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Abstract 
The fluctuating workloads and erratic demands faced by modern enterprises make efficient use of 
computer resources necessary. Cloud computing autoscaling provides an answer by allowing apps to 
independently modify their ability to operate in response to fluctuating demand. In order to overcome 
the difficulties in monitoring as well as autoscaling, this article investigates the use of AI-powered 
algorithms, taking into account variables including memory needs, network traffic, CPU use, and 
custom metrics. AI-driven models provide several benefits, such as better use of resources, scalability, 
dependability, lower maintenance costs, continuous availability, affordability, and easier computing 
environment management. On the other hand, there are several significant disadvantages, including 
setup complexity, possible performance deterioration, uneven performance, security issues, and higher 
expenses. This study assesses the contribution of AI to the resolution of issues encountered by 
alternative methodologies by comparing AI-powered techniques with other conventional methods. This 
paper illustrates the advantages of AI-driven solutions in several areas, including CPU consumption, 
memory usage, throughput, and reaction time, via experimental assessment and thorough analysis. 
Additionally, the study points out a number of areas that still need work in order to maximize 
effectiveness and lower computing expenses. 
 

Keywords: Performance computing environment, monitoring, autoscaling, artificial intelligence (AI), 
workload dynamics, resource optimization, rule-based scaling, predictive scaling, threshold-based 
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Introduction 
The presence of air is essential for all forms of life on our planet. Air pollution is becoming 
worse due to the use of non-renewable energy sources with certain industrial characteristics. 
Because these elements impact the health and wealth of all species on Earth, it is crucial that 
we keep a close eye on the state of the air we breathe at all times [1]. The need for real-time 
evaluation in smart applications has made cloud video surveillance a highly debated subject, 
coinciding with the fast growth of cloud computing, the IoT, and AI. When it comes to 
surveillance systems, object detection is often crucial for keeping tabs on the surroundings 
and activities. With the new edge-cloud computing architecture, we can handle the massive 
amounts of surveillance data produced continually by IoT equipment locally. But because of 
the complicated surveillance environment, the effectiveness of detection is still not up to 
scratch [2]. Among the rapidly expanding set of tools that may improve the efficiency of 
different systems, AI is making waves. Face recognition-based security checks can make 
airport security control more efficient and safe, home automation with Amazon Alexa is 
within reach, and AI is bolstering a number of customer service initiatives.  

 

Autoscaling vendors 
Numerous suppliers provide autoscaling technology and services. The ability to enable 
autoscaling is available via services offered by each of the main public cloud providers. 
Frequently grouped under "cloud administration platforms," third-party services help 
enterprises improve their cloud installations, including autoscaling rules that connect to a 
cloud provider's platform. 
 

Several cloud service providers with autoscaling features include 
 Amazon Web Services (AWS): AWS offers a number of autoscaling services, such as 

Amazon EC2 Auto Scaling and AWS Auto Scaling. Users that need to scale capacity 
across many AWS services may utilize AWS Auto Scaling. The goal of the Amazon 
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EC2 automatic scaling service, on the other hand, is to 

enable autoscaling for instances of Amazon EC2 that 

provide virtual computing resources. 

 Google Compute Engine (GCE): GCE offers its cloud 

customers that operate managed instances groups of 

VM (virtual machine) instance the functionality of 

autoscaling. Groups of similar virtual machines are 

distributed across Google Compute Engine in a 

controlled manner to ensure improved availability. 

Controlled instance group serve as an optional 

installation method. 

 IBM Cloud: For IBM Cloud workloads, IBM has a 

module called cluster-autoscaler that may be installed. 

The total amount of nodes in a group may be increased 

or decreased by this autoscaler in accordance with the 

scaling requirements specified by planned workload 

regulations. 

 Microsoft Azure: The Azure AutoScale feature allows 

customers of the Microsoft Azure cloud service to scale 

resources automatically. It is possible to use VM, 

mobile, and website deployments with Azure 

AutoScale. 

 Oracle Cloud Infrastructure: Within its cloud 

infrastructure system, Oracle offers several autoscaling 

services, such as Compute Autoscaling with an 

adaptable load balancer that facilitates dynamic load 

balancing for internet traffic. 

