

~ 120 ~

International Journal of Engineering in Computer Science 2024; 6(2): 120-124

E-ISSN: 2663-3590

P-ISSN: 2663-3582

www.computersciencejournals.c

om/ijecs
IJECS 2024; 6(2): 120-124

Received: 16-06-2024

Accepted: 03-08-2024

V Arun Kumar

Assistant Professor, Malla

Reddy Engineering College for

Women (Autonomous

Institution), Hyderabad,

Telangana, India

P Keerthi

Student, Malla Reddy

Engineering College for

Women (Autonomous

Institution), Hyderabad,

Telangana, India

N Jyoshna

Student, Malla Reddy

Engineering College for

Women (Autonomous

Institution), Hyderabad,

Telangana, India

S Shreeja

Student, Malla Reddy

Engineering College for

Women (Autonomous

Institution), Hyderabad,

Telangana, India

Corresponding Author:

V Arun Kumar

Assistant Professor, Malla

Reddy Engineering College for

Women (Autonomous

Institution), Hyderabad,

Telangana, India

Software vulnerability detection tool using machine

learning algorithms

V Arun Kumar, P Keerthi, N Jyoshna and S Shreeja

DOI: https://doi.org/10.33545/26633582.2024.v6.i2b.134

Abstract
There has been a lot of focus on exploitable software vulnerabilities recently because to the seriousness

of the damage they may bring to data and computer security. Code inspection has been aided by several

suggested vulnerability detection methods. One set of research has shown encouraging outcomes when

using machine learning approaches to these strategies. With the goal of demonstrating how these 22

recent research use state-of-the-art neural approaches to identify potential problematic code patterns,

this article covers deep learning as a vulnerability detection method. From the papers we looked at, we

were able to pick out four that really changed the game when it came to using deep learning for

vulnerability identification. We also gave you the lowdown on what these four studies had to say about

the field as a whole. Reviewing the remaining studies in light of the four game-changers, we offer their

methods and solutions, which either expand upon or build upon the game-changers, and we share our

thoughts on the trends that will shape future research. We also talk about possible areas for future study

and point out the difficulties encountered in this area. We want to inspire readers to delve more into

this emerging yet rapidly expanding field of study.

Keywords: Software vulnerability, vulnerability detection, machine learning algorithms

Introduction

I therefore allow you, without compensation, the right to reproduce in whole or in part, either

digitally or by hand, any portion of this work for educational or personal purposes, so long as

you do not reproduce or distribute the copies for commercial gain and your copies include

this notice and the whole citation on the first page. Parts of this work may belong to parties

other than ACM, and their copyrights should be respected. Acknowledgment is required

while abstracting. Prior explicit permission and/or payment may be required for any other

kind of copying, republishing, posting on servers, or redistribution, including but not limited

to lists. found by hostile adversaries and used for evil purposes. Attackers can cause a denial

of service (DoS) when they crash a critical operating software. However, there are situations

when the attacker can get more rights or even complete control of the system. Compilers and

operating systems have evolved to include various safeguards against buffer overflow

attacks, which have been used by malevolent hackers for many years. For instance, data

execution prevention (DEP) renders the call stack non-executable, meaning that hackers can't

run their payloads, and address space layout randomization (ASLR) makes it harder for

hackers to insert correct addresses into their payloads by randomly arranging the process's

address space [17]. These methods, however, have served only to annoy persistent enemies.

Up until now, writing safe code has been the sole option for keeping hackers from carrying

out an attack. But even with automatic and manual methods, it is difficult to scan

complicated programs for defects, especially those written in a low-level language like C.

Although Microsoft invests around 100 machine years annually into automated bug detection

techniques [7], their products frequently have multiple bugs due to the complexity of pointer

arithmetic and the developers' relentless focus on meeting deadlines. Security experts and

developers must stay abreast of new automated vulnerability detection technologies since

that is how attackers find program security vulnerabilities. An approach to identifying

susceptible and non-vulnerable functions in C source code is presented in this study.

