
~ 57 ~

International Journal of Engineering in Computer Science 2019; 1(1): 57-62

E-ISSN: 2663-3590

P-ISSN: 2663-3582

IJECS 2019; 1(1): 57-62

Received: 20-11-2018

Accepted: 25-12-2018

Manideep Yenugula

Kohls, Milpitas, California,

95035, USA

Raghunath Kodam

Apple, California, 95035, USA

David He

Apple, California, 95035, USA

Correspondence

Manideep Yenugula

Kohls, Milpitas, California,

95035, USA

Performance and load testing: Tools and challenges

Manideep Yenugula, Raghunath Kodam and David He

DOI: https://doi.org/10.33545/26633582.2019.v1.i1a.102

Abstract
Applications built for mobile devices, websites, online services, the cloud, and grid computing may all

undergo performance testing. Tool installation, tool application flexibility, tool configuration, response

time created by the tool, etc. are all potential tool-related difficulties that may arise during performance

testing. This study will examine the application's performance using two separate tools, one of which is

SoapUI and the other is Apache Jmeter. Since many tools provide varied results, we need to choose the

testing instrument that is most suited to the job at hand. As an alternative to SoapUI's demand testing

tool, Apache-Jmeter is a web application performance assessment tool that helps examine the server's

efficiency under severe stress. It evaluates an application's Quality of Services under variable demand.

Keywords: Performance testing, load testing, jmeter, soap UI

Introduction
Applications built for mobile devices, websites, online services, the cloud, and grid

computing may all undergo performance testing. Problems with tools might develop during

performance testing for a variety of reasons, including installation, application flexibility,

configuration, response time, etc. [1]. Workload requirements are essential for conducting

load testing using model-based performance prediction to evaluate application system

performance features. There is a significant issue in both domains when it comes to correctly

defining workload parameters that reflect the actual workload [2]. In order to construct new

cloud-based distributed storage systems, Internet-based technologies nowadays are

progressively shifting towards a service-oriented functionality, which brings with it great

processing power, capacity, and flexibility. The smooth launch of cutting-edge online and

social services like Twitter, Facebook, ring ID, etc. depends on a number of distributed

systems that are active in many data centers throughout the world. Efficient capacity

allocation, correct setup, and tuning of various system resources are essential for the proper

functioning and reliability of both the cache as well as backend servers in distributed

systems, ensuring that they can handle incoming workloads [3].

Fig 1: Load Testing Types

https://doi.org/10.33545/26633582.2019.v1.i1a.102

International Journal of Engineering in Computer Science

~ 58 ~

Tests are an integral part of the software development life

cycle. When it comes to product quality, testing is king. The

importance of ensuring the quality of a website or mobile

application has grown since more firms increasingly focus

on online applications. All the way through a software's life

cycle, testing is conducted. Basic application functioning,

graphical user interface, availability, performance under

high traffic, etc. are all part of the web testing process.

When it comes to testing, web-based apps present a number

of obstacles. The software industry has created a plethora of

tools and strategies to help reduce the difficulty of testing [4].

An application's scalability may be defined as their

capacities to handle an increasing processing load as

needed. It also discusses how to create a system on a smaller

scale. Among the many quality attributes-performance,

reliability, usability, accessibility, and security-testing

scalability is among the most difficult. Nevertheless,

empirically speaking, this area of study is under-researched
[5]. An evaluation and successful demonstration of a new

morphing flap system, developed in cooperation with the

University of Bristol under the INNWIND.eu project, was

carried out during a testing session that made use of DTU's

outdoor rotating rig. Furthermore, ECN's recently developed

aerofoil has been tested in real-world air conditions to assess

its aerodynamic performance. Aerodynamic lift control is an

area where the morphing wing excels, and its results are in

line with those predicted by computational fluid dynamics
[6]. In smart cities, the Norwegian Research Center for Zero

Emission neighborhoods will define zero emission

neighborhoods and test it with nine trial sites. Greenhouse

gas emissions, power/load, energy, accessibility, economics,

spatial characteristics, and innovation are the seven domains

that the ZEN definition examines via a set of evaluation

criteria and KPIs [7].

Related Work

The authors of the aforementioned study [8] provide a way to

automate the extraction and translation of workload

requirements, which will help with load testing and model-

based performance forecasts of session-based application

systems. The technique is composed on three main

elements, which are WESSBAS. First, a system-and tool-

agnostic domain-dependent language may be used to

layered-model session-based system workload needs.

