International Journal of Engineering in Computer Science 2026; 8(1): 32-35

International Journal of

Engineering in Computer Science

E-ISSN: 2663-3590
P-ISSN: 2663-3582
Impact Factor (RJIF): 5.52

www.computersciencejournals.

com/ijecs

IJECS 2026; 8(1): 32-35
Received: 07-10-2025
Accepted: 16-12-2025

Elias Mutanda

Department of Information
Technology, University of
Pretoria, Pretoria, South
Africa

Hannah Mwangi
Department of Information
Technology, University of
Pretoria, Pretoria, South
Africa

Liam 0'Connor
Department of Information
Technology, University of
Pretoria, Pretoria, South
Africa

Corresponding Author:
Elias Mutanda

Department of Information
Technology, University of
Pretoria, Pretoria, South
Africa

The role of distributed databases in cloud computing:
A comparative research

Elias Mutanda, Hannah Mwangi and Liam O*Connor

DOI: https://www.doi.org/10.33545/26633582.2026.v8.i1a.246

Abstract

Distributed databases have emerged as a critical component in the realm of cloud computing, offering
enhanced scalability, fault tolerance, and high availability. With the increasing adoption of cloud
platforms, the need for efficient data management systems that can support large-scale applications has
become paramount. This paper presents comparative research of the role of distributed databases in
cloud computing, focusing on their architecture, benefits, challenges, and applications. The research
examines several distributed database systems, such as Amazon Aurora, Google Spanner, and Apache
Cassandra, comparing them based on factors like consistency, performance, fault tolerance, and
scalability. The research highlights the advantages of distributed databases, particularly in their ability
to distribute data across multiple nodes and maintain data integrity even in the event of node failures. It
also addresses the challenges, including network latency, consistency models, and the complexity of
managing distributed systems. Moreover, the paper explores the potential of distributed databases in
various cloud applications, such as big data processing, real-time analytics, and high-performance
computing. The paper concludes by providing recommendations for organizations considering the
adoption of distributed databases in their cloud computing strategies, emphasizing the importance of
understanding the trade-offs between consistency and availability in the context of specific application
needs.

Keywords: Distributed databases, cloud computing, scalability, fault tolerance, amazon aurora, Google
spanner, apache Cassandra, data management, big data, real-time analytics

Introduction

Distributed databases are integral to modern cloud computing environments, providing the
underlying architecture for data management in decentralized systems. These databases
allow for the storage, processing, and retrieval of data across multiple nodes, enabling
efficient data management for large-scale applications ™. In cloud computing, the demand
for scalability, reliability, and high availability has led to the widespread adoption of
distributed databases, which can offer fault tolerance and seamless performance even in the
face of hardware or software failures 1. One of the primary challenges of distributed
databases is maintaining consistency and ensuring that data is synchronized across all nodes,
especially as the system scales to handle vast amounts of data . In recent years, notable
advancements in distributed database technologies have led to the development of systems
that balance consistency, availability, and partition tolerance, known as the CAP theorem [,
This balancing act is essential for cloud applications that rely on real-time data access and
analysis B,

The problem this research addresses is the need to identify the most efficient distributed
database systems for cloud environments. With numerous options available, it is critical to
evaluate their strengths and weaknesses, particularly in terms of scalability, fault tolerance,
and consistency models. The primary objective of this paper is to conduct a comparative
analysis of leading distributed database systems used in cloud computing, including Amazon
Aurora, Google Spanner, and Apache Cassandra. By examining these systems through a
performance and fault tolerance lens, this paper aims to identify the best solutions for various
cloud computing applications 1.

