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Abstract 
Hesitant fuzzy set theory is a branch of fuzzy set theory that uses new measures to address uncertainty 

in shortest path problems. In this paper, we propose a generalized version of Dijkstra's algorithm from 

source node to destination node for scenarios where each edge has an associated hesitant fuzzy number 

as its cost. The Bonferroni mean (BM) is indeed a useful tool in multi-criteria decision-making 

(MCDM) because it effectively captures the interrelationships among different criteria or arguments. 

We introduce a modified hesitant fuzzy Dijkstra's algorithm (MHFDA) to address hesitant fuzzy 

shortest path problems (HFSPP). This algorithm utilizes hesitant fuzzy Bonferroni means (HFBM) and 

hesitant fuzzy weighted geometric operators (HFWG) to find the solution. 

 

Keywords: Algorithm, operators, solution 

 

1. Introduction 
The shortest path problem with fuzzy costs is indeed a well-explored area in fuzzy set theory 

and fuzzy systems [14]. However, in many real-world scenarios, the cost associated with 

traveling along a path may not be precisely known and can be represented as fuzzy values. 

This area of study is crucial for applications where precise data is not available, such as in 

transportation planning, network design, and decision-making under uncertainty. It sounds 

like we're referring to a specific approach outlined by researchers [13, 16, 20] to tackle shortest 

path problems in networks with fuzzy arc lengths using dynamic programming. The dynamic 

programming method with fuzzy arithmetic to address the uncertainty in arc lengths. By 

using dynamic programming [5, 14, 16-18, 20, 21, 26, 29-31], the algorithm efficiently computes the 

shortest path while accommodating the vagueness of fuzzy numbers. This method is 

particularly useful in real-world applications where precise measurements are difficult to 

obtain and where costs are inherently uncertain. Variation of Shortest path problem can be 

found in the paper. The shortest path problem have been solved by many authors by different 

method with different type fuzzy arc length.  

Many researchers [2] have explored aggregation operators for fuzzy numbers, particularly 

focusing on operations involving Hesitant Fuzzy Numbers (HFNs). The development of 

aggregation operators for fuzzy numbers and HFNs continues to be an active area of 

research, with ongoing efforts to refine these operators and explore their applications in 

different domains. We have a specific paper or study in mind, I can provide more targeted 

insights based on that work. 

In Multi-Criteria Decision-Making (MCDM) problems, aggregation operators are indeed 

essential tools for combining and synthesizing information from multiple criteria or sources. 

MCDM problems [15] often involve evaluating and making decisions based on multiple, often 

conflicting criteria, and aggregation operators help in consolidating these diverse pieces of 

information into a single, coherent decision. The min and max operators are indeed among 

the most commonly used operators in fuzzy theory. The min and max operators are 

advantageous in fuzzy logic for their simplicity and efficiency in calculation. Their extension 

into a lattice structure provides a robust theoretical framework that supports consistent and 

well-defined operations in fuzzy systems. This lattice structure not only facilitates the basic 

operations but also allows for the development of more complex fuzzy logic models and 

applications. Bonferroni [4] is originally introduced a mean-type aggregation operator which 

is called the Bonferroni mean. 

www.computersciencejournals.com/ijecs
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The Hesitant fuzzy Bonferroni mean (HFBM) was presented 

by Zhu et al [3]. HFBM is a notable aggregation operator 

used in fuzzy decision-making and multi-criteria decision-

making (MCDM) problems. Yager [34] introduced an 

interpretation of a certain operator and proposed 

generalizations by substituting it with different types of 

mean operators. Beliakov [11] conducted a systematic 

investigation of a family of composed aggregation 

functions, which generalizes the operator extends the 

Bonferroni mean to handle hesitant fuzzy information, 

which is useful when decision-makers express hesitation or 

uncertainty about their assessments. 

Hesitant Fuzzy Sets (HFS) are a generalization of traditional 

fuzzy sets that are particularly useful for handling situations 

where there is hesitation or uncertainty in the decision-

making process. Their ability to capture the ambiguity and 

vagueness inherent in human judgments makes them 

applicable across various fields of science and practical 

domains. Here’s an overview of how hesitant fuzzy sets are 

being studied and applied in different fields [1]. Using this 

concept many researchers and practitioners [15, 22-23, 32, 33] 

have successfully applied hesitant fuzzy sets (HFS) to solve 

practical problems across a wide range of fields. Tora and 

Narukawa (2009) and Torra (2010) [36, 37] contributed 

significantly to the development and formalization of 

hesitant fuzzy sets and elements. Gau and Buehrer [10] 

introduced the concepts of vague set. Xia and Xu’s [38] work 

on ranking Hesitant Fuzzy Elements (HFEs) introduces 

important methodologies for handling and evaluating 

uncertainty in fuzzy systems. 

