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Abstract

In this paper an analytical approach for estimation of maximal continuance of manufacturing of
integrated circuit elements by dopant diffusion and ion implantation has been introduced. We analyzed
influence of parameters of considered technological processes on the value of it's maximal continuance.
Keywords: manufacturing of integrated circuit elements; dopant diffusion; ion implantation; maximal
continuance of technological processes; analytical approach for prognosis.
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Introduction

One of the intensively solved problems for production of solid-state electronics devices is
increasing of the integration rate of elements of integrated circuit (p-n- junctions; field-effect
and bipolar transistors), as well as increasing of their performance 81, Different methods are
using for manufacture of elements of integrated circuits. Some of them are ion and diffusion
types of doping of required sections of electronic materials, epitaxial growth of multilayer
structures, fusion of materials [**1, Main aim of the present paper is estimation of maximal
continuance of ion and diffusion types of doping. The accompanying of the present paper is
development of analytical approach for analysis of the considered continuance.

Method of Solution

In this section we determine spatio-temporal distributions of concentrations of infused and
implanted dopants. To determine these distributions we calculate appropriate solutions of the
second Fick's law 131819,

g dzxl € ox

dcixt) a ﬁCt'J:.t)] (1)

Boundary and initial conditions for the equations are
for finite source of dopant

ac(xt) A GCixn) _ _ )
o o =0 o o, 0, C (x,0)=f (x); (2a)
for infinite source of dopant
C 0)=Co, EZ2| =0, C (x>0,0)=0. (2b)
=L

The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant;
T is the temperature of annealing; D¢ is the dopant diffusion coefficient. Value of dopant
diffusion coefficient could be changed with changing materials of heterostructure, with
changing temperature of materials (including annealing), with changing concentrations of
dopant and radiation defects. We approximate dependences of dopant diffusion coefficient
on parameters by the following relation with account results in Refs [1%-211,
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Here the function D (x,T) describes the spatial (in heterostructure) and temperature (due to Arrhenius law) dependences of
diffusion coefficient of dopant. The function P (x,T) describes the limit of solubility of dopant. Parameter y [1, 3] describes
average quantity of charged defects interacted with atom of dopant [°1. The function V (x,t) describes the spatio-temporal
distribution of concentration of radiation vacancies with equilibrium distribution V*. The considered concentrational
dependence of dopant diffusion coefficient has been described in details in 1. It should be noted, that using diffusion type of
doping did not generation radiation defects. In this situation 1= &= 0. We determine spatio-temporal distributions of
concentrations of radiation defects by solving the following system of equations [2% 241,

T2 2 [0, (e 1) ] — by (e TP () — e (6, DI (1, )V (x,)

4)
aviaxc) av(x.r) (
a;” ™ [Dv( ,T) M} Ky (6, TIV 2 (x,8) — Ky (o6, T (x, )V (3, £)

Boundary and initial conditions for these equations are

dplxt) o) o _

o o =0 e 1o, T 0, o (X,0)=f»(x). ©)

Here p =1,V. The function | (x,t) describes the spatio-temporal distribution of concentration of radiation interstitials with
equilibrium distribution 1”; D(x,T) are the diffusion coefficients of point radiation defects; terms V2(x,t) and 12(x,t) correspond
to generation divacancies and diinterstitials; kiv(x,T) is the parameter of recombination of point radiation defects; ki (x,T) and
kvv(x,T) are the parameters of generation of simplest complexes of point radiation defects.

Further we determine distributions in space and time of concentrations of divacancies @y(x,t) and diinterstitials @(x,t) by
solving the following system of equations [2% 21,

6@:;:. 2 [Dw( .T) aq&ﬂul] + Ky (6, TP (x,8) — by (x, T (x, £)
- ' (6)
6'¢;;t:. : = [D.i,._,-[x T) a%i“ } + iy (x, TV (x5, 8) — Ky (, TV (3, t)
Boundary and initial conditions for these equations are
a¢-agix.r:. -0, aj‘.;‘f_“ = 0, @y (x,0)=Fap (X). 0
x=0 * lx=L

Here Dap(x,T) are the diffusion coefficients of the above complexes of radiation defects; ki(x,T) and kv(x,T) are the parameters
of decay of these complexes.