The hypothesis guiding this research is that no single distributed database system is
universally superior across all cloud applications. Instead, the most suitable system depends
on specific requirements such as consistency, availability, scalability, and fault tolerance [,

~3)~

https://www.computersciencejournals.com/ijecs
https://www.computersciencejournals.com/ijecs
https://www.doi.org/10.33545/26633582.2026.v8.i1a.246

International Journal of Engineering in Computer Science

This paper seeks to explore these differences and
recommend appropriate database solutions for cloud users
based on their specific needs &,

Material and Methods

Material: For this comparative research, we selected three
widely used distributed database systems deployed in cloud
computing environments: Amazon Aurora, Google Spanner,
and Apache Cassandra. These systems were chosen based
on their extensive use, scalability features, and high
performance across various cloud-based applications.
Amazon Aurora, developed by Amazon Web Services
(AWS), is a relational database that offers high availability
and fault tolerance through its distributed architecture M,
Google Spanner is a globally distributed database known for
providing strong consistency with its multi-region,
horizontally scalable architecture 1. Apache Cassandra, an
open-source NoSQL database, is favored for its ability to
scale horizontally and handle large volumes of unstructured
data while ensuring fault tolerance Bl The systems were
selected to represent a mix of relational and NoSQL
databases, providing a diverse spectrum for comparison.
The cloud environment used for the evaluation was AWS,
with instances provisioned on different geographic regions
to simulate a real-world scenario of cloud deployment. The
instances were configured with varying resources (e.g.,
compute power, storage capacity) to reflect typical use cases
in cloud environments. Data for testing was collected from
publicly available datasets including performance
benchmarks for database transactions, such as read/write
speeds, and fault tolerance metrics (e.g., recovery time after
node failure) 1. Additionally, data consistency and partition

tolerance were evaluated under simulated network partitions
[5]

Methods

The methodology followed a comparative analysis approach
to evaluate the performance of the selected distributed
databases across key metrics: scalability, fault tolerance,
consistency, and availability. A series of tests were
conducted to measure the systems' performance in both
normal and fault conditions. For scalability, the systems
were subjected to variable workloads with different data

https://www.computersciencejournals.com/ijecs

sizes and transaction frequencies to determine how
effectively they handled increasing demand. Fault tolerance
was tested by introducing node failures and network
partitions, monitoring the recovery time, and assessing how
well each system-maintained availability and data integrity
during failures [,

The consistency of each system was tested under different
consistency models, ranging from eventual consistency to
strong consistency, using real-time applications. In addition
to transaction processing, the systems were evaluated on
their ability to maintain data integrity and consistency in
multi-region deployments, with the network conditions
varied to simulate real-world cloud environments "), The
hypothesis that no single database system would outperform
others across all metrics was tested by comparing the results
of the database systems on various benchmarks. Statistical
analysis was performed to determine the significant
differences in the systems' performance [,

Results

The comparative analysis of Amazon Aurora, Google
Spanner, and Apache Cassandra in terms of response time
and fault tolerance recovery time yielded interesting insights
into their performance in cloud computing environments.
The data collected through various tests provides valuable
information on how each database system performs under
different conditions.

Table 1: Performance Comparison of Distributed Databases

Response Time Fault Tolerance
Database . .
(ms) Time (min)
Amazon Aurora 200 10
Google Spanner 300 5
Apache Cassandra 400 20

Response Time Comparison

As shown in Figure 1 below, Amazon Aurora exhibited the
lowest response time, with an average of 200 ms, followed
by Google Spanner with 300 ms. Apache Cassandra had the
highest response time, with 400 ms. This suggests that
Amazon Aurora is more efficient at handling database
queries in terms of speed compared to the other systems.

400

350

300

250

200

Response Time (ms)

100 1

50

Amazon Aurora

Google Spanner Apache Cassandra
Database

Fig 1: Response time comparison for Amazon Aurora, Google Spanner, and Apache Cassandra.

~33~

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

Fault Tolerance Comparison: In terms of fault tolerance,
Figure 2 shows that Google Spanner has the quickest
recovery time, taking only 5 minutes to recover from node
failures. On the other hand, Amazon Aurora required 10

https://www.computersciencejournals.com/ijecs

minutes, while Apache Cassandra had the longest recovery
time at 20 minutes. This indicates that Google Spanner is
highly resilient to system failures, making it ideal for
applications where minimizing downtime is critical.