Secondly, production system session logs automatically

include instances of that DSL. The next step is to convert

these examples into load generation tool and model-based

performance assessment tool executable workload

specifications. The Palladio Component Architecture and

the widely used load evaluation tool Apache JMeter have

both been modified by us. The SPECjEnterprise2010

benchmark and the access logs from the 1998 World Cup

serve as the standard by which their method is measured.

Extracted workloads closely resemble measured workloads

with regard to workload-specific attributes (Such as session

durations and arrival rates) as well as performance metrics

(Such as response times as well as CPU utilizations).

Authors will use two separate tools, Apache-Jmeter and

SoapUI, to examine the application's performance in [9].

They should pick the testing tool based on the application as

various tools provide different replies. One excellent tool for

measuring server performance under strong demand is

Apache-Jmeter, which is based on web applications. In

contrast, the SoapUI Load Testing application checks an

application's QoS under varying loads.

In [10], the authors lay forth a method for evaluating server

workloads quantitatively and attributing performance

factors. First, they show that prior work using load testers

was inaccurate and that careful planning for the server's load

tester is necessary to guarantee high-quality performance

assessment. By analyzing the shortcomings of previous

work, they were able to create Treadmill, an adaptable load

tester system that eliminates these problems. After that,

authors build analysis and measurement processes that can

correctly assign performance aspects using Treadmill. They

use quantile regression and statistically sound performance

assessment, tweaking it to fit server system quirks. Their

improved technique concludes with an evaluation of the

effects of common server hardware characteristics on

Facebook production workloads. They show that their

assessment approach yields better findings, especially when

it comes to capturing complex and counter-intuitive

performance patterns, and they break down the implications

of these attributes on request tail latency. They saw a 43%

drop in 99th-percentile latency and a 93% drop in its

variation by adjusting the hardware characteristics

according to the attribution's recommendations.

In order to evaluate the efficiency of cache with backend

servers, the authors of [11] suggest a test-driven automated

design called'svLoad' for load testing. In that example, they

used technologies like JMeter and Ansible as well as some

custom utilities bash scripts to create test cases that take into

account a variety of real-world circumstances, such as

various kinds of protocols, identical or distinct URLs, load

or no load, cache hit or miss, and so on. To ensure their

method is effective, they run these test cases on a real

private cloud programming environment using two open

source projects: OpenStack Swift for the backend with

Varnish for the cache server. By running load requests, they

want to identify Varnish and Swift bottlenecks and use that

information to fine-tune the system. According to their test

results, they were able to achieve an 80% improvement in

response time after tweaking the network infrastructure,

Varnish, and Swift.

To find out how well a system responds, how fast it can

handle a given workload, how reliable it is, and how

scalable it is, researchers in [12] employ the LoadRunner

testing program. The strategy was used during the

performance testing stage of the web application for

purchasing airline tickets online. They identified the

system's flaw while dealing with large numbers of users,

and they used the results of the load tests to inform their

recommendations for improvement.

According to [13], the main goal of that research is to catalog

all the current metrics and techniques used to evaluate a

system's scalability. Not to mention learning about the

difficulties encountered when carrying out these measuring

procedures. A comprehensive mapping research was carried

out to gather data about the identification of indicators and

tools for assessing scalability. Their goal in using that

strategy was to compile aggregated data from a wide variety

of online sources.

Exhaust diffuser and last-stage design considerations for LP

exhaust systems over a broad operating range are the subject

of research in [14]. A 1/10th scale air testing rig was built to

guarantee that the mathematical fluid dynamics instruments

could faithfully replicate the machine's performance under

part-load circumstances, which are described as very

International Journal of Engineering in Computer Science

~ 59 ~

turbulent flows entering the diffuser. To find out what

occurs, they do a numerical parametric study after restating

the blades of the final stage rotor. The shape of the diffuser

was also changed. Rearranging the rotor blades is one way

to modify the flow characteristics at the diffuser inlet, which

in turn alter the quantity of leaving energy as well as the

diffuser's ability to recover departing energy. The benefits

of restaggering the blades of the rotor and expanding the

diffuser are not mutually incompatible, suggesting that they

may be explored separately. Lastly, by considering the

diffuser's resizing with the restaggering of the final stage

rotors, an excellent design shown that performance may be

improved. According to that idea, a typical 1000 MW plant

that operates largely at part-load would see a 1.5 percent

boost in last-phase power generation.