Following our discovery of one hundred applications on GitHub, we extracted all of their

functionality. Afterwards, we used these functions to extract both non-trivial characteristics

(n-grams and suffix trees) and simple features (function length, nesting depth, string entropy,

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://doi.org/10.33545/26633582.2024.v6.i2b.134

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 121 ~

etc.). Two tables, one for training data and one for test data,

were created to include the feature statistics. The test

samples were classified using a variety of classifiers, such

as Naive Bayes, k-nearest neighbors, k-means, neural

network, support vector machine, decision tree, and random

forest. Out of all the classification methods tested, the one

using trivial features had the highest accuracy (75%),

followed by n-grams (69%), and finally, suffix trees (60%).

More information on these findings is provided in Section 5.

First, some basic ideas are covered in Section 2. Then, in

Section 3, past work is reviewed. In Section 4, the testing

technique is detailed. Finally, in Section 6, the results are

presented.

Related Work

Investigating Interconnections in the Enron Email

Database

For three reasons, including (a) being a massive collection

of emails from a genuine company and (b) spanning three

and a half years, the Enron email corpus is attractive to

scholars. Our study in this article adds to the preliminary

social network analytics examination of the Enron email

dataset. As far as relational data and communication

network extraction from the Enron corpus is concerned, we

detail our efforts here. Using a variety of network analytic

methods, we investigate the Enron networks' structural

features and track down important actors across time. The

network was denser, more centralized, and more linked

during the Enron crisis than it is during normal times,

according to our early data. Our data also shows that

throughout the crisis, there was more diversified

communication among Enron employees based on their

official roles. However, the top executives established a

close clique, supported each other, and interacted with the

rest of the corporation through highly mediated

relationships. Organizational crisis scenario modeling and

failure indicator research may both benefit from the insights

obtained via the analyses we conduct and suggest.

A verification of the efficacy of metrics for object-

oriented design as quality markers

This article details the findings of an investigation into the

object-oriented (OO) design metrics proposed in

(Chidamber and Kemerer, 1994) and their practical

application. In particular, we want to find out if these

measures may be utilized as early quality indicators by

evaluating them as predictors of classes that are prone to

errors. Using the same set of criteria to evaluate the

frequency of maintenance modifications to classes, this

study supplements the work provided in (Li and Henry,

1993). For the purpose of our validation, we gathered

information on the creation of eight information

management systems for medium-sized businesses that met

the same criteria. C++ and the famous OO analysis/design

methodology were the tools of choice for all eight projects'

development. The benefits and downsides of various OO

measures are examined based on quantitative and empirical

investigation. At the beginning of a class's lifecycle, it

seems that some of the OO metrics proposed by Chidamber

and Kemerer can be helpful in predicting the class's fault-

proneness. Additionally, they outperform "traditional" code

metrics—which cannot be gathered until later in the

software development process—as predictors on our dataset.

RICH: Rendering Integer-Based Vulnerabilities Safe by

Design

Here we introduce RICH, an acronym for "Run-time Integer

Checking," a tool that can efficiently identify integer-based

attacks on C programs while they are running. When a

variable's value exceeds the range of the machine word used

to materialize it, for as when assigning a huge 32-bit int to a

16-bit short, a common programming mistake known as a C

integer bug occurs [1–15]. We prove that the well-known sub-

typing theory represents all C integer operations, both safe

and dangerous. To protect against integer-based assaults, the

RICH compiler extension converts C programs to object

code that executes self-monitoring. After adding RICH as a

GCC plugin, we tested it on several servers in the network

and UNIX tools. Integer operations are ubiquitous, yet

RICH's performance overhead is a meager 5% on average.

While testing for known integer flaws, RICH discovered

two new ones and caught all except one. Based on these

findings, RICH is an effective and lightweight tool for

testing software and a defense mechanism for runtime. Due

to its lack of modeling of some C features, RICH has the

potential to overlook some integer problems and produce

false positives when programmers intentionally employ

integer overflows.

The CSSV project is working towards a practical

solution that can statically detect all C buffer overflows.

