [1], where ACO was ranked lowest in high-

dimensional optimization due to inefficient continuous-

domain heuristics. 

 

5.3 Multi-Variable System Accuracy and Time 

Efficiency 

In multi-variable nonlinear systems, GWO and FA 

significantly outperformed ABC, PSO, and ACO. GWO’s 

low RMSE and CPU time on System B align with the 

constrained optimization improvements introduced by 

Rahnamayan and Derakhshanfar (2020) [23]. Similarly, FA's 

consistent accuracy supports the hybridization proposals by 

Kaur and Rani (2022) [14], where FA outperformed PSO in 

stiff algebraic-differential equations. 

ABC, in contrast, exhibited slightly higher RMSE and CPU 

time, likely due to its tendency to re-explore known solution 

zones without effective memory sharing (Karaboga, 2005; 

Sharma et al., 2021) [12, 26]. ACO’s pheromone memory was 

less effective in multi-dimensional continuous settings, as 

also highlighted by Socha and Dorigo (2008) [27]. 

 

5.4 Practical Implications for Algorithm Selection 

The findings suggest the following practical implications 

 For high-dimensional or multimodal equations, GWO 

or FA are superior due to their strong global search and 

stable convergence, consistent with findings by 

Mirjalili et al. (2014) [20] and Gandomi et al. (2013) [10]. 

 For faster approximate solutions with lower resource 

overhead, PSO or ABC remain effective, but only under 

controlled parameter tuning (Clerc and Kennedy, 2002; 

Bansal et al., 2013) [2, 4]. 

 ACO is best reserved for problems where memory-

based search and path reinforcement offer clear 

advantage, such as symbolic algebraic logic or rule-

based optimization (Dorigo and Di Caro, 1999; Kim et 

al., 2022) [9, 17]. 

 

5.5 Aligning with Emerging Trends 

Our study confirms several emerging trends in recent 

literature 

 Hybridization: Many authors (Khanna and Sethi, 

2024; Choudhary and Dutta, 2023) [16, 7] propose 

combining GWO or FA with Newton-based or 

gradient-based solvers for fast local refinement. Such a 

hybrid could reduce average iterations further in our 

benchmarks. 

 Parameter Adaptivity: As demonstrated by Mahdavi 

et al. (2019) [19] and Sharma et al. (2021) [26], using self-

tuning parameters based on feedback could stabilize 

PSO and ABC in poorly-scaled systems. 

 Metaheuristic Ensembles: Poonia et al. (2023) [22] 

highlighted the growing interest in reinforcement 

learning for controlling multiple metaheuristics in 

ensemble systems—a promising future direction for 

nonlinear root solvers.  

 

6. Conclusion  

The comparative evaluation of five swarm intelligence 

algorithms—ABC, PSO, FA, GWO, and ACO—

demonstrates significant diversity in their performance 

when applied to nonlinear equation solving. GWO and FA 

emerged as the most robust and efficient methods, offering 

high precision, stability, and low computational cost across 

both scalar and multi-variable systems. Their adaptive 

mechanisms and strong global search capabilities make 

them ideal candidates for complex, multimodal problem 

landscapes. In contrast, ABC and PSO provided moderate 

performance with faster execution but were occasionally 

less accurate, particularly in multi-variable scenarios. ACO, 

while conceptually powerful in discrete optimization, 

showed limitations in continuous root-finding tasks due to 

slower convergence and sensitivity to tuning. These insights 

confirm the importance of algorithm selection based on 

problem type and complexity. Further advances in 

hybridization, parameter auto-tuning, and integration with 

reinforcement learning could enhance solver reliability and 

scalability, particularly in real-world scientific, engineering, 

and control system applications. 
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