We calculate distributions of concentrations of point radiation defects in space and time by recently elaborated approach [22].
The approach based on transformation of approximations of diffusion coefficients in the following form: D,(x,T)=Dg,[1+¢,
go(x, T)], where Dg, are the average values of diffusion coefficients, 0<g<1, |gx(X,T)|<1. We also used analogous
transformation of approximations of parameters of recombination of point defects and parameters of generation of their
complexes: k|,v(X,T)=ko|,v [1+6‘|,Vg|,v(X,T)], k|,|(X,T)=k0|,|[l+€|,| g|y|(X,T)] and kvyv(X,T)zkov,v[l"'é\/yv gv'v(X,T)], where kOpl,pZ are the
their average values, 0<&v<1, 0<g,<1, 0<eyv<1, | iv(X, T)ILL, | gui(X, T)IZL, |gvv(X,T)|<1. Let us introduce the following

dimensionless variables: y = x/Ly, I(x,t) = I(x,t)/I", V(x,t) = V(x,t)/V*, @ = L*kqy// Dot Doy 2, = L*kq 5 5 //Dor Doy

8 = /Dg; Doy t/L2. The introduction leads to transformation of Egs. (4) and conditions (5) to the following form

di(x8) Dy ﬁ!t,{ﬂ
x Dﬂmm[[1+e;g;(xr)] }-

—(u[l + EI.VQI.V[X T)]f[x ﬁ)V[}'f ’-9) -‘? [1 + &89 [X:T)]fz (X; 19)

o (8)
avixd) _  Dgy E'Vt,(ﬂ
o = (1 + ey (D727 —
—o[1+ &9,y DDV (,9) — ﬂvll + epygyy (. TV 2 (x.9)
US| g, BUB| g, 5(y,6)=L2D, (©)

a;( qu a;( X_l IDlx
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We determine solutions of Egs. (8) with conditions (9) framework recently introduced approach [22], i.e. as the power series
Al 9) = Tiog, Do’ - 255 (x.9). (10)

Substitution of the series (10) into Egs.(8) and conditions (9) gives us possibility to obtain equations for initial-order

approximations of concentration of point defects 5,0 (x,9) and corrections for them g, ;.. (x,9), i 21, j 21, k >1. The equations
are presented in the Appendix. Solutions of the equations could be obtained by standard Fourier approach 23241, The solutions
are presented in the Appendix.

Now we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To
determine the distributions we transform approximations of diffusion coefficients in the following form: Day(X, T)=Doa[1+ &2
gap(X,T)], where Doa, are the average values of diffusion coefficients. In this situation the Eqgs.(6) could be written as

d&; (x, 1) a 3%, (x,t)
—5 = Dwa{“ + £ o101 (6 T —z 4+ ky (6, TP (x,8) — by (6, T, ©)
Vat — = Duwa {[1 + egy Gev(x, T)] g—x + ky (0, TIVE(x,t) — kyp(x, TV (x, )

Farther we determine solutions of above equations as the following power series
&, (x, t) = Xioek, 2, (% 1), (11)

Now we used the series (11) into Egs. (6) and appropriate boundary and initial conditions. The using gives the possibility to
obtain equations for initial-order approximations of concentrations of complexes of defects @x(x,t), corrections for them
@,i(x,t) (for them i >1) and boundary and initial conditions for them. We remove equations and conditions to the Appendix.
Solutions of the equations have been calculated by standard approaches [23,24] and presented in the Appendix.

Now we calculate distribution of concentration of dopant in space and time by using the approach, which was used for analysis
of radiation defects. To use the approach we consider following transformation of approximation of dopant diffusion
coefficient: D.(X,T)=DoL[1+ a.gu(x,T)], where Dq_ is the average value of dopant diffusion coefficient, 0<a< 1, |gu(x,T)|<1.
Farther we consider solution of Eq. (1) as the following series:

C(x,y,z 1) = Lo el iz Gy 0).

Using the relation into Eq. (1) and conditions (2) leads to obtaining equations for the functions Cj(x,t) (i 21, j >1), boundary
and initial conditions for them. The equations are presented in the Appendix. Solutions of the equations have been calculated
by standard approaches (see, for example 2% 24), The solutions are presented in the Appendix. We analyzed distributions of
concentrations of dopant and radiation defects in space and time analytically by using the second-order approximations on all
parameters, which have been used in appropriate series. Usually the second-order approximations are enough good
approximations to make qualitative analysis and to obtain quantitative results. All analytical results have been checked by
numerical simulation.

Let us to use recently introduce criterion to estimate maximal value of continuance of technological process 1. In the
framework of the criterion let us approximate changing of considered concentrations in time by the following step-wise
function (see Figs. 1-4).

w (x,t) = ag+ai[1(t)-1(t-O)], (12)

where 1(t) is the single step-wise function [26]. Not yet known parameters ao, a; and ® could have different values in different
points of the considered material. Values of these parameters were determined were determined by minimization of the
following the mean-squared error

U= [*[c(xt) —(x, O]t (14)

where ty is the observation time of transition process. Minimization of the mean- square error (14) gives a possibility to obtain
the following relations for calculation of the considered parameters

f;“" C(x,t)dt = ayty +a,0, (15a)
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J§ cCx,t)dt = (ag+ ay)e, (15b)

C (x,®)=a,+0.5a;. (15¢)

The criterion is optimal. However the approach did not leads to obtaining analytical relations for calculation of the considered
maximal value of continuance of technological process. To obtain analytical relations for the considered relations it is attracted
an interest asymptotically optimal criteria. To obtain transition to the criteria one shall consider the following limiting case
tv—o0. In this case one can obtain the following relations: ap = C(x,0) and a;= C(x,0)-C(x,»). Before consideration of the
following limiting transition one shall the transform relation (15a) to the following form

J¥[eCx,t) — agldt = a,6.