An extensive dynamic building simulation software is used

in a semi-virtual environment laboratory setup, which

involves controlling a genuine heat pump from inside a

controlled environment and connecting it to loads of a

virtual building. In that arrangement, MPC (Model

predictive control) techniques are created and evaluated [15].

Here in the lab, they try out several MPC techniques to see

whether one reduces the building's thermal energy delivery,

the heat pump's operating expenses, or the CO₂ emissions

from the system. In terms of various indicators, including

costs, convenience, carbon footprint, as well as energy

flexibility, the results demonstrate that the MPC controller is

capable of load-shifting through the timing of thermal

energy storage charges. The control strategies are evaluated

for their satisfactory performance. Additional helpful

insights are provided by discussing the actual issues that

were experienced during the installation using a genuine

heat pump.

Load Testing Tools & Challenges

When evaluating the functionality of software, websites,

apps, and associated systems, load testing is an important

part of the process. This test does not really work, but it

mimics how the system would respond if several people

tried to access it at once. One of the last and most important

forms of testing done before deployment is load testing,

often called "volume testing." It simulates real-world use to

ensure the web system is stable, functional, and performs as

expected.

Among the many important features of the web systems that

are discovered via load testing are the following:

Considerations such as:

 The application's total operational capacity, which

includes the amount of multiple users that can be

supported at once;

 The application's response time, throughput costs, as

well as demands on resources under various user load

levels;

 The application's infrastructure stability.

Prior to releasing any client/server internet or intranet

application, load testing is an essential procedure.

Everything from front-end apps like websites to back-end

systems like the servers that power them falls under this

category.

Although functional tests are essential in software

development, they cannot forecast how well a product will

work under different user involvement levels. Before

releasing software or installing updates, load testing helps

businesses find and correct key performance problems that

other tests miss.

There are three main reasons why businesses should do load

testing:

 With this program, we can:

 Evaluate its capabilities

 Make money, provide service, and safeguard our

reputation

 Make sure the user interface is easy to use and effective

Finding bottlenecks, measuring response times for site

activities, and improving future performance all need load

testing. These objectives may, of course, be satisfied in

reaction to a live site's activity, although only at the price of

severe disturbance to consumers.

Businesses big and small may reap the benefits of load

testing. Here are a few examples of real-world applications

of load testing:

Fig 2: Test Cases / Applications of Load Testing

International Journal of Engineering in Computer Science

~ 60 ~

There are a lot of uses for load testing, including ones that most businesses don't think about. Just a few examples are:

Fig 3: Load testing Examples

Challenges and Limitations of Load Testing
Load testing is widely used across many sectors and systems

because of its many advantages. Nevertheless, there are

disadvantages and difficulties, as with every application.

Challenge 1: Intangibility

Load testing isn't always the most eye-catching method, but

it may help find issues before they happen in the real world.

The financial and non-financial costs of site outage and

application failure never come to fruition.

Types of testing that ask "what if" questions are often

disregarded. Although load testing is useful for post-user-

overload analysis, it is significantly more useful for

organizations when used preventatively.

Challenge 2: Complexity

There may be a significant technological barrier to entry for

both open-source as well as in-house load testing solutions.

They might not have the manpower or funds to dedicate to

load testing if their business is too small or too complicated.

Professional load testing platforms, like ZAPTEST load

testing, will prioritize having an intuitive interface, thus this

won't be a problem for them. In System under Load (SUL),

ZAPTEST LOAD allows users to build API-based scripts

that execute end-user company procedures and measure

end-to-end transactions.

Load Testing Tools

Using open-source testing tools is often the first step for

many businesses. Many choices are available, such as the

following:

 JMeter – An enterprise tool called LoadRunner is the

basis for this Java application.

 Taurus – A resource for creating one's own load testing.

 k6 – A load testing instrument designed for seasoned

programmers with an emphasis on back-end

architecture.

 SoapUI – The SoapUI load test makes use of the SOP.

Furthermore, a paid edition of this program is on the

market.

 Locust – A load-testing tool that is well-known for its

low resource requirements and relative ease of use.