Edsger W. Dijkstra, a prominent Dutch computer scientist, 

is well-known for his contributions to algorithm design, 

particularly for the development of Dijkstra's algorithm [6, 7]. 

Edsger Dijkstra’s algorithm, developed in 1956 and 

published in 1959, has become a cornerstone of computer 

science for solving the shortest path problem in weighted 

graphs. Its efficiency and wide range of applications 

underscore its importance in both theoretical and practical 

contexts, making it a fundamental tool in various fields such 

as networking, robotics, and geographic information 

systems. Many researchers [8, 12, 16, 19, 24-28, 29, 35] have 

contributed to the refinement, optimization, and application 

of this algorithm. 

The rest of the paper is organized as follows Section 2 

depicts the preliminary concepts of HFSs, HF value, HFNs, 

score or ranking of HF value and HFBM operator. Section 3 

describes the proposed method. Section 4, a numerical 

example has been solved using the proposed method, 

Section 5 depicts the results and discussions and Section 6 

concludes the paper. 

 

2. Preliminaries Idea 

2.1 Definition (Hesitant fuzzy set) (HFS) 

Tora and Narukawa [36] introduced the concept of a hesitant 

fuzzy set as an extension of the traditional fuzzy set to 

handle cases where there is hesitation or uncertainty in 

assigning a precise membership value. 

Xia and XU, 2011 define HFS as follows- 

A hesitant fuzzy set Â  in a universe of discourse X
~

 is 

defined by a collection of fuzzy sets rather than a single 

fuzzy set. Formally, it can be expressed as: 

 

Â  = 
  Xxxxxx

nAAA

~~:)}~(),...,~(),~({,~
ˆˆˆ

21


 (1) 

)}~( ..., ),~( ),~({ ~~~
21

xxx
nAAA


 Represent a set of 

possible membership values for an element x~ in the hesitant 

fuzzy set Â . 

 

2.2 Definition (Hesitant fuzzy Element) (HFE) 

Torra’s work extended the concept further by defining the 

hesitant fuzzy element, which allows for more granular 

representation of hesitancy in fuzzy logic systems. 

A hesitant fuzzy element h
~

in a universe X
~

is characterized 

by a set of possible values representing the membership 

degrees of an element x~ in different fuzzy sets. Formally, a 

hesitant fuzzy element can be defined as: 

 

h
~

= 
  Xxxxxx

nAAA

~~:)}~(),...,~(),~({,~
ˆˆˆ

21


 

 

Where the set 
)}~( ..., ),~( ),~({ ~~~

21

xxx
nAAA


 contains the possible 

membership degrees for the element x~ , reflecting the 

hesitancy in assigning a precise value. 

 

2.3 Score or Ranking of Hesitant Fuzzy Value 

A score function [9] of a hesitant fuzzy value (HFV) is 

introduced by Xia and Xu [38] (2011a), which is represented 

as follows: 

 

For a HFE h
~

, 




h
~~

h
~

~

l

1
  )

~
(



hs

   (2) 

If 1

~
h

 and 2

~
h

are two hesitant fuzzy element then 

 

  
 

2.4 Some Basic Operaion  

Torra and Narukawa (2009) and Torra (2010) is defined 

some basic operation on HFEs in such way that 

 

Given two HFEs represented by 1

~
h

 and 2

~
h

 

 

 
 

Where these above notions are useful meaning. 

 

2.5 Bonferroni mean (BM) Operator 
The Bonferroni Mean was introduced by the Italian 

mathematician Carlo Bonferroni in 1950. It is used to 

aggregate information, particularly in the context of fuzzy 

sets and multi-criteria decision-making. The Bonferroni 

Mean is a generalization that can handle various types of 

aggregation, including those involving fuzzy logic. 