Further obtaining of time of step-wise changing of approximation function (13) under condition of the limiting case tn—co one
can obtain the following criterion to estimate time scales, which known as rectangle with equal square

Jo T6(x, 60— Clx,)]de

0(x) = Cl2,0)—Clxee) (16)
Monotonous in time concentrations of dopant (see Figs. 1 and 2) could be approximated by the following functions
C(x.t) = a [1-exp(-t/7)], C(x,t) = B -exp(-t/7). 17)

Substitution of the above relations into the relation (16) at fixed value of observation time of the diffusion process ty gives a
possibility to obtain the following relation for the considered time

® = r[1-exp (-tn/7)].

Consideration limiting case tn—oo leads to equality of single time scale of monotonous variation in time of dopant
concentration and time scale, which was determined by relation (16). It should be noted, that relation (15c) at the limiting case
tn— oo takes the form of another asymptotically optimal criterion. In the framework the second asymptotically optimal
criterion maximal value maximal value of diffusion doping could be estimated as time of changed of the considered
concentration in two times, i.e.

C (x,®)=[C(x,0) +C(x,0)]/2. (18)

Cxo)p - - - - - - .
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Fig 1: Monotonic increasing of concentration of dopant (curve 1); optimal approximation of transition process, which was obtained by
minimization of mean-squared error (14) (curve 2); asymptotically optimal approximation of transition process (curve 3)
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Fig 2: Monotonic decreasing of concentration of dopant (curve 1); optimal approximation of transition process, which was obtained by
minimization of mean-squared error (14) (curve 2); asymptotically optimal approximation of transition process (curve 3)
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Fig 3: Non-monotonic decreasing of concentration of dopant (curve 1); optimal approximation of transition process, which was obtained by
minimization of mean-squared error (14) (curve 2); asymptotically optimal approximation of transition process (curve 3)
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C(x,0)
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ao(X)

0, ot(X) " ty

Fig 4: Non-monotonic increasing of concentration of dopant (curve 1); optimal approximation of transition process, which was obtained by
minimization of mean-squared error (14) (curve 2); asymptotically optimal approximation of transition process (curve 3)

However the first asymptotically optimal criterion (15) is nonlinear. Nonlinear criterion leads to obtaining smaller quantity of
analytical relations for the considered maximal value of technological processes in comparison with criterion (16). In this
situation we will use criterion (16) in future. However the criterion (16) has own disadvantage: the criterion could be used for
monotonous in time concentrations of dopant. For non-monotonous in time concentrations of dopant the criterion (16) leads to
underestimated values of the considered time. In this situation the considered time could takes negative values. It is attracted
an interest maximal value of the considered time will be achieves, when initial distribution of concentration of infused dopant
is presents near one boundary of the considered structure (i.e. f (x)=5 (x)) and point of observation of this concentration is
presented on other boundary of the considered structure (i.e. x = L), which should be doped. If the observation time on
diffusion doping ty is large in comparison with limiting time of technological process ©, than transitions processes are absent
at times t >0.

Discussion

In this section we analyzed limiting continuance of technological process for different profiles of diffusion coefficients without
any variations in time (for example, annealing temperature is constant). Wide using have different multilayer structures. In this
situation we will consider several normalized profiles of dopant diffusion coefficient g (x), which are presented on Fig. 5.
Analysis of limiting continuance of technological process shows, that in the case of infusion of dopant from finite source
maximal variation of the considered continuance could be find in symmetrical structure with respect to it's middle (see Fig. 6).
In the case of infusion of dopant from infinite source maximal variation of the considered continuance could be find in
asymmetrical structure with respect to it's middle (see Fig. 7). Multilayer structures, which were presented on Figs. 6a and 7a,
correspond to maximal increasing of the considered limiting continuance of technological processes (at fixed average value of
dopant diffusion coefficient Do). Multilayer structures, which were presented on Figs. 6b and 7b, correspond to maximal
decreasing of the considered limiting continuance of technological processes (at fixed average value of dopant diffusion
coefficient Dy).
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Fig 5: Normalized profiles of dopant diffusion coefficients

| |
0 L/4 L/2 3L/4 L

Fig 6a: Normalized profiles of dopant diffusion coefficient, which correspond to maximal increasing of the limiting continuance of diffusion
doping from finite source of dopant
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Fig. 6b. Normalized profiles of dopant diffusion coefficient, which correspond to maximal decreasing of the limiting continuance of
diffusion doping from finite source of dopant
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Fig 7a: Normalized profiles of dopant diffusion coefficient, which correspond to maximal increasing of the limiting continuance of diffusion
doping from infinite source of dopant
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Fig 7b: Normalized profiles of dopant diffusion coefficient, which correspond to maximal decreasing of the limiting continuance of
diffusion doping from infinite source of dopant

