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Abstract 
The use of Large Language Models (LLMs) has significantly transformed the digital healthcare. 
Pharmacy is a distinguished part of healthcare and recent researches in this domain have increased 
tremendously. This review article is focus on current advancements, techniques and data requirements 
of LLMs when dealing with pharmaceutical field. The paper analyzes the core techniques including 
Chain-of-Thought (CoT) prompting for structured reasoning, domain-specific fine-tuning, and 
Knowledge Graph integration to ensure interpretability. The Retrieval-Augmented Generation (RAG) 
are discussed in detail as it makes the LLM responses to mitigate hallucinations and improve accuracy. 
Despite these advancements, the review highlights critical limitations in current architectures. LLMs 
exhibit significant fragility to input noise and struggle with complex clinical guideline adherence. 
Notably, general-purpose models like GPT-4 demonstrated a 71% failure rate in detecting potential 
drug-drug interactions (pDDIs) compared to standard software, posing serious safety risks. The study 
concludes that while LLMs offer unprecedented opportunities for efficiency and information synthesis, 
they cannot yet function as autonomous agents. Safe implementation requires hybrid human-AI 
workflows, robust adversarial defenses, and harmonized regulatory frameworks to validate 
performance in high-stakes pharmaceutical environments. 
 
Keywords: Large language model, knowledge graph, generative artificial intelligence, natural 
language processing 
 
1. Introduction 
In recent times, Generative Artificial Intelligence (GAI), especially Large Language Models 
(LLMs), has revolutionized artificial intelligence and gained significant attention. LLMs, 
such as OpenAI's GPT-4, Google's Gemini, and Meta's LLaMA, have demonstrated 
remarkable proficiency in generating and understanding natural language, thereby 
transforming various domains [1]. Initially focused on Natural Language Processing (NLP) 
and comprehension, these models now have evolved to support multimodal capabilities such 
as decision-making, content creation, and problem-solving [2].  
LLMs have various applications across different domains. In education, they assist in 
creating personalized learning experiences and tutoring systems [3]. Their ability to process 
and interpret large volumes of data makes them invaluable in addressing intricate challenges 
across these fields. In healthcare and pharmaceuticals, the potential of LLMs is particularly 
promising. The healthcare sector is known for its data-intensive nature. The health 
professionals often overwhelmed by the sheer volume of medical information, research, and 
patient data. LLMs can alleviate this burden by assisting in various tasks, such as diagnosing 
diseases, providing treatment recommendations, and retrieving up-to-date drug information 
[1]. One such application includes a model developed to detect and provide real-time advice 
for Parkinson's disease [4]. There are other examples like, LLM designed to assist with the 
Medical Licensing Exam [5], and a medication advice model tailored to offer comprehensive 
guidance on drug interactions and contraindications [6]. 
Despite their immense capabilities, existing LLMs in the healthcare domain face limitations, 
especially in providing precise medication guidance and identifying untoward drug reactions 
[6]. This review article aims to explore the current advancements in training and employing 
customised LLMs in healthcare. The purpose is to delve into the methodologies, data 
requirements, and evaluation metrics necessary to develop robust models capable of 
providing accurate and comprehensive medication guidance specifically for pharmaceutical  
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advisory roles. By exploring and analysing the challenges 
and potential solutions, this study aspires to contribute to the 
integration of generative AI into the pharmaceutical 
industry. 

 
2. Literature Review 
The applications of LLMs in the healthcare are accelerating 
in the recent times. The capability of LLMs to deal with the 
diverse data helps greatly in introducing various solutions to 
the medical issues. This section provides a review of some 
recent works done in the healthcare by incorporating the 
generative AI and LLMs. 

 
2.1 Parkinson’s Disease Management 
The research done by [4] includes the use of Internet of 
Things (IoT) and LLMs for developing a personalised butler 
for the patients with the Parkinson’s Disease (PD). The 
research developed an automatic wearable system which 
provides real-time PD diagnosis, monitoring, and 
personalised recommendations. The device offers affordable 
and portable accessibility to the users. 