Software viruses sometimes take advantage of security holes

in C programs caused by incorrect string manipulations. A

tool that statically reveals all string manipulation issues is

presented here: C String Static Verifier (CSSV). As a

cautious tool, it discloses all such mistakes, even though it

occasionally triggers false alarms. Thankfully, the stated

false alert rate is low, demonstrating that it is possible to

significantly decrease program vulnerability. By dissecting

each operation independently, CSSV is able to manage big

applications. In order to achieve this goal, the technology

permits procedural contracts that are confirmed. To ensure

that the actual EADS Airbus code was error-free, we built a

CSSV prototype and tested it extensively. The usage of

CSSV revealed actual issues with minimal false positives

when applied to another widely used string demanding

application. Enhancing safety with lightweight, extendable

static analysis.

Common types of implementation problems are typically

the target of security attacks. These issues occur with

disturbing regularity despite developers' best efforts to

identify and fix them before software deployment. This is

not due to a lack of understanding of these vulnerabilities

within the security community, but rather to the fact that

methods for avoiding them have not been incorporated into

software development. In order to identify typical security

flaws, such as format string vulnerabilities and buffer

overflows, this paper details an extendable tool that use

lightweight static analysis.

Test Automation for Whitebox Fuzz

One reliable method for discovering software security flaws

is fuzzy testing. Fuzz testing tools have always tested the

outputs of programs by randomly altering their well-formed

inputs. Our whitebox fuzz testing alternative is based on the

latest innovations in symbolic execution and dynamic test

development. We capture restrictions on inputs that capture

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 122 ~

how the program utilizes them, symbolically assess the

recorded trace, and then record a real execution of the

program under test on a well-formed input. New inputs that

exercise alternative program control routes are produced by

negating and solving each collected constraint using a

constraint solver. A code-coverage maximizing heuristic is

used to detect problems as soon as possible, and this

procedure is repeated with their aid. As a new tool for

Whitebox fuzzing arbitrary file-reading Windows

applications, SAGE (Scalable, Automated, Guided

Execution) uses x86 instruction-level tracing and emulation,

and we've integrated this approach into it. In this paper, we

detail the essential improvements that are required for

dynamic test creation to scale to massive input files and

lengthy execution traces including hundreds of millions of

instructions. After that, we show extensive trials using a

number of Windows programs. Notably, SAGE finds the

MS07-017 ANI vulnerability without format-specific

knowledge, although static analysis and thorough Blackbox

fuzzing failed to do so. Even though it's still early in the

development process, SAGE has found thirty or more new

flaws in big Windows apps that have been delivered, such as

image processors, media players, and file decoders. A

number of these issues may include memory access

violations that might be exploited.

Methodology

To implement this project we have designed following
Modules
1) New User Register: new user can register with the

application
2) User Login: after sign up user can login to application
3) Load Dataset: Following successful login, users will

be able to import datasets into the program. They will
then be able to extract labels and queries from the
dataset. One important step is to eliminate stop words
such as "and," "the," "what," and many more. The
application will contain core query terms when stop
words are removed. The Natural Language Processing
Toolkit will be used to process the dataset for the key
terms.

4) Run Ensemble Algorithms: We will train a model
using the processed dataset and then apply it to test data
to determine accuracy and other metrics using the
Ensemble Machine Learning technique.

5) Confusion Matrix Graph: Using this module, we may
visualize the algorithm's prediction capacity through a
confusion matrix graph.

6) Predict Vulnerability: This module allows users to
contribute new test data queries, which are analyzed by
a machine learning system to forecast the type of
vulnerability.

Results and Discussion

In above result Ensemble Machine Learning algorithm

training completed and can see its prediction accuracy as

95% and can see other metrics like precision, recall and

FCSORE. Now click on ‘Confusion Matrix Graph’ link to

view visually how many records ensemble predicted

correctly and incorrectly.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 123 ~

In above graph x-axis represents Predicted Labels and y-

axis represents True Labels and then all different colour

boxes in diagnol represents correct prediction count and

remaining all blue boxes represents incorrect prediction

count which are very few. Now click on ‘Predict

Vulnerability’ link to upload test data and predict

Vulnerability.

In above result selecting and uploading ‘testData.csv’ file

which contains SQL, XSS and RFI coding commands and

then click on ‘Submit’ button to get below output.