-2

We analyzed dependences of the considered limiting continuance on thicknesses of layers of multilayer structures. Variation of
thicknesses of layers of multilayer structures not gives a possibility to find profiles of dopant diffusion coefficient, which
correspond to larger influence on the considered continuance, in comparison with profiles, which were presented on Figs. 6
and 7. Increasing of quantity of layers of the considered multilayer structures leads to decreasing of influence of variation of
dopant diffusion coefficient on the limiting continuance of technological process. Figs. 8 show dependences of the considered
continuance on the value of parameter & for profiles of dopant diffusion coefficient, which were presented on Figs. 6 and 7.
These figures show, that the considered continuance could be decreased on several percents and increased on several orders in
comparison with continuance ®, for averaged value of dopant diffusion coefficient Do. The continuance ©, for averaged value
of dopant diffusion coefficient Dy is equal to ®=L2/6D, for finite source of dopant and ®,=L%/2D, for infinite source of
dopant.

30¢7

2647

(e)

=
ot

-

O

0 | | I I
0.0 0.2 0.4 0.6 0.8 1.0

E

Fig 8a: Dependences of limiting continuance of diffusion doping for finite source of dopant on value of parameter & Curve 1 corresponds to
profile of dopant diffusion coefficient with decreased limiting continuance of technological process (see Fig. 6b). Curve 2 corresponds to
profile of dopant diffusion coefficient with increased limiting continuance of technological process (see Fig. 6a)
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Fig. 8b: Dependences of limiting continuance of diffusion doping for infinite source of dopant on value of parameter & Curve 1 corresponds
to profile of dopant diffusion coefficient with decreased limiting continuance of technological process (see Fig. 7b). Curve 2 corresponds to
profile of dopant diffusion coefficient with increased limiting continuance of technological process (see Fig. 7a)

Je(@)

D(x)

D, | Ds

Fig 9: Profile of dopant diffusion coefficient, which corresponds to maximal increasing of limiting continuance of ion doping. Profile of
dopant diffusion coefficient, which corresponds to maximal decreasing of limiting continuance of ion doping, has the same difference with
the above profile as for profiles 6b u 6a

Now let us consider influence of temporal variations of dopant diffusion coefficient on value of limiting continuance of
technological process in homogenous material. The considered situation could be consider, for example, for nonstationary
annealing of dopant and/or radiation defects, which are presents in homogenous material. In this case (as for multilayer
structure) increasing of the considered limiting continuance is essentially smaller, than decreasing one at fixed value of
averaged diffusion coefficient. The same conclusion could be obtained during analysis of joint changing of dopant diffusion
coefficient in space and time.

Analogous conclusions about influence of variations of dopant diffusion coefficient on limiting continuance of technological
process could be obtained for ion type of doping. At the same time one can find changing of thicknesses of layers of multilayer
structures (see Fig. 9). This changing taking into account presents of maximal value of concentration of dopant in depth of the
multilayer structure, but not on it's external boundary as for diffusion doping. Also qualitatively similar influence of spatial
and temporal variations of dopant diffusion coefficients of radiation defects and accounted other parameters (parameters of
recombination of point radiation defects; parameters of generation of complexes of point defects; parameters of decay of
complexes of radiation defects) on limiting value of continuance of annealing time.
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Conclusion

In this paper we introduce an analytical approach to estimate limiting value of continuance of technological process during
doping (doping by diffusion; ion doping) of materials to manufacture elements of integrated circuits. We analyzed influence of
parameters on value of the considered limiting continuance.
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Appendix

Equations for functions J'U,‘ (x.19) andu VJL (x.9), 120, j >0, k >0 and conditions for them could be written as

800l ®) _ iagjuuut}'{-ﬂ:‘ 8Vo00lx8) _ %azﬁuuuﬁf-ﬂ:‘.
a8 Doy 8z ' @8 Doy 0y

a:muﬂ. fnzia !wut,{ﬂl f%;_)([g!&,m afz-_l;;c';(.ﬂ;.]
. R
avzuuf:t’ﬂ' fﬂwﬁ‘ Vzuuuﬂ' JZU_VEE [QV(XJT) a"’i—;l‘ufif-ﬂ»'}
Doy oI X X

i ) 2f ‘) - e
% = f%M = [1+ &1y g1 6. T) ) ooo O 9) Voo (2. 9)

dx

= e ) 7~ ) . . !
% = f%japﬂi—w = [1+ ey g1y 6. T)]To00 (2. 9) Vg0 (2. 9)

dx
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lpz0(x8) _ Doy 8 loz0 (8)
a8 Doy 8%°

