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Abstract 
There has been a lot of focus on exploitable software vulnerabilities recently because to the seriousness 

of the damage they may bring to data and computer security. Code inspection has been aided by several 

suggested vulnerability detection methods. One set of research has shown encouraging outcomes when 

using machine learning approaches to these strategies. With the goal of demonstrating how these 22 

recent research use state-of-the-art neural approaches to identify potential problematic code patterns, 

this article covers deep learning as a vulnerability detection method. From the papers we looked at, we 

were able to pick out four that really changed the game when it came to using deep learning for 

vulnerability identification. We also gave you the lowdown on what these four studies had to say about 

the field as a whole. Reviewing the remaining studies in light of the four game-changers, we offer their 

methods and solutions, which either expand upon or build upon the game-changers, and we share our 

thoughts on the trends that will shape future research. We also talk about possible areas for future study 

and point out the difficulties encountered in this area. We want to inspire readers to delve more into 

this emerging yet rapidly expanding field of study. 
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Introduction 

I therefore allow you, without compensation, the right to reproduce in whole or in part, either 

digitally or by hand, any portion of this work for educational or personal purposes, so long as 

you do not reproduce or distribute the copies for commercial gain and your copies include 

this notice and the whole citation on the first page. Parts of this work may belong to parties 

other than ACM, and their copyrights should be respected. Acknowledgment is required 

while abstracting. Prior explicit permission and/or payment may be required for any other 

kind of copying, republishing, posting on servers, or redistribution, including but not limited 

to lists. found by hostile adversaries and used for evil purposes. Attackers can cause a denial 

of service (DoS) when they crash a critical operating software. However, there are situations 

when the attacker can get more rights or even complete control of the system. Compilers and 

operating systems have evolved to include various safeguards against buffer overflow 

attacks, which have been used by malevolent hackers for many years. For instance, data 

execution prevention (DEP) renders the call stack non-executable, meaning that hackers can't 

run their payloads, and address space layout randomization (ASLR) makes it harder for 

hackers to insert correct addresses into their payloads by randomly arranging the process's 

address space [17]. These methods, however, have served only to annoy persistent enemies. 

Up until now, writing safe code has been the sole option for keeping hackers from carrying 

out an attack. But even with automatic and manual methods, it is difficult to scan 

complicated programs for defects, especially those written in a low-level language like C. 

Although Microsoft invests around 100 machine years annually into automated bug detection 

techniques [7], their products frequently have multiple bugs due to the complexity of pointer 

arithmetic and the developers' relentless focus on meeting deadlines. Security experts and 

developers must stay abreast of new automated vulnerability detection technologies since 

that is how attackers find program security vulnerabilities. An approach to identifying 

susceptible and non-vulnerable functions in C source code is presented in this study. 

Following our discovery of one hundred applications on GitHub, we extracted all of their 

functionality. Afterwards, we used these functions to extract both non-trivial characteristics 

(n-grams and suffix trees) and simple features (function length, nesting depth, string entropy, 
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etc.). Two tables, one for training data and one for test data, 

were created to include the feature statistics. The test 

samples were classified using a variety of classifiers, such 

as Naive Bayes, k-nearest neighbors, k-means, neural 

network, support vector machine, decision tree, and random 

forest. Out of all the classification methods tested, the one 

using trivial features had the highest accuracy (75%), 

followed by n-grams (69%), and finally, suffix trees (60%). 

More information on these findings is provided in Section 5. 

First, some basic ideas are covered in Section 2. Then, in 

Section 3, past work is reviewed. In Section 4, the testing 

technique is detailed. Finally, in Section 6, the results are 

presented. 

 

Related Work 

Investigating Interconnections in the Enron Email 

Database 

For three reasons, including (a) being a massive collection 

of emails from a genuine company and (b) spanning three 

and a half years, the Enron email corpus is attractive to 

scholars. Our study in this article adds to the preliminary 

social network analytics examination of the Enron email 

dataset. As far as relational data and communication 

network extraction from the Enron corpus is concerned, we 

detail our efforts here. Using a variety of network analytic 

methods, we investigate the Enron networks' structural 

features and track down important actors across time. The 

network was denser, more centralized, and more linked 

during the Enron crisis than it is during normal times, 

according to our early data. Our data also shows that 

throughout the crisis, there was more diversified 

communication among Enron employees based on their 

official roles. However, the top executives established a 

close clique, supported each other, and interacted with the 

rest of the corporation through highly mediated 

relationships. Organizational crisis scenario modeling and 

failure indicator research may both benefit from the insights 

obtained via the analyses we conduct and suggest.  