Let ai (i = 1, 2,…, n) be a collection of nonnegative 
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numbers, and p,q0 if  

Bp,q (a1, a2, ….,an) = 

qp
n

ji
ji

q

j
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i aa
nn
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  (8) 

 

Then Bp,q is called a Bonferroni means. 

Where these above notion is useful meaning.  

 

2.6 Hesitant fuzzy Bonferroni mean (HFBM) 
The Hesitant Fuzzy Bonferroni Mean (HFBM) introduced 

by Zhu et al. in 2013 is an extension of the Bonferroni Mean 

to handle hesitant fuzzy information. Hesitant fuzzy sets are 

used when there is hesitation or uncertainty about the 

membership degree of elements in a fuzzy set. This type of 

fuzzy set allows for multiple possible membership values 

for each element, reflecting more complex decision-making 

scenarios. 

Given that p and q are positive parameters and 1

~
h , 2

~
h …, nh

~
 

where each ih
~

 represents a hesitant fuzzy set, the Hesitant 

Fuzzy Bonferroni Mean HFBMp,q( 1

~
h

, 2

~
h

, …, nh
~

) and it is 

defined by 

  

HFBMp,q( 1

~
h , 2

~
h , …, nh

~
) =

qp

q

j

p

i

n

ji
ji

hh
nn




 





































1

1,

)
~~

(
)1(

1

 (9) 

 

Theorem 1: (Zhu et al. 2013a). Let p, q>0, and 1

~
h , 2

~
h , …, 

nh
~

 be a collection of HFEs then aggregated value by using 

the HFBM is a HFE, and HFBMp,q( 1

~
h

, 2

~
h

, …, nh
~

) = 
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Where ji ,
~

= 

q

j

p

i hh
~~


reflects the interrelationship 

between 1

~
h

 and 2

~
h

, i,j =1,2,…, n, i≠j.  

Where these above notions are useful meaning. 

 

2.7 Definition 3 (Hesitant fuzzy weighted geometric 

operator) (HFWG) or (hfwg) 

Xia and Xu defined HFWG in 2011 in such way  

Let ih
~

 (i= 1,2,…,n) be a collection of HFEs and let HFWG: 

n

, HFWG is defined by 

HFWG ( 1

~
h

, 2

~
h

,…, nh
~

) =

iw

i

n

i

h
~

1

  = 

 


nn

i

hhh
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    (11) 

 

where w = (w1, w2,…,wn)T is called weight vector of ih
~

 

(i=1,2,…,n) with wi [0,1], i=1,2,…,n and 



n

i

iw
1  =1, where 

these above notations have usual meaning. 

 

Let 1

~
h

={0.2,0.3} and 2

~
h

 ={0.4,0.6} be two HFEs, and wi = 

(w1, w2)T =(0.7,0.3)T their weight vector, then we have  

HFWG ( 1

~
h

, 2

~
h

) = 


2211

~~,
~~

2

1

}~{
hh i

w

i
i

 






= {0.20.7×0.40.3, 

0.20.7×0.60.3, 0.30.7×0.40.3, 0.30.7× 0.60.3 } = {0.2462, 0.2781, 

0.3270, 0.3693}  

 

3. The Proposed Method 

A connected network (V,E) where V is the set of vertices 

and E is the set of arcs (or edges) in which ‘s’ is source node 

and ‘e’ is the sink node. In the context of finding the 

shortest path in a network where the cost (time or distance) 

associated with each arc (i,j)∈E has an associated cost ijC
~

, 

which is represented as Hesitant Fuzzy Elements (HFEs), 

the problem becomes more complex due to the presence of 

uncertainty or hesitation in the cost values. 

 

3.1 The Modified Hesitant Fuzzy Dijkstra’s Algorithm 

(MHFDA) 

3.2 Input Data 
Obtain the network graph G= (V, E). 

Gather the hesitant fuzzy weights for each arc. 

 

Compute Aggregated Costs 

For each arc (i,j)∈E: 

 

ijC
~

= HFBMp,q( 1

~
h

, 2

~
h

, …, nh
~

) 

 

3.3 Graph Transformation 

Construct a new graph G′=(V,E′) where each (i,j)∈E has 

weight ijC
~

 

 

3.4 Find Shortest Path 
Apply Dijkstra’s algorithm on G′ to find the shortest path 

from‘s’ to e. 