—[1 + 1950 O D o100 Voo (. ) + Togo (O, 8)Wo10 (1. 19)]

8Vz0x8) — Dy 8* Vuzu'::(ﬂ'
ad Doy ayt

—[1 + 13810 O T Ho10Cr ) Vaoo 0 ) + 100, 910 (9]

8la0a(x®) _ [Doy 8Bg0. (8 I
Walﬂ - Kuv% — [+ 190000 T) 500 0 9)

Bx

217 M ¥ T ’
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dx
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Doy v ax

_[1 +e1,90 (0 T)] [fmc (. ﬁ)%uc (6 9) + Tooo (90 (2, 9]

6'1’110(,(:91 fﬂzfja V:l:m'::(ﬂ' J%a [QV(XJT) avug.u':,(aﬂ,:l _

_[1 + ey vy (X, T)] o100 06 9IVi00 0 9) + Ty 0 Vg0 (. 9)]

dx

8702 8) Doy 8° Vg (B . . '
UE:,E. = ,fﬁ% —[1 + vy gvy (06 T Vog1 (1 9) Voo (. 9)

af:m:l'::(ﬂ' Jgui & 5101'::('9' Jgiai [‘9! (x.T) aruu;FXsﬂ:'] _
ov ov OX X

anuan‘g' Doy g V:Lcl:t(a( ‘9' %ai [SV[XJT) aﬁuu;jf)(ﬂg:'] _
Dor Dyy 8x X

—[1 + &gy (e T) g0 G O Vigo (1,9)

—[1 4+ £,9,00.T) 1000, 9 W00 (1, 9) ;

dx
—[1 + 13850 G0 T To01 (O 9) Voo (. D) _
Pout?) _ f%ja%—w - [1 + EVVSVV[X:T)] Vooo (8 V10 (x, 8) —

a8 ax
—[1 + &1y g1y (6 ) 000 (6 Vg1 (1. 9)

8lp110 ) Dy 805, (@) . -
— = fﬁ% = [1+ €190 G 1) [Tooo (2 a0 (2. 9) —

dlhoa(x®) _ [Doz 8%h50s r8) . .
{ UU;; = fﬁLf—[1+Eugu[X:T)]fumofrﬁ)fuou&rﬁ)

85y 8) 85y 8) : . - )
— =0,—I— =0 (i =0, j =0, k 20); ,0) = £,
ax |.r=0 ax L=1 ( J ); Booo (X, 0) B

Py (1, 0) =0 (i 21,21, k>1).

Solutions of the above equations with appropriate boundary and initial conditions could be written as

Pooo (6 8) = 22+ 232, Fypc()en, (9),

Where

Fop= %fol cos(mnu) f, , (Wdu, e, (9) = exp[:—nznzﬁxxm, cn(y) =cos (N p), e,y (9) = exp(—nznzﬁ‘xw;
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{fmtx,a) = —2m [P ney(0en(8) fy enr () fy 50 (w)gy (w.T) 22 duciy

Vioor,9) = —2m WZn 1€y (x)env(ﬁ)I enr(— T)f sp(Wgy(w, T) A m(urld"fidf
Where sn(y) = sin (zn p);

® 8 1 1 1
ﬁm(x,n,qo,a)=—znzzlcncx)cn(n)cntqo)enp(a) f ep(—T) j () f () j (W) %

X [14 &9 (v, w, T) oo (1, v, w, D)Wy (w, v, w, T)dwdvdudr;
Pozo(9) = 2 |D Z en()enp (6) j enpl—T) j 2OO[1+ 139, (0.1 X

X [fum (u, r)ﬁmc (u,1) + IUUU(H,T)];E]_U (u, 7)]dudr;
ﬁUUl (_}\,’; 19) = _22i=1 Cn(x}enp (19) fuﬂ enp (—1’) Igl Cn (H)[]- + Ep,pgp,p (HJT)]ﬁSUU (H,r)dudr;
ﬁUUZ (.XJ 19) = _22i=1 Cnix}enp (19) J-Uﬂ enp (—1’) J-Ul Cn (‘H)[l + Ep,pgp,p (HJT):IﬁUtJl (Hrr)ﬁ[](]ﬂ (H; r)dudr;

7 @ # a”i— T
00, ®) = —2m %Enzlncn[x}em(ﬁ) Iy ent(=7) fnlsn(u)g;[u,T)%;(Mdudr—

-2 E§=1fgﬂ enr(—T) fgl Cn (H)[l + &g T)] [F100 (w, T) Voo (1, T) + Tpgo (1, T)Vy 9o (1w, T)] dudt X
x €nr (‘9)5 Of)
Vino(r.9) = —2m DUVZn 171y [x)env(ﬁ)fo ey (=) [, 5, (1) gy (u, T) Tzttt