In above table in first column can see SQL queries, XSS and

RFI coding commands and in second column can see

predicted vulnerability.

The aforementioned program makes it easy to find any

security hole, and the 'testData.csv' file in the 'Dataset'

folder is where you may insert a new test command.

Conclusion

Several conclusions may be drawn from the thorough

testing of function vulnerability categorization using n-

grams, suffix trees, and trivial characteristics. First, taking

the 74% accuracy we achieved from "character diversity "as

a baseline criterion, it is clear that extracting multiple n-

grams does not appear to provide strong classification

results at this time. We also found that the overall outcome

remained unchanged even when n-gram combinations were

manually picked (in a way that would often be considered

unlawful and result in overfitting). Nonetheless, the study

serves as a solid proof-of-concept for a crucial point:

insignificant traits might provide significant insight on a

function's vulnerability. To make the outcomes even better,

this study may be done in a few different ways. To start, it

may be easy to come up with more insignificant qualities to

look into. Second, aside from the default settings, it may be

prudent to try out different n-gram selection methods and

the various categorization parameters available in the SciKit

library. Third, rather of relying just on "character diversity,"

it would be instructive to zero down on the most crucial

characters (or strings). One approach would be to do the

character variety tests again after pre-processing removes

certain strings, such as square brackets, curly brackets, ++,

etc. Lastly, it is feasible to evaluate if the methods discussed

in this article may effectively identify security flaws in

languages other than C.

References

1. Enron email dataset. Available from:

https://www.cs.cmu.edu/~enron/. Accessed: 2017-07-

01.

2. National vulnerability database. Available from:

https://nvd.nist.gov. Accessed: 2017-07-01.

3. Basili VR, Briand LC, Melo WL. A validation of

object-oriented design metrics as quality indicators.

IEEE Trans Softw Eng. 1996;22(10):751-761.

4. Brumley D, Chiueh T-C, Johnson R, Lin H, Song D.

Rich: Automatically protecting against integer-based

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 124 ~

vulnerabilities. Department of Electrical and

Computing Engineering; c2007. p. 28.

5. Dor N, Rodeh M, Sagiv M. CSSV: Towards a realistic

tool for statically detecting all buffer overflows in C. In:

ACM Sigplan Notices. 2003;38:155-167.

6. Evans D, Larochelle D. Improving security using

extensible lightweight static analysis. IEEE Softw.

2002;19(1):42-51.

7. Godefroid P, Levin MY, Molnar D. Sage: whitebox

fuzzing for security testing. Queue. 2012;10(1):20.

8. Haller I, Slowinska A, Neugschwandtner M, Bos H.

Dowsing for overflows: A guided fuzzer to find buffer

boundary violations. In: USENIX Security Symposium;

c2013. p. 49-64.

9. Hassan AE. Predicting faults using the complexity of

code changes. In: Proceedings of the 31st International

Conference on Software Engineering. IEEE Computer

Society; c2009. p. 78-88.

10. Kim S, Zimmermann T, Whitehead EJ Jr, Zeller A.

Predicting faults from cached history. In: Proceedings

of the 29th International Conference on Software

Engineering. IEEE Computer Society; c2007. p. 489-

498.

11. Larochelle D, Evans D, et al. Statically detecting likely

buffer overflow vulnerabilities. In: USENIX Security

Symposium: Washington DC. 2001;32.

12. Lathar P, Shah R, Srinivasa K. Stacy-static code

analysis for enhanced vulnerability detection. Cogent

Eng. 2017;4(1):1335470.

13. Ma R, Yan Y, Wang L, Hu C, Xue J. Static buffer

overflow detection for C/C++ source code based on

abstract syntax tree. J Resid Sci Technol. 2016;13(6).

14. Moser R, Pedrycz W, Succi G. A comparative analysis

of the efficiency of change metrics and static code

attributes for defect prediction. In: Proceedings of the

30th International Conference on Software Engineering.

ACM; c2008. p. 181-190.

15. Pampapathi RM, Mirkin BG, Levene M. A suffix tree

approach to antispam email filtering. Mach Learn.

2006;65(1):309-338.

https://www.computersciencejournals.com/ijecs