 
2.2 Lung Cancer Detection 
Lung cancer continues to be a major challenge in global 
health. The study [7] introduces a deep learning framework 
that uses the capabilities of LLMs alongside medical 
imaging data to enhance the accuracy of lung cancer 
detection. The proposed system integrates the patient-
reported symptoms, medical images, and doctors'

prescriptions into a comprehensive dataset. Deep learning 
techniques including Convolutional Neural Networks 
(CNNs) are trained with this dataset for image analysis and 
LLMs for textual data interpretation. The results of the 
research reveals that the model outperforms existing 
systems in lung cancer detection efficiency. 

 
2.3 LLM tuning for Medical Guidance 
Nowadays, most of the research in LLMs is being done in 
the field of recommendations or guidance such as movie, 
anime, or medical recommendations [8][2]. The authors [6] 
introduced their own LLM named ShennongGPT, designed 
specially for the medical guidance. The major restriction of 
the work is that it only works for the Chinese language and 
no other language. 

 
2.4 GAI for Dental Licensing Examinations 
To know the efficiency of LLMs, research has been carried 
out by [5]. The study includes the comparison of two LLM 
versions, ChatGPT 3.5 and ChatGPT 4.0. Research includes 
the accuracy comparison of GenAI in answering the 
questions from Dental licensing exams for UK and US. The 
ChatGPT 4.0 outperforms the ChatGPT 3.5 by approx. 15%. 
The major drawback of this study is that, these observations 
may not hold true for the scenarios. 
To have the better understanding of LLMs and their 
applications in the healthcare, it is necessary to review 
articles with the similar research area. Table 1 shows the 
research papers in the field of healthcare which have 
employed the LLMs. 
 

Table 1: A summary of various research papers using LLMs 
 

References Focus Area Summary Challenges and Limitations 

[2] Healthcare • Discussed the various aspects of GAI in Healthcare 
like applications and challenges 

Security and privacy issue 
Training data requirement 

Biasness 
[6] Healthcare • Introduced a new LLM model, ShennongGPT for 

medication guidance and untoward drug reaction 
Trained in Chinese language 

Size of data utilised is confined 
[5] Healthcare and 

education 
• Performed the LLM models to analyse their 

performance in medical licensing exams Limited research work 

[7] Healthcare 

• Integrated the LLMs and deep learning models for 
advanced lung cancer detection 

• Diverse data modalities are used for the better 
performance 

Data heterogeneity requires 
advanced preprocessing strategies 

Ethical concerns 
Biasness due to limited data 

[9] Healthcare • Discussed the various applications and challenges of 
ChatGPT in Healthcare 

Lack of contextual and factual 
knowledge 

[1] Healthcare • Reviewed the potential applications of ChatGPT and 
other LLMs in Healthcare 

Misinformation and Biasness risk 
in ChatGPT 

[4] Healthcare 
• Use of AI in Parkinson's disease management 
• Real time monitoring, diagnosis and recommendations 

for the patients 

enhancing the usability and 
effectiveness of wearable devices 
and smartphone tools to ensure 

better patient compliance 

[10] Healthcare 
• Reviewed the multi—modal approach for healthcare 
• Topics covered are medical imaging and GAI based 

LLMs 

• Baises in training data 
• Patient data privacy 
• NLP challenges 

 
3. Core Techniques and Methodologies 
3.1 Prompt Engineering and Chain-of-Thought 
Reasoning 
Prompt engineering has emerged as a critical technique for 
optimizing LLM performance in pharmaceutical 
applications. Among documented approaches, Chain-of-
Thought (CoT) prompting demonstrates superior reasoning 
performance compared to zero-shot and few-shot methods, 
with self-consistency (an ensemble-based variant of CoT) 