—2 En:lfg eny(—7) fg Cn (W[1+ &75875 (w, T 00 (1, TIVi00 (1, T) + T10 (1, 7) Voo (u, T)]dudt %
X Cq &)enviﬁ)

o¥; —100':1! T dudt —

Iioi(x9) = -2 %E§=1ncn&)en!(ﬁ) fgﬂ en(—7) fnl sp (W g (w,T) —EEUEEH’T) dudt —
—2 X n=16n Cx)em(ﬂ)ff n;(—r)folc (O[1+ &1y 815 (6 T 100 (1, D Voo (u, Tdudr
Viea(r.9) = —2m DWZn 11, (e, (8) fo ey (—1) fo s, () gy (u, T) 2220 avﬂﬂl(“

—2¥r=1cn (e (9) fg eny(—7) fg (W1 + 191 (0T Tog0 (u, TV go (u, 7) dude

dudt —

Tou(r8)= 25 ¢, (2)e, (9)fe, (- e, (WH+2,,9,, (0T Tl 7)o 0,0)+
+ [1+8,Vglv (u,T ]I001 T)\Z)OO(U,T)} dudr

e, (W{+ 20 0y (0T Voo (0,7 (U,7) +

+[:I”L‘C"lvglv U T ]Iooo \7;)01(U!T)} udr
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Equations for functions @i(x,t), i >0, boundary and initial conditions takes the form

(0D,,(xt) _ D 52@1—0(“)+ k,, (6T) 12(x,t) =k, (x, T)1(x,t)

O”t ool Of,XZ .
ﬁq}éot(—x’t) =D, M;—X(Xt)+ Ky (GTIVE(x 1) =k, (X T)V (x,t)

’Oﬂq)”(x,t)_D §2®,i(x,t)+D i{g (X’T)ﬁd),i_l(x,t)}

ot o ax? O X
) , 1>1;
é,(DVi(X’t) = DOG)V é) Q)Vlgx’t)_'_ DOG)V £|:g<pv (X’T)O’,q)\/i_l(x’t):|
ot OX O X
oD . (x,t) oD (x,t)
—L2~ 7 =0, —Z2—7 =0, i20; @(x,00=fap(X), Bsi(x,0=0, i>1.
ox | ox |,
Solutions of the above equations could be written as
@, (x )=+ 22, ¢ (e, 0+ Enc, (X, (1) x
< Je, (= o)fe, Wk, (W T)1*(u,7)—k, (T (u,r)]dude,
where €, (t)= exp (— 7Z2n2D0®pt/L2 ) an)p = TCH (U)fq)p (U)d u;
0
© t L ood, . (u,
0, (.20 =25 500, (e, Ofe,, s @g,, 01)7 22 guge s
n1 Vd 0 P 0 P

Equations for initial-order approximation of concentration of dopant Coo(x,t) and corrections for them Cj(x,t) (i =1, j >1),
boundary and initial conditions for the above equations could be written as

0Cyu(%t) _ aZCOO(x,t);

ot * ox?
acgixlt) — DOL o (20(2)(’1:)_'_ DOLE|:g ’ | 10 :|
X O0X
0C,(x,t) _ D, 0°Cy(x.t) , b, O o { }
ot ox* ox| P7(x T

2 y-1
acoz(x,t):DOLa COZ(Zx,t)+DOL Olc (x t)cof (x,t)0C,(x.1) |,
ot O X O X P’ (x,T) ox
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Kl {Cgo(x,t) acm(x,t)}

“ox| P’ (xT) ox

8Cn(x,t):D 62C11(X,t)+D i C (X t)Coyol(Xit)aCoo(x’t) +
ot “ax’ o PTIPI(x,T)  ax

O X

Kl {cgo(x,t)acm(x,t)}w 0 {gL(x,T)aCc’l(X’t)}:

“ox| P (x,T) ox L ox
for finite source of dopant

aC,(xt)
OX

oC,(xt)
OX

=0,i20,j>0; Coo(x,0) = fc (x), Cij(x,0) = 0, i >1, j >1.

x=0 x=L

for infinite source of dopant

Coo(0,8)=Co, aCij (X’ t)

=0, Cij(x>0,t)=0, Coo(0,0) = Cq, Cij(x >0,0)=0, i >0, j >0.

x=L

Solutions of the above equations with account boundary and initial conditions by standard Fourier approach takes the form
for finite source of dopant

F 2
C00 (X’t) = % + E nZ::1 F.cC, (X)enc (t)

wheree, . (t) =exp (- 7°n*Dy t/L?), F,. = Tcn (u) f.(u)du;

0

: L 0C, (u.7)