 

A verification of the efficacy of metrics for object-

oriented design as quality markers 

This article details the findings of an investigation into the 

object-oriented (OO) design metrics proposed in 

(Chidamber and Kemerer, 1994) and their practical 

application. In particular, we want to find out if these 

measures may be utilized as early quality indicators by 

evaluating them as predictors of classes that are prone to 

errors. Using the same set of criteria to evaluate the 

frequency of maintenance modifications to classes, this 

study supplements the work provided in (Li and Henry, 

1993). For the purpose of our validation, we gathered 

information on the creation of eight information 

management systems for medium-sized businesses that met 

the same criteria. C++ and the famous OO analysis/design 

methodology were the tools of choice for all eight projects' 

development. The benefits and downsides of various OO 

measures are examined based on quantitative and empirical 

investigation. At the beginning of a class's lifecycle, it 

seems that some of the OO metrics proposed by Chidamber 

and Kemerer can be helpful in predicting the class's fault-

proneness. Additionally, they outperform "traditional" code 

metrics—which cannot be gathered until later in the 

software development process—as predictors on our dataset.  

 

RICH: Rendering Integer-Based Vulnerabilities Safe by 

Design 

Here we introduce RICH, an acronym for "Run-time Integer 

Checking," a tool that can efficiently identify integer-based 

attacks on C programs while they are running. When a 

variable's value exceeds the range of the machine word used 

to materialize it, for as when assigning a huge 32-bit int to a 

16-bit short, a common programming mistake known as a C 

integer bug occurs [1–15]. We prove that the well-known sub-

typing theory represents all C integer operations, both safe 

and dangerous. To protect against integer-based assaults, the 

RICH compiler extension converts C programs to object 

code that executes self-monitoring. After adding RICH as a 

GCC plugin, we tested it on several servers in the network 

and UNIX tools. Integer operations are ubiquitous, yet 

RICH's performance overhead is a meager 5% on average. 

While testing for known integer flaws, RICH discovered 

two new ones and caught all except one. Based on these 

findings, RICH is an effective and lightweight tool for 

testing software and a defense mechanism for runtime. Due 

to its lack of modeling of some C features, RICH has the 

potential to overlook some integer problems and produce 

false positives when programmers intentionally employ 

integer overflows.  

 

The CSSV project is working towards a practical 

solution that can statically detect all C buffer overflows. 

Software viruses sometimes take advantage of security holes 

in C programs caused by incorrect string manipulations. A 

tool that statically reveals all string manipulation issues is 

presented here: C String Static Verifier (CSSV). As a 

cautious tool, it discloses all such mistakes, even though it 

occasionally triggers false alarms. Thankfully, the stated 

false alert rate is low, demonstrating that it is possible to 

significantly decrease program vulnerability. By dissecting 

each operation independently, CSSV is able to manage big 

applications. In order to achieve this goal, the technology 

permits procedural contracts that are confirmed. To ensure 

that the actual EADS Airbus code was error-free, we built a 

CSSV prototype and tested it extensively. The usage of 

CSSV revealed actual issues with minimal false positives 

when applied to another widely used string demanding 

application. Enhancing safety with lightweight, extendable 

static analysis. 

Common types of implementation problems are typically 

the target of security attacks. These issues occur with 

disturbing regularity despite developers' best efforts to 

identify and fix them before software deployment. This is 

not due to a lack of understanding of these vulnerabilities 

within the security community, but rather to the fact that 

methods for avoiding them have not been incorporated into 

software development. In order to identify typical security 

flaws, such as format string vulnerabilities and buffer 

overflows, this paper details an extendable tool that use 

lightweight static analysis.  