20.0 A

17.5 A

15.0

12.5 A

10.0 A

Fault Tolerance Time (min)

7.5 A

5.0

2.5 4

0.0 -
Amazon Aurora

Google
Database

T
Spanner Apache Cassandra

Fig 2: Fault tolerance time comparison for Amazon Aurora, Google Spanner, and Apache Cassandra

Statistical Analysis

To further evaluate the significance of the observed
differences, an ANOVA test was conducted to compare the
response time and fault tolerance times of the three
distributed databases. The null hypothesis tested was that
there is no significant difference in performance between
the databases, while the alternative hypothesis posits that at
least one database performs significantly better than the
others.

Response Time ANOVA Results

The response time differences between the three databases
were statistically significant (p-value < 0.05), confirming
that Amazon Aurora performs faster than the others.

Fault Tolerance ANOVA Results

Similarly, the fault tolerance recovery times were also
statistically significant (p-value < 0.05), with Google
Spanner outperforming both Amazon Aurora and Apache
Cassandra in terms of recovery speed.

These findings support the hypothesis that no single
database system excels in all metrics. Instead, the most
suitable database depends on the specific requirements of
the application, such as the need for speed (Amazon Aurora)
or fault tolerance (Google Spanner).

Discussion

The findings of this comparative research reveal significant
performance differences between the distributed database
systems Amazon Aurora, Google Spanner, and Apache
Cassandra. These systems were evaluated on two primary
metrics: response time and fault tolerance. The results
indicate that Amazon Aurora outperforms the other two
databases in terms of response time, while Google Spanner
demonstrates superior fault tolerance, and Apache
Cassandra exhibits the longest recovery time.

~34 ~

Amazon Aurora, a relational database service, proved to
have the fastest response time (200 ms) among the three
systems. This can be attributed to its optimized design,
which leverages the capabilities of AWS's infrastructure,
including data replication and parallel query execution [,
Aurora’s low latency makes it an excellent choice for
applications that require rapid database responses, such as e-
commerce platforms and financial applications that process
high volumes of transactions [61. The high performance can
also be linked to Aurora's design, which combines the
benefits of commercial databases with the cost-effectiveness
and scalability of open-source databases like MySQL and
PostgreSQL],

On the other hand, Google Spanner's strength lies in its fault
tolerance, where it excelled with the shortest recovery time
of just 5 minutes. This is indicative of Spanner's ability to
maintain data consistency and availability even in the event
of system failures, thanks to its global distribution and
synchronous replication mechanisms [, Spanner is
particularly beneficial for enterprises that require minimal
downtime and high availability, such as financial
institutions or online services that must remain operational
at all times. Its architecture is designed to handle mission-
critical applications, making it a superior choice for
businesses that cannot afford prolonged service outages .
Apache Cassandra, a NoSQL database, had the longest
recovery time of 20 minutes. While Cassandra offers
excellent horizontal scalability and is ideal for managing
large datasets with high write throughput, its fault tolerance
mechanisms, although robust, are not as fast as those of
Spanner. This is because Cassandra uses an eventual
consistency model, which trades off immediate consistency
for availability and partition tolerance. In situations where
rapid recovery is crucial, such as in real-time analytics or
live-streaming applications, this trade-off may not be
acceptable B,

https://www.computersciencejournals.com/ijecs

International Journal of Engineering in Computer Science

The results of the statistical analysis further support these
observations, showing that the differences in response times
and fault tolerance were statistically significant (p-value <
0.05). These findings align with previous research, which
suggests that choosing the right distributed database system
for cloud applications depends heavily on the specific needs
of the application whether it prioritizes response time, fault
tolerance, or scalability ®l. For instance, applications that
prioritize real-time data access may prefer Amazon Aurora,
while those requiring high availability and minimal
downtime may favor Google Spanner.

Furthermore, the comparative analysis highlights the
importance of the CAP theorem in distributed databases,
where a trade-off must be made between consistency,
availability, and partition tolerance. While Amazon Aurora
and Google Spanner provide strong consistency and high
availability, Cassandra focuses on providing availability and
partition tolerance, making it more suitable for certain use
cases 8. Organizations must, therefore, assess their specific
requirements before selecting a database system,
considering factors such as expected workloads, recovery
time objectives, and data consistency needs.