consistently outperforming standard CoT across diverse 
medical tasks [11]. 
Medical-specific CoT approaches, such as Diagnosis 
Reasoning Chain-of-Thought (DR-CoT), enforce clinical 
protocols by requiring explicit summarization of evidence, 
iterative differential diagnosis ranking, and systematic 
inquiry generation. These structured reasoning scaffolds 
mirror established clinical workflows and improve out-of-
domain generalization by 18% in medical applications. The 
effectiveness of CoT prompting reflects its ability to 
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decompose complex pharmaceutical reasoning into 
interpretable intermediate steps that align with clinical 
decision-making processes [12]. 
Few-shot prompting, where models are provided with 
examples of correct responses, shows variable effectiveness 
depending on task complexity and domain specificity. 
Recent developments emphasize the importance of 
clinician-approved reasoning pathways, with reward models 
and majority voting mechanisms enhancing both accuracy 
and transparency in medical outputs [13]. 
 
3.2 Retrieval-Augmented Generation (RAG) 
Retrieval-Augmented Generation has proven to be one of 
the most impactful techniques for improving LLM accuracy 
in pharmaceutical contexts. RAG systems combine language 
models with external knowledge retrieval mechanisms, 
enabling LLMs to ground responses in authoritative 
pharmaceutical and biomedical literature [14]. 
Performance improvements are substantial: on PubMedQA 
(biomedical question-answering), GPT-4 without retrieval 
achieved 57.9% accuracy, while RAG-enabled systems 
achieved 86.3% a 28.4 percentage point improvement. 
Similarly, in BioASQ benchmarks, RAG elevated GPT-3.5 
accuracy from approximately 74% to 90%. The MIRAGE 
benchmark (Medical Information Retrieval-Augmented 
Generation Evaluation), encompassing 7,663 questions 
across five biomedical datasets, demonstrated that RAG 
improved LLM accuracy by up to 18% over standard chain-
of-thought prompting [14]. 
RAG is particularly valuable for pharmaceutical advice 
because it addresses the hallucination problem by explicitly 
grounding responses in retrieved documents. When 
querying updated clinical guidelines, drug interaction 
databases, or recent clinical trials, RAG systems can 
synthesize current evidence rather than relying solely on 
training data. Smaller models like LLaMA-2 70B with RAG 
approach the performance of specialized biomedical models 
when equipped with domain-specific knowledge 
repositories [14]. 
 
3.3 Fine-Tuning and Domain-Specific Models 
Domain-specific LLMs trained on pharmaceutical and 
biomedical literature have shown substantial performance 
advantages over general-purpose models. BioformerTM, a 
compact BERT variant trained on 33 million PubMed 
abstracts and 1 million PMC articles, achieves 99% of the 
performance of PubMedBERT while using only 40% of the 
parameters, with 2-3x faster inference. This efficiency is 
critical for real-world pharmaceutical applications where 
latency and computational costs directly impact deployment 

feasibility [15]. 
BioBERT, SciBERT, and ClinicalBERT have been 
developed specifically for biomedical NLP tasks including 
named entity recognition, relation extraction, and clinical 
text classification. Fine-tuning these models on specialized 
pharmaceutical datasets dramatically improves performance 
on downstream tasks. For adverse drug event (ADE) 
detection, fine-tuned LLMs achieved 85-86% accuracy with 
AUC of 87%, substantially surpassing traditional machine 
learning approaches [16][17]. 
Specialized therapeutics-focused models such as Tx-LLM 
(developed by Google) span the entire drug discovery 
pipeline, from target discovery through clinical trial 
approval strategy. These models demonstrate the feasibility 
of creating generalist models with specialized 
pharmaceutical training [18]. 
 
3.4 Knowledge Graph Integration 
Knowledge graphs (KGs) provide structured representations 
of pharmaceutical relationships drug-drug interactions, 
drug-target interactions, adverse effects, and disease 
associations that can be integrated with LLMs to improve 
accuracy and interpretability. KnowDDI represents a state-
of-the-art approach that combines graph neural networks 
with knowledge graphs to predict drug-drug interactions 
while providing interpretable reasoning paths. The method 
learns knowledge subgraphs specific to each drug pair, 
identifying explaining paths through known interactions and 
similar drug relationships [19]. 
 