 LOAD Studio, a part of ZAPTEST FREE Edition,

offers free performance testing, scripting via API, test

recording, and functional testing correlation.

 Businesses should weigh the benefits and drawbacks of

open-source testing tools before committing to them,

even when they don't cost anything upfront.

Load test technologies provide several significant benefits.

Low Cost

For open-source software, the lack of cost is the primary

benefit. It is possible to do load testing without investing

any money, which is great for startups and other businesses

with minimal resources.

Flexibility

The community regularly reviews, updates, and improves

open-source software. Depending on your exact testing

requirements, there may be available add-ons.

Faster Upgrades

Compared to commercial software, open-source software

usually sees more rapid advancements. New features,

security patches, and bug fixes often get out more frequently

and with less disruption.

Limitations of Load Testing Tools

Companies should be aware of the possible downsides of

free load testing tools, despite their great advantages.

Lack of Support
Users of open-source load software for testing are left to

rely on community-based resources such as wikis and

forums to resolve any difficulties that may arise. No one is

International Journal of Engineering in Computer Science

~ 61 ~

available by phone or email to help users of free tools, in

contrast to commercial software.

Complexity

The focus of open-source load testing tools isn't always on

making the product easy to use. The assumption that the

user has some level of advanced programming expertise is

made by many programs. It might be challenging to learn

how to do load tests using open-source tools.

User Load Limitations
Problems with memory and CPU are common in open-

source testing tools during high capacity load tests. Free

load testing may not be robust enough for enterprise-level

businesses.

Load Testing and Performance Testing Metrics

In order to learn more about scalability, dependability, and

speed, the company runs non-functional simulations. When

you test each of the aforementioned components separately,

you get a fuller picture that makes it simpler to spot

bottlenecks.

Baseline Performance

Businesses may check the application's baseline

performance via load testing. Benchmark results for average

link speed, file downloading time, and latency are shown by

the data produced as the test's user count climbs

progressively.

Benchmark Performance

You may also get statistics on benchmark performance

using a website load test. Despite their frequent

interchangeability, the terms "baseline" and "benchmark"

really mean rather different things. Performance is evaluated

by benchmark testing in relation to other websites or

internal criteria, including end-user service level

agreements.

Load Testing Metrics

Companies will tailor their testing measures to meet their

own requirements. The capacity to tailor the metrics

collected is a key benefit of enterprise-level automatic load

testing technologies.

However, with automated load testing, the majority of firms

will monitor the following metrics:

Response Times

Automatic load testing mainly measures response time.

When a user submits a request, how much time does it take

for the system to reply? (Users are likely to abandon a site if

its response time exceeds 10 seconds.)

Throughput

Data transmission and reception rates are measured by

throughput. Common units of measure in load testing

include hits per sec (hps) and transaction per second (tps).

Hardware-Specific Metrics

Load testing involves keeping an eye on things like CPU

use, accessible RAM, disk I/O, and other comparable

hardware-based operations since slow response times might

indicate hardware constraints.

Database

The majority of enterprise-level programs rely on many

systems to function. However, the likelihood of

encountering a bottleneck grows in proportion to the

number of databases. Database reads and writes, together

with the total number of open connections, are all quantified

by load testing tools.

Apache JMeter and the Python-based Locust tool are

compared by subjecting both tools to identical load and

traffic conditions in order to determine execution time and

throughput.

Table 1: There is a comparison of Apache JMeter, Locust, with HULK

Analyzer with respect to testing parameters pertaining to the time spent

running in seconds.

Testing

Attempt

Apache

JMeter

Python based

Locust

HULK

Analyzer

1 1.432 1.093 1.107

2 1.534 1.291 1.472

3 1.938 1.342 1.420

4 2.208 1.938 2.091

5 3.422 2.819 2.989

Conclusion

We should think about both performance and load testing

during the design process as they are both non-functional

types of testing. When the number of users increases to

millions all at once, performance testing becomes crucial. It

is not an easy process to evaluate performance and load.

This task needs the assistance of skilled individuals and a

competent team. On the basis of the testing-tuning-testing

cycle is this testing technique. Load and efficiency testing

are both rendered impossible in the absence of appropriate

tool support; hence, this article details two tools that are

fundamental to the process of load testing web applications.