Cu0.3.2) = =7 £nFcc, (e (e (- s, () g 0. T) =2 B dud o
C.(xt)=—2Z$nF o (e, Ofe. (- o)fs ) CalhD) 2Culi) g gy,

e Las el e et TP (uT) o |
C.(x)=-2T$ nF. ¢ (x)e. O)fe. (- o)fs. (1) C, (7)o D)0 Calti) g g, -
02 ' Lz = nC “n nC 0 nC 0 n 01 ] PY(U,T) au
L2750 o (x)e. (e (- o)fs. () C, (0 7) S D) OCuUT) g g

L2 = nC “n nC 0 nC 5 n 01 ! PV(U,T) au
_2T50E o (x)e B)fe (- o)fs, () S D) 2CuliT) g g

L2 = nC ~n nC 5 nC 0 n Py(U,T) au )
)=~ 27 $0F0, e, e (s, (), (0T Cguar -
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27 S 0F 0, (1) e () (s, o) ST 2Callr)g g

=t ] P’(u,T) ou
20 o (X)ew (e (- s, (u) Co(u, ) S 0D 2CulU) g g
L2 = nC n nC 5 nC 0 n 10 Py(U,T) a U

for infinite source of dopant

C,(x,t)= {1+ s 1 sn{”(nJro'S)X}eMS(t)},

mn-on+0.5 L

Culxt) =22 5 (n08)sin| FHOX e | 5fe L (-u)e, u)

% [Hopau)+H,, ()]du.

%z(m%) [M}em()ﬁ(mw) Z{ €,.05(—U) X

k=0

C,(x,t)=—

u

x€,.05(U) [H,_ (u)+ Hmm(U)]g €,.05(—7)€n.05(T)[H, () +H, . (r)]d zdu,
n(y,t)si [M} dy,

C01(Xft): Vo —Q,,

20 i(n+05)zs|n|:Mj| n+05( )i iekm(t) en+0 S(t)x

o L kK +0.5m=0 nn—mm —kk

where H n( )

O'—.l_

where o, =

1 1
’ {mm —~(n-kP (m+05)—(n+k+1y } , &n(®)=(1) exros(t) emvos(t),

0,y<3
a,=1C, 7z(n+0.5) x T SR S
5 nZ%)(n-i‘O 5) S|n|: L i|en+0'5(t)k2%)k—|—0.5IZ(:)|+O.5i0i+05zj+05

x{ 1 . 1 - 1 -
nn—(k—I+i—jy (n+05f —(k—l1-i—j) (n+05) —(k—-I+i+j+1)

1 1
(n+05F —(k—l—i—j+1F (n+05) —(k+l+i—j+1)
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: ! ; ! ; L }
(n+05) —(i—j—k—1+1 (n+05) —(i+j+k+1-2 (n+05) ~(i+j—k-I)

eklij (t) — €05 (t)

x {(n +0.5)° —(k+0.5) —(1+0.5) —(i +0.5)° —(j +0.5) } y=3

Ce (X’t) = —]/20(3 -,

where @/, = ;O i(n+0.5)zsin{M} en+05( )i :(| +O.5)3 X
(=K —(n+k +1) 1 e (i1 —(—i)
X (1+05)— (k1) (1+05)—(n—K} B2(1+05) —(i+05) —(j +05) ©

y 1 i 1_- 2 X
i+05](j+05) —(1+i+1) [(j+05) —(1-i)]

eklj (t) - en+0.5 (t) _ ekl (t) B en+0.5 (t)

* {(n +0.5)° —(k+0.5) —(i+0.5) —(j+0.5)° (n+0.5) —(k+0.5)° —(I +0.5) }

0,y=Ly=2
a, =13C, ‘ 7z(n+05)x} - & 1 ~
2(n+05) sm[ Ms()gg{(mos) i)

- (J+05)1§1i1§1
(Nn+05) —(i+ j+1) | i+05 &5k +0.5=1+0.5m=om, +0.5m-0m, 105

1 1
{(Ho.s)z_(k_uml_mz)z " (j+05F —(k=1—m,—m, 17

+

1 1
T(1+057 —(k=l-m+m, ] (j+05F —(k—I+m +m,Y

1 1
(j+05)F —(k+1+m —m, -1 (j+05) —(k+1-m, +m, -1y

—+

1 1
+(j+0.5)2—(k+l—ml—m2)2 +(j+0.5)2 —(k+|+ml+m2+2)2} *

eiklm1m2 (t) —€, (t)

g {(n +0.57 —(i+0.5Y —(j+0.5f —(k +0.5) —(1+0.57 —(m, + 0.5 —(m, +0.5f
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e,(t)—e,(t) 4C, = ) (n+05)} 1
_(n+0.5)2—(i+O.5)2—(j+O.5)2}r p nlz-o(”l*O'S)S'”[ L J&n 105"

s 1 1 1
><nsz—ong+0.5 n+0.5) —(n, +n +n,—n +1° (0, +05Y —(n, +n, —n, +n, +1)
3 5 3 5

1 1
(n,+05¢ —(n,—n,+n, +n,+1 (n,+057 —(n,—n, —n, —n, —1)’ ’