This integration addresses a critical limitation of 
standalone LLMs: the ability to reason over structured 
pharmaceutical knowledge with guaranteed fidelity. 
Knowledge graph-augmented approaches have shown 
particular promise for detecting previously unknown drug 
interactions and for ensuring recommendations align with 
established pharmaceutical relationships [19]. 

 
Data Collection  
To transform a general-purpose Large Language Model into 
a reliable pharmaceutical assistant, it must be grounded in 
diverse, authoritative data ecosystems. Reliance on pre-
training alone carries the risk of hallucination; therefore, 
integrating structured data ranging from regulatory 
formularies to real-world patient records is essential for 
clinical accuracy and safety. The following table 
summarizes eight foundational categories of 
pharmacological data, detailing their specific sources, 
technical applications, and the critical value they add to 
creating safe, evidence-based AI systems in healthcare.  
 

Table 2: Different sources of pharmacy data 
 

Data Type Description Key Sources LLM Application & 
Functionality Impact 

National 
Formulary 

Official list of approved 
medicines, formulations, 
dosages, and regulatory 

status. 

• British National 
Formulary (BNF) 

• USP 
• Indian 

Pharmacopoeia 

Clinical Decision Support Tool: 
Retrieves drug info, suggests 
personalized dosing, checks 

interactions, and predicts efficacy. 

Enhanced safety, reduced 
adverse reactions, and 
streamlined clinical 

workflows. 

Medicine APIs 

Biologically active components 
responsible for therapeutic 

effects (chemical properties, 
MOA). 

• DrugBank 
• PubChem 
• KEGGDrug 

Database 

Drug Interaction Prediction Tool: 
Predicts interactions based on 

chemical properties, issues safety 
alerts, and suggests alternatives. 

Minimizes risk of adverse 
interactions and supports 

informed prescribing. 

Monographs 

Comprehensive deep-dives on 
individual drugs (chemistry, 
contraindications, adverse 

effects). 

• Martindale 
• AHFS Drug 

Information 

Drug Information Retrieval Tool: 
Provides detailed Q&A, 

comprehensive data access, and 
general decision support. 

Increases access to 
detailed knowledge and 
ensures safer prescribing 

practices. 
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• EMA Monographs 

Pharmacovigilance 
Data 

Monitoring of medicine safety, 
specifically Adverse Drug 

Reactions (ADRs). 

• FDA FAERS 
• WHO VigiBase 
• EudraVigilance 

Adverse Reaction Prediction Tool: 
Detects potential ADRs from 

historical data, issues emerging 
safety alerts, and automates 

regulatory reporting. 

Improves detection of 
safety signals and ensures 

regulatory compliance. 

Clinical Trials 
Data 

Data from study designs, results, 
and adverse events in controlled 

trials. 

• ClinicalTrials.gov 
• EudraCT 
• ICTRP 

Efficacy Prediction Tool: 
Synthesizes trial data to predict 

treatment outcomes and assists in 
evidence-based selection. 

Supports evidence-based 
medicine and guides future 

clinical research. 

Electronic Health 
Records (EHRs) 

Real-world digital patient 
history (demographics, 

diagnoses, treatment plans). 

• Hospital/Clinic 
EHR systems 

• Health Information 
Exchanges (HIEs) 

Personalized Medicine Tool: 
Analyzes patient history to identify 

patterns, predict response, and 
tailor recommendations. 

Enhances treatment 
personalization and 
supports data-driven 

clinical decisions. 

Pharmacokinetics 
(PK) & 

Pharmacodynamics 
(PD) 

Data on how the body affects 
the drug (PK) and how the drug 

affects the body (PD). 

• Clinical 
pharmacology 
studies 

• Drug 
labels/submissions 

Dosing Optimization Tool: 
Models drug behavior 

(absorption/metabolism) to 
optimize dosing regimens and 

monitor therapeutic levels. 

Ensures therapeutic 
efficacy while minimizing 

toxicity risks. 