 

Test Automation for Whitebox Fuzz 

One reliable method for discovering software security flaws 

is fuzzy testing. Fuzz testing tools have always tested the 

outputs of programs by randomly altering their well-formed 

inputs. Our whitebox fuzz testing alternative is based on the 

latest innovations in symbolic execution and dynamic test 

development. We capture restrictions on inputs that capture 
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how the program utilizes them, symbolically assess the 

recorded trace, and then record a real execution of the 

program under test on a well-formed input. New inputs that 

exercise alternative program control routes are produced by 

negating and solving each collected constraint using a 

constraint solver. A code-coverage maximizing heuristic is 

used to detect problems as soon as possible, and this 

procedure is repeated with their aid. As a new tool for 

Whitebox fuzzing arbitrary file-reading Windows 

applications, SAGE (Scalable, Automated, Guided 

Execution) uses x86 instruction-level tracing and emulation, 

and we've integrated this approach into it. In this paper, we 

detail the essential improvements that are required for 

dynamic test creation to scale to massive input files and 

lengthy execution traces including hundreds of millions of 

instructions. After that, we show extensive trials using a 

number of Windows programs. Notably, SAGE finds the 

MS07-017 ANI vulnerability without format-specific 

knowledge, although static analysis and thorough Blackbox 

fuzzing failed to do so. Even though it's still early in the 

development process, SAGE has found thirty or more new 

flaws in big Windows apps that have been delivered, such as 

image processors, media players, and file decoders. A 

number of these issues may include memory access 

violations that might be exploited. 

Methodology 

To implement this project we have designed following 
Modules 
1) New User Register: new user can register with the 

application 
2) User Login: after sign up user can login to application 
3) Load Dataset: Following successful login, users will 

be able to import datasets into the program. They will 
then be able to extract labels and queries from the 
dataset. One important step is to eliminate stop words 
such as "and," "the," "what," and many more. The 
application will contain core query terms when stop 
words are removed. The Natural Language Processing 
Toolkit will be used to process the dataset for the key 
terms. 

4) Run Ensemble Algorithms: We will train a model 
using the processed dataset and then apply it to test data 
to determine accuracy and other metrics using the 
Ensemble Machine Learning technique. 

5) Confusion Matrix Graph: Using this module, we may 
visualize the algorithm's prediction capacity through a 
confusion matrix graph. 

6) Predict Vulnerability: This module allows users to 
contribute new test data queries, which are analyzed by 
a machine learning system to forecast the type of 
vulnerability. 

 

Results and Discussion 

 

 
 

In above result Ensemble Machine Learning algorithm 

training completed and can see its prediction accuracy as 

95% and can see other metrics like precision, recall and 

FCSORE. Now click on ‘Confusion Matrix Graph’ link to 

view visually how many records ensemble predicted 

correctly and incorrectly. 
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In above graph x-axis represents Predicted Labels and y-

axis represents True Labels and then all different colour 

boxes in diagnol represents correct prediction count and 

remaining all blue boxes represents incorrect prediction 

count which are very few. Now click on ‘Predict 

Vulnerability’ link to upload test data and predict 

Vulnerability. 

 

 
 

In above result selecting and uploading ‘testData.csv’ file 

which contains SQL, XSS and RFI coding commands and 

then click on ‘Submit’ button to get below output. 

 

 
 

In above table in first column can see SQL queries, XSS and 

RFI coding commands and in second column can see 

predicted vulnerability. 

The aforementioned program makes it easy to find any 

security hole, and the 'testData.csv' file in the 'Dataset' 

folder is where you may insert a new test command. 

 

Conclusion 

Several conclusions may be drawn from the thorough 

testing of function vulnerability categorization using n-

grams, suffix trees, and trivial characteristics. First, taking 

the 74% accuracy we achieved from "character diversity "as 

a baseline criterion, it is clear that extracting multiple n-

grams does not appear to provide strong classification 

results at this time. We also found that the overall outcome 

remained unchanged even when n-gram combinations were 

manually picked (in a way that would often be considered 

unlawful and result in overfitting). Nonetheless, the study 

serves as a solid proof-of-concept for a crucial point: 

insignificant traits might provide significant insight on a 

function's vulnerability. To make the outcomes even better, 

this study may be done in a few different ways. To start, it 

may be easy to come up with more insignificant qualities to 

look into. Second, aside from the default settings, it may be 

prudent to try out different n-gram selection methods and 

the various categorization parameters available in the SciKit 

library. Third, rather of relying just on "character diversity," 

it would be instructive to zero down on the most crucial 

characters (or strings). One approach would be to do the 

character variety tests again after pre-processing removes 

certain strings, such as square brackets, curly brackets, ++, 

etc. Lastly, it is feasible to evaluate if the methods discussed 

in this article may effectively identify security flaws in 

languages other than C. 
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