

~ 101 ~

International Journal of Engineering in Computer Science 2024; 6(2): 101-105

E-ISSN: 2663-3590

P-ISSN: 2663-3582

www.computersciencejournals.c

om/ijecs
IJECS 2024; 6(2): 101-105

Received: 14-05-2024

Accepted: 28-06-2024

SV Ramana

Assistant Professor,

Department of CSE, Malla

Reddy Engineering College for

Women, Autonomous,

Hyderabad, Telangana, India

E Bindu

Student, Department of CSE,

Malla Reddy Engineering

College for Women,

Autonomous, Hyderabad,

Telangana, India

K Prasanna Rao

Student, Department of CSE,

Malla Reddy Engineering

College for Women,

Autonomous, Hyderabad,

Telangana, India

K Chandana

Student, Department of CSE,

Malla Reddy Engineering

College for Women,

Autonomous, Hyderabad,

Telangana, India

Corresponding Author:

SV Ramana

Assistant Professor,

Department of CSE, Malla

Reddy Engineering College for

Women, Autonomous,

Hyderabad, Telangana, India

Using ensemble machine learning algorithm for

applications in recognizing false data injection attacks

and an effective privacy-improving in smart grid

SV Ramana, E Bindu, K Prasanna Rao and K Chandana

DOI: https://doi.org/10.33545/26633582.2024.v6.i2b.130

Abstract
One well-known machine learning paradigm, federated learning (FL) assists with data privacy by

letting clients save raw data locally and sending only native parameters for the model to a data

aggregator server to build a shared global model. Unfortunately, federated learning may be hacked by

unscrupulous aggregators who use model parameters to deduce customers' training data. Most of the

existing solutions to this problem rely on a non-colluded server setup, rely on a trusted third party to

calculate master secret keys, or use a safe multiparty computation protocol, none of which improve

efficiency when applied to repeated computations of an aggregate model. We provide a privacy-

preserving cross-silo federated learning technique that is both efficient and secure. An effective

privacy-preserving federated educational protocol is achieved by utilizing secret sharing only during

the establishment phase and iterations if parties re-join, and by accelerating.

Computation achievement via parallel computing. Our double-layer encryption Scheme does not

require computing discrete logarithm. Additionally, clients are allowed to drop out and re-join

throughout the training process. Theoretically and experimentally, the suggested technique achieves

acceptable model utilities while providing proved anonymity vs. an honest-but-curious aggregator

server. The method is implemented in smart grids for the purpose of detecting fake data injection

attacks (FDIA). This outshines previous efforts by providing a safe method of cross-silo FDIA

federated training that is resistant to assaults on local private data inference.

Keywords: Smart grid, false data injection attacks (FDIA), federated learning (FL)

Introduction

A new machine learning paradigm called federated learning allows clients to keep the initial

data locally and only send the modified local model settings to an aggregator server so they

may train a global model together. This solves important data privacy problems. This feature

is what makes federated learning a better privacy option than consolidating all training data

into one place. One potential issue with federated learning is the possibility of inference

attacks. These attacks allow dishonest aggregators to potentially learn clients' training data

by analysing their model parameters, such as weights and gradients. Used in generative

adversarial networks for deducing a target client's private data from shared model parameters

is one example. So, data privacy cannot be assured with any degree of rigor even when a

model is trained via federated learning. Since data sample are anonymized across numerous

clients, it is possible to extract information from world model parameters without associating

it with a particular client. But this won't work if the data is derived from faulty aggregates

that are based on local model parameters. To avoid these inference attacks, it is important to

prevent a corrupt aggregator from accessing the model parameters of clients. Current

methods for dealing with this issue primarily use two approaches: secure aggregation and

differential privacy. The former has the disadvantage of compromising global model

accuracy for privacy-utility by directly adding noise to the client's models across a large

number of iterations. The latter secretly aggregates the customers' models without revealing

their exact values by using cryptographic methods like homomorphic encryption and safe

multiparty computing. Current methods for aggregation master key generation often include

a trusted outsider or use a scenario with several non-colluding servers. In addition, the high

cost of computation and interaction between several clients across several training cycles

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://doi.org/10.33545/26633582.2024.v6.i2b.130