Genomic Data 
Genetic makeup information 

influencing drug susceptibility 
and metabolism. 

• GWAS 
• PharmGKB 
• Personalized 

medicine initiatives 

Pharmacogenomics Tool: 
Analyzes genetic variants 
(e.g., CYP enzymes) to 
predict individual drug 

response and assess risk. 

High-level 
personalization and 

mitigation of genetic-
specific adverse risks. 

 
5. Challenges and Considerations 
The report paints a picture of Large Language Models as 
powerful but brittle engines of knowledge. While LLMs 
demonstrate "surface-level" mastery often outperforming 
pharmacy students in rote memorization and fact recall they 
exhibit significant degradation when asked to apply that 
knowledge to complex, real-world clinical reasoning. This 
"application gap" is most visible in their inability to 
synthesize multiple clinical guidelines simultaneously and 
their dangerous underperformance in detecting drug-drug 

interactions, where they missed over 70% of alerts caught 
by standard systems. Furthermore, the models are 
technically fragile; minor input errors (like typos) can 
corrupt their outputs, and they remain vulnerable to 
adversarial security attacks. Consequently, the report 
concludes that these issues are inherent to the current 
architecture and cannot be solved simply by feeding the 
models more data; instead, external verification systems 
(like RAG and Knowledge Graphs) are strictly necessary. 

 
Table 3: Challenges and Implications 

 

Challenge Key Findings & Evidence Implication for Pharma 

Hallucination & 
Inaccuracy 

• Fragility: Non-clinical noise (typos, whitespace) can drop 
treatment accuracy by 7-9%. 

• Inherent Nature: Hallucination is mathematically inevitable in 
LLMs and cannot be solved by training alone. 

• Exception: Hallucinations may aid creative molecular discovery, 
but are dangerous for clinical advice. 

Reliance on architectural 
safeguards (RAG, Knowledge 
Graphs) is mandatory; LLMs 

cannot be trusted as standalone 
agents for safety-critical advice. 

Knowledge 
Application Gap 

• Recall vs. Reasoning: LLMs excel at fact recall (93% s. 84% for 
students) but fail at applying that knowledge to clinical scenarios 
(68% vs. 80% for students). 

LLMs function well as 
encyclopedias but poorly as 

clinicians, struggling to synthesize 
facts into actionable care plans. 

Guideline Adherence 
Failures 

• Complexity Struggle: Performance drops significantly when 
multiple guidelines must be considered simultaneously. 

• Inconsistency: The AMEGA benchmark shows highly variable 
performance across specialties (e.g., better in psychiatry, worse in 
complex multi-condition scenarios). 

LLMs cannot yet reliably navigate 
the nuance of complex, multi-step 

clinical protocols required for 
standard of care. 

DDI Detection Failure 
• Severe Underperformance: GPT-4 identified only 80 potential 

drug-drug interactions (pDDIs) compared to 280 identified by 
standard software (a 71% miss rate). 

This represents a critical patient 
safety risk; LLMs are currently 
inferior to standard, rule-based 

databases for interaction checking. 

Security 
Vulnerabilities 

• Adversarial Attacks: Models are susceptible to "poisoned" data and 
prompt injections that force harmful recommendations. 

• Regression: Newer models (e.g., LLaMA-3.3) often show 
increased vulnerability compared to predecessors. 

Security is not improving with 
model scaling; specific defensive 

architectures are required to 
prevent malicious manipulation. 

 
6. Future Directions 
6.1 Specialized Pharmaceutical Language Models 
Development of foundation models specifically pre-trained 
on pharmaceutical knowledge (drug interaction databases, 
prescribing guidelines, adverse event databases, clinical trial 
data) represents a promising direction. These models could 

achieve higher performance on pharmaceutical tasks while 
requiring less explicit knowledge augmentation. 
 
6.2 Multimodal Integration 
Integration of LLMs with structured pharmaceutical data 
(molecular structures, genomic data, imaging), electronic 
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health records, and temporal patient information could 
improve reasoning about complex clinical scenarios. Few 
existing systems leverage multimodal information 
effectively, representing an underexplored opportunity. 