 

3.5 Output 
To find the shortest path and the corresponding aggregated 

cost in a graph 

1. To address the problem of calculating the aggregated.  

Hesitant Fuzzy Value (HFV) for the maximum-cost 

path or the shortest path in a graph with hesitant fuzzy.  

2. The shortest path.  

 

To address the problem where L(x) denotes the label of 

node x, representing the aggregated hesitant fuzzy value 

(HFV) for the path from node ‘s’ to node ‘x’, follow these 

steps to calculate 

 

3.6 Step 1: Let P =, where P is the set of those nodes 

which have permanent labels and T = {all nodes of the 

network G}. At first, the permanent label to‘s’ has been 

assigned as L(s) = 1, (initially), ‘s’ is the starting node, so 
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definitely it will be present in the shortest path. This is 

represented by the HFN {1} of the fact that node‘s’ is in the 

shortest path. Also L(x) = 0 xT and x’s’.  

 

3.7 Step 2 

That node ‘v’ in T is selected which has the highest score 

value of its label, called the permanent label of ‘v’ (i.e., 

L(v)). Then P = P ∪ {v} and T = T −(v). Again the node in T 

with highest score value of its label is selected. The new 

label of a node ‘x’ in T is given by 

 

 
 

Where vxC
is the HF cost for travelling along the arc v − x. 

Then using the HFBM and HFWG operator of the Eq. (6), 

(7), (10) and (11) of Section 2.4, 2.6 and 2.7 described in 

this paper, the aggregated value of L(v)and vxC
are derived 

which are also in terms of hesitant fuzzy value. The max 

function is used for evaluating the maximum of the two 

HFEs using the Eqs. (2), (3), (4).  

It has been assumed that vxC = 0, if there is no edge joining 

the node ‘v’ directly to the node ‘x’. 

 

3.8 Step 3 

STOP. The process of finding the nodes with permanent

label is repeated until ‘e’ gets a permanent label. The above 

steps do not actually list the shortest path from the starting 

node to the terminal node; it only gives the aggregated HFV 

of the HF cost of travelling the shortest path. 

 

3.9 Step 4 

To reconstruct the shortest path, we can indeed work 

backwards from the terminal node by tracing back through 

the predecessors. This method is based on the fact that the 

predecessors dictionary stores the previous node on the 

shortest path to each node. 

 

3.10 Step 5: End.  

In Step 2 for calculating the HFBM (L(v), vxC ) or HFWG 

(L(v), vxC
) one has to proceed as follows : 

HFBM (L(v), vxC
) or HFWG (L(v), vxC

) are calculated 

whenever required. 

 

4. Numerical Illustration 

Consider a network model G= (V, E) with V = {1, 2, 3, 4, 5, 

6} has 6 nodes and E has 10 arcs as shown in the Fig. 1. The 

Hesitant Fuzzy Cost for travelling along the respective arcs 

are given in Table 1. The objective is to find the shortest 

path from node 1 to node 6 such that the total Hesitant 

Fuzzy (HF) cost of traveling is maximized.  

Solution The proposed algorithm MHFDA described in 

Section 3.1 of this paper has been applied for solving this 

example.

 

 
 

Fig 1: Network Model G=(V,E)G = (V, E)G=(V,E) with Nodes and Hesitant Fuzzy Costs 

 
Table 1: Data for HF Costs for travelling along the respective arcs of the given network 

 

Arcs (i-j) Hesitant Fuzzy Costs along these arcs c (i, j) 

12 {0.5,0.6} 

13 {0.4,0.8} 

15 {0.3,0.4,0.5} 

23 {0.7,0.9} 

24 {0.4,0.5,0.6,0.7} 

35 {0.5,0.9} 

34 {0.6,0.7} 

45 {0.5,0.6} 

46 {0.8,0.9} 

56 {0.5} 

 

5. Problem solve by HFWG 

5.1 Iteration 1 
S= h1= {1}, C12 = {0.5, 0.6}, C13 ={0.4, 0.8} 

Using the equation (11), we calculate of three hesitant fuzzy 

numbers h1 = {1}, C12= {0.5, 0.6} and C13 = {0.4, 0.8} we 

get HFWG (h1, C12) = {0.5, 0.6}, HFWG (h1, 

C13)={0.4,0.8}. 

Using the equation (2), we calculate the score of two 
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hesitant fuzzy numbers HFWG (h1, C12) and HFWG (h1, 

C13). 