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 102 ~

makes many of the suggested systems unworkable and

inefficient. As a vital security operation, detecting false data

injection attacks (FDIAs) is essential for smart grid control

systems. This was resolved using techniques of data-driven

machine learning. Distributed throughout an interconnected

grid, the massive amounts of measurement data are

necessary for the information-driven machine learning

algorithms. Regarding the deregulation of the electricity

sector, with this kind of interconnected arrangement, each

sub-grid is owned and operated by a separate transmission

grid corporation (TGC). Sharing the measurements from all

sub-grids involved is essential for building an accurate

model for fake data injection detection. This massive

amount of measurement data, however, cannot be sent via a

Volume: 18, Issue Date: 17. April 2023 of the IEEE

Transactions on Data Forensics and Security using Machine

Learning In addition to being costly, a centrally managed

detection machine learning system might cause privacy and

security problems, such as competitive privacy. The issue is

how to keep their competitive privacy while coordinating

these TGCs to identify FDI assaults. Recent research have

focused on federated learning-based solutions to this

complex challenge. A typical scenario in federated learning

is a cross-silo environment where many organizations or

businesses share the goal of training a model using all of

their data but are hesitant to share it directly with each other

owing to privacy, security, or legal concerns. An effective

privacy-preserving cross-silo federated learning system for

FDIA detection across multi-area transmission grids is

necessary to protect the privacy of power firms when they

provide their local training models. Considering these

points, we provide a solution that may be used in the smart

grid domain: quick cross-silo supervised learning with

robust privacy protection. We establish a successful

privacy-preserving federated education protocol by

constructing a double-layer encrypting scheme spanning

several federation learning rounds and leveraging Shamir

secret sharing. This protocol also enables certain clients to

drop out and then re-join dynamically throughout the

training process. To be more precise, here are the key

points: The creation of a secure weighted aggregation

technique for universal cross-silo federated learning that

enhances privacy is based on Shamir secret sharing and

lightweight double-layer encryption. The approach gets over

the problem that several comparable studies have, which is

that you have to compute discrete logarithms. It is not

necessary to have many non-colluding server

configurations. Furthermore, decentralization helps in

increasing privacy by generating the secret keys of the two

encryption levels used by clients. Theoretically and

experimentally, the suggested technique achieves acceptable

model usefulness while providing proved privacy versus an

honest-but-curious aggregator server. The suggested method

is resistant to training iterations in which participants leave

out or re-join, and it is fast in communication and

computing. In order to effectively identify FDIAs in the

smart grid domain, we present and experimentally test a

cross-silo federated learning system that improves privacy

and is resistant to assaults on inference from local training

data. The document is structured into eight parts. The

sections on Preliminaries and Related Works follow this

Introduction. Section 4 presents the suggested privacy-

enhancing cross-silo federated education system, which

does not involve any trusted third parties. Section 5 then

analyses the scheme. Sections 6 and 7 provide an

empirically evaluated realistic scenario of improving

privacy in cross-silo training for FDIA identification in

smart grids. Lastly, the arguments and conclusions are

presented in Section 8.

Related Work

Investigating Interconnections in the Enron Email

Database

Researchers are interested in the Enron emails corpus for

three reasons: (a) it is a massive collection of emails from a

genuine company; (b) it spans three and a half years; and (c)

it is accessible. We add to the first social network analytics-

based examination of the Enron emails dataset in this

article. In this paper, we detail our efforts to improve the

Enron corpus by adding relational data and removing

communication networks. In order to discover important

participants across time and investigate the structural

features of Enron's networks, we use a number of network

analytic methods. The network was denser, more

centralized, and more linked under the Enron crisis than it is

during normal times, according to our early data. According

to our data, there was greater cross-functional contact

among Enron workers throughout the crisis, regardless of

employees' official roles. However, the top executives

remained close-knit, supported each other, and interacted

with the remainder of the business via extensive brokering.

Organizational crisis scenario modelling and failure

indicator research stand to profit from the insights obtained

via the studies we conduct and suggest.

Proof that metrics for object-oriented design are reliable

measures of quality

This article details the findings of an investigation into the

oriented toward objects (OO) design metrics proposed in

(Chid amber with Kemmerer, 1994) and their practical

application. In particular, we want to find out whether these

measures may be employed as initial quality indicators by

evaluating them as predictors of classes that are prone to

errors. This research supplements that of Li and Henry

(1993), who also utilized the same set of criteria to evaluate

the frequency of class maintenance modifications. For the

purpose of our validation, we gathered information on the

creation of eight information management systems for

medium-sized businesses that met the same criteria. C++

and the famous OO analysis/design methodology were the

tools of choice for all eight projects' development. The

benefits and downsides of various OO measures are

examined based on quantitative and empirical investigation.