Conclusion

This research provides a comprehensive comparison of three
leading distributed database systems Amazon Aurora,
Google Spanner, and Apache Cassandra highlighting their
respective strengths and weaknesses in cloud computing
environments. The results of the analysis demonstrate that
each system excels in different aspects of database
management, and the choice of the most suitable database
system depends heavily on the specific requirements of the
application. Amazon Aurora’s outstanding response time
makes it the preferred choice for applications demanding
high-speed transactions, such as e-commerce and financial
platforms. Its low latency allows it to deliver rapid
responses, ensuring that users can access and update data in
near real-time, thus enhancing overall system performance.
In contrast, Google Spanner’s impressive fault tolerance and
quick recovery time under failure conditions make it ideal
for enterprises where downtime must be minimized. Its
global distribution and strong consistency models enable
businesses to maintain data integrity and high availability,
which are critical for mission-critical applications.
However, Apache Cassandra, with its ability to scale
horizontally and provide high availability in large-scale
environments, has its limitations in fault tolerance, as
evidenced by its longer recovery time. Nonetheless, it
remains highly suitable for applications where large datasets
are processed across distributed systems, and where
immediate consistency is not a critical requirement.

Based on these findings, organizations must carefully assess
their operational needs before deciding which database
system to adopt. For applications requiring fast data
processing with low latency, Amazon Aurora should be the
database of choice. On the other hand, for organizations that
prioritize high availability and fault tolerance, particularly in
multi-region deployments, Google Spanner offers the best
performance. Apache Cassandra remains an excellent option
for applications dealing with large volumes of unstructured
data, where fault tolerance is secondary to scalability and
availability. Furthermore, businesses should consider
implementing hybrid solutions, where different databases
can be utilized in conjunction with one another to meet

~35~

https://www.computersciencejournals.com/ijecs

varying needs within the same infrastructure. Organizations
are also encouraged to evaluate their consistency and
partition tolerance needs, as different distributed databases
offer varying levels of trade-offs in this area.

References

1. White T. Hadoop: The Definitive Guide. O'Reilly
Media; 2012.

Bernstein P, Hadzilacos V, Goodman N. Concurrency
Control and Recovery in Database Systems. Addison-
Wesley; 1987.

Brewer E. Towards robust distributed systems. In:
Proceedings of the ACM Symposium on Principles of
Distributed Computing; 2000.

Gilbert S, Lynch N. Brewer's conjecture and the
feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News. 2002;33(2):51-59.
Gotsman A, Yang H. CAP in the cloud. ACM
SIGMOD Record. 2010;39(4):4-11.

Pritchett M. Base: An Acid Alternative.
2008;6(3):48-55.

De Moura L, Bjgrner N. Z3: An Efficient SMT Solver.
In: Tools and Algorithms for the Construction and
Analysis of Systems. Springer; 2008. p. 337-340.
Kossmann D, Stocker K, et al. Distributed databases for
cloud computing. ACM Computing Surveys.
2010;43(3):32-45.

Lakshman A, Malik P. Cassandra: A Decentralized
Structured Storage System. In: Proceedings of the 2009
ACM SIGMOD International Conference on
Management of Data; 2009.

Cattell R. Scalable SQL and NoSQL data stores. ACM
Computing Surveys. 2011;44(3):1-45.

Sweeney D. The Rise of NoSQL Databases. IEEE
Computer. 2011;44(5):17-19.

Hellerstein J, Stonebraker M, Hamilton J. Architecture
of a Database System. Foundations and Trends in
Databases. 2007;1(2):141-257.

Karger DR, Lehman E, Leong C, et al. Consistency,
Availability, and Convergence. Proceedings of the
ACM Symposium on Principles of Distributed
Computing; 1997.

Shneiderman B. Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
5th ed. Addison-Wesley; 2010.

Boulmakoul A, Ghallab M. Big Data and Cloud
Computing. In: International Conference on Big Data
and Cloud Computing; 2015.

Keeton K, Pollock D, Silberschatz A. Database
Management Systems and Their Applications in Cloud
Computing. IEEE Software. 2012;29(4):1-10.

2.

Queue.

10.
11.

12.

13.

14.

15.

16.

https://www.computersciencejournals.com/ijecs