Score of HFWG (h1, C12) = S(L(x))= 0.55, Score of HFWG 

(h1, C13)= S(L(x))=0.6. 

 
Table 2: Results of Iteration 

 

Node (x) L(x) S(L(x)) 

2 {0.5,0.6} 0.55 

3 {0.4,0.8} 0.6 

4 0 0 

5 {0.3,0.4,0.5} 0.4 

6 0 0 

 

The significance of bold entry represent the highest scores 

and the corresponding node gets the permanent label in that 

iteration.  

 

5.2 Step 2: S= {1,3}, T= {2,4,,5,6} 

 

5.3 Iteration 2 

5.4 Step 1 

 
Table 3: Results of Iteration 2 

 

Node (x) L(x) S(L(x)) 

2 0 0 

4 {0.24,0.48,0.28,0.56} 0.39 

5 {0.2,0.4,0.36,0.72} 0.42 

6 0 0 

 

The significance of bold entry represent the highest scores 

and the corresponding node gets the permanent label in that 

iteration.  

 

5.5 Step 2: S={1,3,5}, T={2,4,6} 

 

5.6 Iteration 3 

5.7 Step 1 
 

Table 4: Results of Iteration 3 
 

Node (x) L(x) S(L(x)) 

2 0 0 

3 0 0 

4 0 0 

6 {0.1,0.2,0.18,0.36} 0.21 

 

The significance of bold entry represent the highest scores 

and the corresponding node gets the permanent label in that 

iteration.  

 

5.8 Step 2: S= {1,3,5,6}, T= {2,4} 

 

5.9 Step 3: Since the sink node is 6 so no further processing 

is needed for this node. L(6) = {0.1,0.2,0.18,0.36}, 

S={1,3,5,6} and s(L(6)) = 0.21 represents the aggregated 

HFV of the optimum-cost path or the shortest path with 

respect to the total hesitant fuzzy cost for travelling through 

the shortest path. 

 

5.10 Step4: The shortest path can be easily constructed as 

follows: 

 

Pred{6}=5, Pred{5}= 3 Pred{3}=1 

So the HF shortest path comes to be 1 → 3 →56 

 

5.11 Problem solve by HFBM 

5.12 Step 1 
 

Table 5: Results of Iteration 1 
 

Node (x) L(x) S(L(x)) 

2 {0.707, 0.743, 0.775} 0.742 

3 {0.632, 0.808, 0.894} 0.778 

4 0 0 

5 {0.55,0.55,0.64,0.63,0.67,0.71} 0.63 

6 0 0 

 

5.13 Step 2: S= {1, 3}, T= {2, 4, 5, 6} 

 

5.14 Iteration 2 

5.15 Step 1 

 
Table 6: Results of Iteration 2 

 

Node 

(x) 
L(x) S(L(x)) 

2 0 0 

4 

{0.616, 0.659, 0.681, 0.642, 0693, 0.72, 0.696, 

0.715, 0.726, 0.749,0.732,0.701,0.742, 0.764, 0.665, 

0.713, 0.737, 0.752, 0.773, 0.791} 

0.681 

5 

{0.562, 0.601, 0.620, 0.676, 0.754, 0.797, 0.636, 

0.653, 0.702, 0.773, 0.812, 0.669, 0.715, 0.782, 

0.819, 0.754, 0.811, 0.842, 0.853, 0.877, 0.897}. 

0.743 

6 0 0 

 

5.16 Step 2: S={1,3,5}, T={2,4,6} 

 

5.17 Iteration 3 

5.18 Step 1 

 
Table 7: Results of Iteration 3 

 

Node 

(x) 
L(x) S(L(x)) 

2 0 0 

4 0 0 

6 

{0.53, 0.54, 0.544, 0.549, 0.522, 0.554, 0.567, 

0.563, 0.566, 0.575, 0.58, 0.582, 0.585, 0.588, 

0.589, 0.59, 0.596, 0.598, 0.604, 0.609, 0.553, 

0.558, 0.56, 0.564, 0.565, 0.571, 0.575, 0.583, 

0.588, 0.593, 0.596, 0.598, 0.603, 0.606, 0.611, 

0.616, 0.557, 0.562, 0.564, 0.568, 0.569, 0.575, 

0.578, 0.587, 0.591, 0.593, 0.597, 0.599, 0.6, 0.602, 

0.607, 0.609, 0.615, 0.619, 0.623, 0.572, 0.575, 

0.577, 0.582, 0.585, 0.594, 0.598, 0.606, 0.608, 

0.613, 0.616, 0.621, 0.625, 0.5 0.58, 0.586, 0.589, 

0.597} 

0.52 

 