At the beginning of a class's lifecycle, a number of Chid

amber with Kemmerer's OO metrics seem to be helpful in

predicting the class's fault-proneness. Furthermore, when

applied to our dataset, they outperform "traditional" code

measures, which are only available later in the software

development lifecycle, as predictors.

Rich: Rendering Integer-Based Vulnerabilities Safe by

Design

An efficient tool for identifying arithmetic-based threats

against programs written in C at run time, RICH (Run-time

Arithmetic Checking) was designed and implemented by us.

When a variable's value exceeds the range of the computer's

word used to materialize it, a common programming

mistake known as a C integer bug occurs [1-15]. For

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 103 ~

instance, while converting a big 32-bit integer to a smaller

16-bit short. We demonstrate that the well-known sub-

typing theory captures both safe and dangerous integer

operations in C. Compiling C programs into object code

with the RICH compiler feature allows them to identify

integer-based attacks by monitoring their own execution.

After integrating RICH into the GCC compiler, we ran tests

on several servers in the network and UNIX utilities. The

operational penalty of RICH is quite modest, averaging

approximately 5%, even though integer operations are

ubiquitous. Two further integer problems were discovered

by RICH, and of the ones we tested, all but one were

detected. Based on these findings, RICH is an effective and

lightweight tool for testing software and a defence

mechanism for runtime. When programmers intentionally

employ integer overflows, RICH could produce false

positives. Additionally, as it does not represent all C

features, it might overlook certain integer issues.

CSSV: Working Towards a Practical Method for

Statically Identifying All C File Buffer Overflows

Software viruses sometimes take advantage of security holes

in C programs caused by incorrect string manipulations.

This program, called C Strings Static Verifier (CSSV), can

statically detect any mistake made when manipulating

strings. It detects all such mistakes, although it might

occasionally generate false alerts since it is a cautious

instrument. Thankfully, the stated false alert rate is low,

demonstrating that it is possible to significantly decrease

program vulnerability. CSSV analyses each operation

independently, allowing it to manage massive applications.

This is why the tool can validate procedure contracts. We

built a CSSV prototypes and tested it against EADS

Airbus's production code to ensure it was error-free.

Applying CSSV to another popular string-intensive app

revealed actual issues with few false positives. Expandable,

lightweight static analysis for enhanced security

The vast majority of security breaches take advantage of

common types of implementation defects. These issues

occur with disturbing regularity despite developers' best

efforts to identify and fix them before software deployment.

This is not due to a lack of understanding of these

vulnerabilities within the security community, but rather to

the fact that methods for avoiding themselves have not been

incorporated into software development. An extendable

method for detecting common security vulnerabilities (such

as format string vulnerabilities and buffer overflows) using

lightweight static analysis is described in this article.

Methodology

1) New User Registration: Users who are new to the

application may register.

2) User Login: One may access the application after

signing up.

3) Upload Dataset: Once logged in, users can upload

datasets to the program. From there, they can extract

labels and queries. As an added step, they may stop

words like "and," "or," and "what" from all searches.

Core query words may be obtained by eliminating stop

words from the application. By using the Natural

Language Processing Toolkit, the core word dataset

will be processed.

4) Execute Ensemble Algorithms: Prepare the dataset for

training by feeding it into an Ensemble Machine

Learning algorithm. Then, apply the trained model to

test data and measure its accuracy and other metrics.

5) Graph of Confusion Matrix: This module will be used

to draw a graph of the algorithm's capacity to forecast.

6) Anticipate susceptibility: An algorithm based on

machine learning will examine all of the TEST data and

make a prediction about the kind of vulnerability when

this module is used to submit additional TEST data

queries.

Results and Discussion

To access the sign-up page, click on the "New User Register Here" link in the top result.

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 104 ~

The x-axis in the above graph shows the predicted labels,

the y-axis the true labels, and the various colored boxes on

the diagonal show the number of accurate predictions, while

the remaining blue boxes show the number of extremely few

wrong predictions. After that, you may submit your test data

and use the "Predict Vulnerability" option to make your

vulnerability prediction.

Predicted vulnerabilities are shown in the second column of

the table, whereas SQL queries, XSS, and RFI coding

instructions are shown in the first column.