We are also concerned with the method of load testing as

well as the many characteristics, aims, and activities of

performance testing since it is crucial to check whether tools

are suited for particular application and performance

objectives.

Future Work

There are huge opportunities in the field of web application

security that we must investigate and resolve. Scholars,

businesses, and government agencies in the domains of

software testing as well as forensic auditing can delve into a

wide range of topics, such as biometric incorporated entry

for secured internet pages, building trust for secured

websites, understanding vulnerabilities in web uses with

integrity, and identifying suspects in web applications

through deep learning. The entire procedure of software

testing may be enhanced on numerous aspects with the

incorporation of new tools as well as open source libraries.

This will allow for the distribution of software goods with

improved performance and no bugs.

References

1. Lee S, Ali J, Roh B. Performance Comparison of

Software Defined Networking Simulators for Tactical

Network: Mininet vs. OPNET. In: 2019 International

Conference on Computing, Networking and

Communications (ICNC); c2019. p. 197-202.

2. Michael N, Ramannavar N, Shen Y, Patil S, Sung J.

CloudPerf: A Performance Test Framework for

International Journal of Engineering in Computer Science

~ 62 ~

Distributed and Dynamic Multi-Tenant Environments.

In: Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering; c2017.

3. Picha KJ, Quintana CP, Glueck AC, Hoch MC,

Heebner NR, Abt JP. Reliability of 5 Novel Reaction

Time and Cognitive Load Protocols. J Sport Rehabil.

2018;27(5):1-4.

4. Jindal A, Podolskiy V, Gerndt M. Performance

Modeling for Cloud Microservice Applications. In:

Proceedings of the 2019 ACM/SPEC International

Conference on Performance Engineering; c2019.

5. Miao X, Jin X, Ding J. A hierarchical load balancing

parallel computing approach for finite element

structural analysis. Chin Sci Bull. 2017;62:1430-1438.

6. Vergara I, Mateo-Abad M, Saucedo-Figueredo MC,

Machón M, Montiel-Luque A, Vrotsou K, et al.

Description of frail older people profiles according to

four screening tools applied in primary care settings: a

cross sectional analysis. BMC Geriatr. 2019, 19.

7. Wiik MK, Fufa SM, Andresen I, Brattebø H, Gustavsen

A. A Norwegian zero emission neighbourhood (ZEN)

definition and a ZEN key performance indicator (KPI)

tool. IOP Conf Ser Earth Environ Sci. 2019, 352.

8. Vögele C, Hoorn AV, Schulz E, Hasselbring W,

Krcmar H. WESSBAS: extraction of probabilistic

workload specifications for load testing and

performance prediction-a model-driven approach for

session-based application systems. Softw Syst Model.

2016;17:443-477.

9. Lenka RK, Rani Dey M, Bhanse P, Barik RK.

Performance and Load Testing: Tools and Challenges.

In: 2018 International Conference on Recent

Innovations in Electrical, Electronics &

Communication Engineering (ICRIEECE); c2018. p.

2257-2261.

10. Zhang Y, Meisner D, Mars J, Tang L. Treadmill:

Attributing the Source of Tail Latency through Precise

Load Testing and Statistical Inference. In: 2016

ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA); c2016. p. 456-468.

11. Noor J, Hossain MG, Alam M, Uddin A, Chellappan S,

Al Islam AB. svLoad: An Automated Test-Driven

Architecture for Load Testing in Cloud Systems. In:

2018 IEEE Global Communications Conference

(GLOBECOM); c2018. p. 1-7.

12. Nandal V, Solanki DK. Performance Testing on Web-

based Application using LoadRunner; c2018.

13. Umar A, Abbas M, Rehman S. Metrics and tools that

are available for testing scalability. In: 12th IADIS

International Conference Information Systems 2019;

2019.

14. Ding B, Xu L, Yang J, Yang R, Yuejin D. The Effect of

Stage-Diffuser Interaction on the Aerodynamic

Performance and Design of LP Steam Turbine Exhaust

Systems. In: Volume 8: Microturbines, Turbochargers,

and Small Turbomachines; Steam Turbines; c2018.

15. Péan TQ, Costa-Castelló R, Fuentes E, Salom J.

Experimental Testing of Variable Speed Heat Pump

Control Strategies for Enhancing Energy Flexibility in

Buildings. IEEE Access. 2019;7:37071-37087.