5.19 Step 2: S= {1,3,5,6}, T={2,4} 

 

5.20 Step 3: Since the sink node is 6 so no further 

processing is needed for this node. . L(6) ={0.53, 0.54, 

0.544, 0.549, 0.522, 0.554, 0.567, 0.563, 0.566, 0.575, 0.58, 

0.582, 0.585, 0.588, 0.589, 0.59, 0.596, 0.598, 0.604, 0.609, 

0.553, 0.558, 0.56, 0.564, 0.565, 0.571, 0.575, 0.583, 0.588, 

0.593, 0.596, 0.598, 0.603, 0.606, 0.611, 0.616, 0.557, 

0.562, 0.564, 0.568, 0.569, 0.575, 0.578, 0.587, 0.591, 

0.593, 0.597, 0.599, 0.6, 0.602, 0.607, 0.609, 0.615, 0.619, 

0.623, 0.572, 0.575, 0.577, 0.582, 0.585, 0.594, 0.598, 

0.606, 0.608, 0.613, 0.616, 0.621, 0.625, 0.5 0.58, 0.586, 

0.589, 0.597}, S={1,3,5,6} and s(L(6)) = 0.52 represents the 

aggregated HFV of the optimum-cost path or the shortest 
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path with respect to the total hesitant fuzzy cost for 

travelling through the shortest path. 

 

5.21 Step4: The shortest path can be easily constructed as 

follows: 

Pred{6}=5, Pred{5}= 3 Pred{3}=1 

So the HF shortest path comes to be 1 → 3 →56. 

 

6. Results and Discussion 

The final results can be seen in the solutions of the 

numerical examples provided above, using the given 

operator. The results obtained are 0.52 and 0.21 when using 

the HFBM and HFWG operators, respectively. These results 

are aggregated as HFN for the path 1 → 3 →56 in 

iteration 3. This implies that the path 1 → 3 →56 is the 

most preferable one for the aggregated HF cost associated 

with it. Among the two operators, HFWG is the most 

preferable for finding the shortest distance, compared to the 

HFBM operator. The main advantage of the proposed 

method is that, for a given network with fuzzy parameters, it 

can identify the unique shortest path with the shortest fuzzy 

distance. Thus, the discrete uncertain knowledge about the 

cost of traveling along the arcs, represented as HFV, has 

been mathematically accumulated by the proposed MHFDA 

method, resulting in a definite solution expressed in terms of 

both HFV and HFEs. For larger problems, computer 

programs can be developed based on the proposed 

methodology. By modifying the well-known Dijkstra's 

Algorithm to incorporate hesitant fuzzy arc parameters and 

successfully applying the HFBM operator, this paper 

introduces a new and efficient heuristic algorithm that 

addresses of the decision maker. A numerical example 

demonstrates the effectiveness of the proposed method. In 

the future, this approach could be extended to address multi-

criteria shortest path problems with data represented as 

HFEs. 

 

7. Conclusion 

The Shortest Path Problem (SPP) is a highly significant area 

of study with applications in various real-life scenarios. This 

paper introduces a novel and innovative methodology for 

solving the Shortest Path Problem (SPP) in environments 

characterized by uncertainty. In practice, the precise values 

of parameters such as time or cost associated with the arcs 

of a network may not always be available. To account for 

uncertainty, fuzzy numbers can be used to represent 

imprecise or ambiguous values. This paper considers the 

most general type of fuzzy numbers, namely Hesitant Fuzzy 

Numbers (HFNs), to represent the uncertain costs associated 

with traveling through each arc. The HFBM and HFWG 

operators, a crucial component of HFSs, is utilized to 

develop the proposed methodology, MHFDA. This type of 

real-life problem has been efficiently solved using the 

proposed MHFDA methodology, which successfully applies 

various existing theories of HFSs. This represents a 

significant contribution of the paper. In the future, 

alternative methods could be proposed to address similar 

problems, and their results compared. Additionally, 

computer programs could be developed to implement the 

proposed methodology for large-scale networks. 
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