 
6.2 Regulatory Framework Development 
Harmonized regulatory approaches to LLM validation, post-
market surveillance, and accountability mechanisms will be 
critical for broader pharmaceutical adoption. Collaborative 
development involving FDA, manufacturers, and healthcare 
systems could accelerate responsible deployment. 

 
6.3 Robust Adversarial Defenses 
Developing architectural solutions to improve robustness 
against adversarial attacks—distinct from model scaling—
represents an essential direction. Ensemble methods, input 
validation, and anomaly detection approaches may improve 
pharmaceutical AI security. 

 
7. Conclusion 
Large Language Models present unprecedented 
opportunities for enhancing pharmaceutical decision 
support, drug discovery, and clinical outcomes. However, 
their integration into pharmaceutical practice remains 
constrained by inherent limitations in knowledge 
application, hallucination, clinical guideline adherence, and 
regulatory uncertainty. Current evidence supports LLM 
deployment in well-constrained contexts where human 
expertise remains central: assisting with literature review 
and information synthesis, supporting but not replacing 
clinical judgment, and enhancing efficiency through 
automation of knowledge-based tasks. 
Safe and effective pharmaceutical LLM applications require 
hybrid human-AI workflows incorporating retrieval-
augmented generation, knowledge graph integration, 
explicit verification mechanisms, robust explainability, and 
rigorous adherence to regulatory frameworks. Future 
development should prioritize domain-specific models 
trained on pharmaceutical knowledge, multimodal 
integration with clinical data, improved adversarial 
robustness, and collaborative regulatory frameworks that 
enable innovation while protecting patient safety. 
The pharmaceutical industry is well-positioned to leverage 
LLM capabilities responsibly if implementations prioritize 
transparency, verification, human oversight, and continuous 
monitoring rather than pursuing autonomous AI decision-
making in this high-stakes domain. 
 
References 
1. Ali H, Qadir J, Alam T, Househ M, Shah Z. ChatGPT 

and large language models in healthcare: opportunities 
and risks. Proceedings of the 2023 IEEE International 
Conference on Artificial Intelligence, Blockchain, and 
Internet of Things (AIBThings). 2023. 
doi:10.1109/AIBThings58340.2023.10291020. 

2. Kuzlu M, Xiao Z, Sarp S, Catak FO, Gurler N, Guler O. 
The rise of generative artificial intelligence in 
healthcare. Proceedings of the 12th Mediterranean 
Conference on Embedded Computing (MECO). 2023. 
doi:10.1109/MECO58584.2023.10155107. 

3. Ratten V, Jones P. Generative artificial intelligence 
(ChatGPT): implications for management educators. 
International Journal of Management Education. 
2023;21(3):100857. doi:10.1016/j.ijme.2023.100857. 

4. Cardenas L, Parajes K, Zhu M, Zhai S. AutoHealth: 
advanced LLM-empowered wearable personalized 
medical butler for Parkinson’s disease management. 
Proceedings of the 2024 IEEE 14th Annual Computing 
and Communication Workshop and Conference 
(CCWC). 2024;375-379.  
doi:10.1109/CCWC60891.2024.10427622. 

5. Chau RCW, Thu KM, Yu OY, Hsung RTC, Lo ECM, 
Lam WYH. Performance of generative artificial 
intelligence in dental licensing examinations. 
International Dental Journal. 2024. 
doi:10.1016/j.identj.2023.12.007. 

6. Dou Y, Zhao X, Zou H, Xiao J, Xi P, Peng S. 
ShennongGPT: a tuning Chinese LLM for medication 
guidance. Proceedings of the 1st IEEE International 
Conference on Medical Artificial Intelligence (MedAI). 
2023;67-72. doi:10.1109/MedAI59581.2023.00017. 