Conclusion

The results of our comprehensive testing of function

vulnerability categorization using n-grams, suffix trees, and

trivial characteristics allow us to make numerous

conclusions. First, using the 74% accuracy we achieved

from "character diversity "as a baseline criterion, it is clear

that extracting multiple n-grams does not seem to provide

strong classification results at this time. We also found that

the overall outcome remained unchanged even when n-gram

combinations were manually picked (in a way that would

often be considered unlawful and result in over fitting). But

this analysis proves a key point: even seemingly

insignificant traits may reveal a lot about a function's

vulnerability. To make the outcomes even better, this study

may be done in a few different ways. To start, maybe we

can come up with some more insignificant aspects to look

at. The second thing to consider is trying out other n-gram

selection methods and other classification parameters

(beyond the defaults) in the Sci Kit library. Third, instead

than focusing on "character diversity," it might be

instructive to examine which strings of characters are most

crucial. One approach would be to do the character variety

tests again after pre-processing removes certain strings, such

as rectangular brackets, curving brackets, ++, etc. At last,

it's feasible to see whether the methods discussed in this

article work for other languages than C when it comes to

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs

~ 105 ~

finding security flaws.

References

1. Enron email dataset. Available from:

https://www.cs.cmu.edu/~enron/. Accessed: 2017-07-

01.

2. National vulnerability database. Available from:

https://nvd.nist.gov. Accessed: 2017-07-01.

3. Basile VR, Briand LC, Melo WL. A validation of

object-oriented design metrics as quality indicators.

IEEE Trans Software Eng. 1996;22(10):751-761.

4. Brumley D, Cheoah T-c, Johnson R, Lin H, Song D.

Rich: Automatically protecting against integer-based

vulnerabilities. Department of Electrical and

Computing Engineering; c2007. p. 28.

5. Door N, Rodhe M, Saga M. CSSs’: Towards a realistic

tool for statically detecting all buffer overflows in C. In:

ACM Subplan Notices. 2003;38:155-167.

6. Evans D, Larochelle D. Improving security using

extensible lightweight static analysis. IEEE Softw.

2002;19(1):42-51.

7. Goldenrod P, Levin MY, Molnar D. Sage: Whitebox

fuzzing for security testing. Queue. 2012;10(1):20.

8. Haller I, Lewinski A, Neguswanderer M, Bos H.

Dowsing for overflows: A guided fuzzer to find buffer

boundary violations. In: USENIX Security Symposium;

c2013. p. 49-64.

9. Hassan AE. Predicting faults using the complexity of

code changes. In: Proceedings of the 31st International

Conference on Software Engineering; c2009. p. 78-88.

10. Kim S, Zimmermann T, Whitehead EJ Jr, Zeller A.

Predicting faults from cached history. In: Proceedings

of the 29th International Conference on Software

Engineering; c2007. p. 489-98.

11. Larochelle D, Evans D, et al. Statically detecting likely

buffer overflow vulnerabilities. In: USENIX Security

Symposium; c2001. p. 32.

12. Lather P, Shah R, Srinivasa K. Stacy-static code

analysis for enhanced vulnerability detection. Cogent

Eng. 2017;4(1):1335470.

13. Ma R, Yan Y, Wang L, Hu C, Xu J. Static buffer

overflow detection for C/C++ source code based on

abstract syntax tree. J Residuals Sci Technol.

2016;13(6).

14. Moser R, Percy W, Sulci G. A comparative analysis of

the efficiency of change metrics and static code

attributes for defect prediction. In: Proceedings of the

30th International Conference on Software

Engineering; c2008. p. 181-90.

15. Naprapathy RM, Mirin BG, Levine M. A suffix tree

approach to antispam email filtering. Mach Learn.

2006;65(1):309-338.

16. Pantile E, et al. Improving C++ software quality with

static code analysis. N/A; c2014.

17. Sachem H. The geometry of innocent flesh on the bone:

Return-into-lab without function calls (on the x86). In:

Proceedings of the 14th ACM Conference on Computer

and Communications Security; c2007. p. 552-61.

18. Shin Y, Williams L. An empirical model to predict

security vulnerabilities using code complexity metrics.

In: Proceedings of the Second ACM-IEEE International

Symposium on Empirical Software Engineering and

Measurement; c2008. p. 315-17.

https://www.computersciencejournals.com/ijecs