1 1 = 1
+ + x
(n, +0.5) —(n,+n,—n, —n.) (n, +05)° —(n, +n,+n, +n, + 2)2} =k +0.5

1 1 1

n (n, —0.5)° (k—QSY—On—OBf{On—OBY—(m—JQZ_Gn—05f—0g+k+1f}x
X { en2n3n4km (t) o en1 (t)

(n, —0.5) —(n, —0.5) —(n, —0.5f —(n, —0.5f —(k —0.5f —(mM—0.5)°

e, (H)-e, (t) )}

(n,-05) —(n

X

L MS

5

Cu(xV)=ast2as+2 ar-2 ast2 ag+ ot aa,

2y D,C, [ z(1+0.5)x 3 . 1
where &, = ];Z'L g( 0.5) sin [%} e|+05( );(n"'o 5) Z=‘5k+0.5 %
2yDC, 7(1+05)x .
o, = PE Z(l +0. 5) S|n|: L e|+05( )Z(n +0. 5) ok +0.5 x

w0 1 1 1
20 +05F —(k+05) —(n+ 05y {(m 105F —(n—kF (m+05F —(n+k +1)2} g

t

X £e|+o.5 (_ U) [ek+0.5(u)em+0.5 (U)— € 05 (_ u)][Hl—n (U) I+n+l( )]d u,

X

8

rDiCy 5 z-ﬂ®“ﬁﬂ} ¢ 1 _ L y
=" xn+05) S'n[ L ez o{(no 57 —(n—k) (|+o.5)2-(n+k+1)2}

u

1+ 05 (k+ 0.5 3e, 00(-) €05 061 05U} €105(=7) €405 (F)H, o (1) + Hy () 70w,

@ =225 (n+05) Ms()s'”[('”—fﬂmem( )€ (U)[Hy () Ho () Jd U,
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R e RN

n=0

+ Hn—k+m+0.5 (U)— Hn—k—m—O.S (U)— Hn+k+m+1.5 (U) ] d u !

0,y=1
a,=1yDC, z(n+0.5) x }w o 1
702G 5+ 08Je,ltsin TSRS L 5L She Ul @)t

+lictn-m(U) Flctnem-1(U) +F letenem+1.(U) = letenem-2 (U) =Tt 1n-m+1(U) = Ineketan-(U) = makeriene2(U)] d Uy 7>2,

1 (t)= In(y,t)cos[yr(n +05)yLt]dy,

0,y<3
%o = 2D3§°2(+05) €.,.(t )&n[M}Z(rHOQj[l (W) + 1) : ) 1. x

n=0

T

XZ 1 i 1 1 N 1
mom +0.5mom, +05| (n+05f —(k—l+m -m, (n+05f —(k—-1-m +m,)

1 1 1
" (+05F—(k=l+m +m +1F (n+05F—(k—l-m —-m —1F (n+05F—(k+l+m +m +1F
1 2 ml 2 1 2

1 1 1
“(n+05F —(k+1—-m +m, +1f +(n+0.5)2—(k+l—ml—m2)2 +(n+0.5)2—(k+l+ml+m2+2)2

€ (_ u)eklmlmz (U)— € (_ u)en (U)

“(n+05F —(k+0.5] —(1+0.5F —(m, +0.5) —(m, + 0.5]

X

du, =3,

0,7<3
%7 B i 0sfe, i ZUOI s Lso Lo L sns0s)s

7L

X{ 1 . 1 ~ 1
(i+05f —=(j—k+I-ny (i+05F—(j—k—=l+nf (i+05F—(j+k—-l+n+1y

1 1 1
_(i+0.5)2—(j+k—l—n+1)2+ii—(j+k—|—n)2_ii—(j+k+l+n+1)2} *

o t u

% 2805 (U)en U)]€0s(=7)ey (D)1, () + 1,paF) [d U, =3

0,7<3
o, = D02C0 & . 72'(n+0.5)X 2 © ] B 1 ot -~
2% S 08)e s TOEOM S s s L ST L 0)au)x
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x [H k—n+i-1+m+0.5 (u ) + H k—n—i+l-m+0.5 (u ) + H k—n+i+l-m+0.5 (u) + H k+n—i-1+m+0.5 (u ) - H k+n-i-1+m-0.5 (u ) - H k—n+i+l-m+1.5 (u ) -
- H k—n+i-1+m-0.5 (u) - H k+n—i+l-m+1.5 (u) + H k-+n+i-l+m+1.5 (u ) + H k—n-i+l-m-0.5 (u ) + H k—n-i-I+m-0.5 (u ) + H k+n+i+l-m+1.5 (u ) -

-H K+n+i—l-m+0.5 (U ) -H k+n—i+1+m+0.5 (U ) -H k—n—-i—l-m-15 (U ) -H K+n+i+l+m+2.5 (U )] du.
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