7. Vallabhaneni GV, Rahul YS, Kumari KS. Improved 
lung cancer detection through use of large language 
systems with graphical attributes. Proceedings of the 
International Conference on Computational and 
Communication Technologies. 2024;1849-1854. 
doi:10.1109/IC2PCT60090.2024.10486290. 

8. Agarwal A, Sharma S. LLANIME: large language 
models for anime recommendations. Proceedings of the 
International Conference on Developments in ESystems 
Engineering (DeSE). 2023;870-875. 
doi:10.1109/DeSE60595.2023.10468757. 

9. Mosaiyebzadeh F, Pouriyeh S, Parizi RM, Han M, 
Dehbozorgi N, Dorodchi M, Batista DM. Empowering 
healthcare professionals and patients with ChatGPT: 
applications and challenges. Proceedings of the 
International Conference on Computer Science and 
Education. 2024;1-7. 
doi:10.1109/CSCE60160.2023.00233. 

10. Sathe N, Deodhe V, Sharma Y, Shinde A. A 
comprehensive review of AI in healthcare: exploring 
neural networks in medical imaging, LLM-based 
interactive response systems, NLP-based EHR systems, 
ethics, and beyond. Proceedings of the 2023 
International Conference on Advanced Computing and 
Communication Technologies (ICACCTech). 
2023;633-640. 
doi:10.1109/ICACCTech61146.2023.00108. 

11. Zaghir J, Naguib M, Bjelogrlic M, Névéol A, Tannier 
X, Lovis C. Prompt engineering paradigms for medical 
applications: scoping review. Journal of Medical 
Internet Research. 2024. doi:10.2196/60501. 

12. Emergent Mind. Medical chain-of-thought reasoning. 
Emergent Mind. 2025 Oct 7. Accessed 2025 Dec 15. 
Available from: 
https://www.emergentmind.com/topics/medical-chain-
of-thought-reasoning 

13. Nachane SS, et al. Few-shot chain-of-thought driven 
reasoning to prompt LLMs for open-ended medical 
question answering. Findings of the Association for 
Computational Linguistics: EMNLP 2024. Miami (FL); 
2024 Nov. p. 542-573. doi:10.18653/v1/2024.findings-
emnlp.31. 

14. Laurent A. Performance of retrieval-augmented 
generation (RAG) on pharmaceutical documents. 
Intuition Labs. 2025 Dec 14. Accessed 2025 Dec 15. 
Available from: https://intuitionlabs.ai/articles/rag-
performance-pharmaceutical-documents 

https://www.computersciencejournals.com/ijecs


International Journal of Engineering in Computer Science https://www.computersciencejournals.com/ijecs 

~ 344 ~ 

15. Fang L, Chen Q, Wei CH, Lu Z, Wang K. Bioformer: 
an efficient transformer language model for biomedical 
text mining. arXiv preprint. 2023 Feb 
3:arXiv:2302.01588v1. PMID:36945685; 
PMCID:PMC10029052. 

16. Westat. Fine-tuning LLMs to improve adverse drug 
event detection and reporting. Westat. 2025 Apr 7. 
Accessed 2025 Dec 15. Available from: 
https://www.westat.com/insights/llms-adverse-drug-
event-detection-reporting/ 

17. Sabbir MAI. Data-driven healthcare: exploring 
biomedical text mining through NLP models. Scientific 
Research Journal of Science, Engineering and 
Technology. 2024;2(2):47. 

18. Lu J, Choi K, Eremeev M, Gobburu J, Goswami S, Liu 
Q, Mo G, Musante CJ, Shahin MH. Large language 
models and their applications in drug discovery and 
development: a primer. Clinical and Translational 
Science. 2025 Apr;18(4):e70205.  
doi:10.1111/cts.70205. PMID:40208836; 
PMCID:PMC11984503. 

19. Wang Y, Yang Z, Yao Q. Accurate and interpretable 
drug-drug interaction prediction enabled by knowledge 
subgraph learning. Communications Medicine. 
2024;4:59. doi:10.1038/s43856-024-00486-y. 

 

https://www.computersciencejournals.com/ijecs