 

Thanks to these AI-powered solutions, we are on the cusp of 

a new age of smart living. The development of the IoT with 

autonomous vehicles that do not need human intervention 

has accelerated the trend's pace in recent times [3]. In order 

to extract information and make decisions, High-

Performance Big Data Analysis programmes deal with 

massive amounts of dispersed and diverse data. Computer 

systems that integrate AI with high-performance computing, 

the cloud, and IoT technologies are becoming more 

common in design. For better predictions, faster processing, 

and more efficient use of resources, it is crucial to match 

application and data needs with underlying hardware 

features [4]. Sentiment analysis may be used to examine how 

people or groups feel about other people, products, services, 

or social activities. Thanks to advances in deep learning, the 

abundance of information available online (particularly on 

social media), as well as rapid processing equipment, AI 

structures will eventually penetrate every aspect of human 

life and inspire us to think more profoundly on our own 

lives [5]. Cloud computing, enormous amounts of data, data 

centres, VR/AR, 5G, AI, the IoT, and optical fibre sensing 

are some of the newer sectors that have arisen in recent 

years. Our way of life has evolved as a result of these 

innovations, which have made once challenging jobs much 

easier to do. As an example, the artificial intelligence team 

at ten cent Corporation has used deep learning to find 

missing children by analysing childhood images. Realising 

cross-age facial recognition was challenging in the past. 

Society and all of mankind have benefited from deep 

learning. YouTube, Google, Alibaba, Facebook, as well as 

Tencent are just a few of the well-known corporations that 

have constructed several large-scale data centres to facilitate 

these new sectors [6]. Businesses now confront new 

problems brought forth by the Fourth Industrial Revolution. 

There are tremendous potential and enormous problems 

presented by the technological convergence of the physical, 

chemical, biological, and digital levels to both businesses 

and society as a whole. While emerging technologies like 

Cyber Physical Systems, the IoT, AI, and cloud computing 

have arrived, figuring out how to use them in a business or 

city is far from simple [7]. 

 

Research Motivation  

The intricacies brought forth by changing workloads, 

resource consumption, and efficiency bring hitherto 

unheard-of difficulties in contemporary performance 

computing settings. Optimizing performance requires 

effective autoscaling and monitoring strategies. Increasing 

computational expenses is a common outcome of inefficient 

monitoring and scaling systems. Scholars have 

acknowledged the need to use sophisticated methods that 

strike a compromise between high performance and cost-

effectiveness to tackle these difficulties in intricate settings. 

The purpose of this article is to test the claim that using AI 

models for autoscaling and monitoring is more efficient than 

using conventional techniques. 

In conclusion, an autoscaling resource within a cloud setting 

is a difficult and involved process. Algorithms that consider 

the following factors will be necessary to overcome these 

obstacles: (i) state transition overheads associated with 

changing the number of resources; (ii) the capacity to 

forecast workload accurately in the future; and (iii) the 

computation of the appropriate resource count necessary for 

the anticipated rise or fall in workload. Utilizing modeling 

predictive methodologies, the resource allocation strategy 

presented in this paper assigns or deallocates processors to 

the application by optimizing the application's usefulness 

over a restricted prediction horizon.  

The document's remaining sections are organized as 

follows: Section II compares our work to pertinent research; 

Section III discusses the challenges of workload forecasting 

and how they relate to autoscaling; Section IV details our 

solution approach; Section V evaluates our algorithm 

empirically; and Section VI offers concluding remarks. 

 

Related Work 

In [8], the lesson lays out a performance engineering strategy 

for improving the QoS of cloud, edge, and fog computing 

environments via the use of artificial intelligence and 

coupled simulation. This strategy is being created as part of 

the COSCO framework. The article provides an overview of 

AI and co-simulation, discussing their significance in 

optimising quality of service and performance engineering 

within the framework of fog computing. Optimal resource 

management choices may be made by combining simulated 

estimations with AI models, particularly DNNs. We also go 

over some examples of how to use DNNs as stand-ins for 

critical quality-of-service indicators during training, and 

how to leverage these models to create scheduling strategies 

for dynamic events in a dispersed fog setting. Using the 

COSCO framework, the course illustrates these principles. 

The effectiveness of an AI and simulation-based scheduler 

on a fog/cloud system is shown using a COSCO primitive 

for metric monitoring and simulation. As a last step, we 

offer AI baselines for fog management resource 

management difficulties. 

Researchers presented a cloud-based system in [9] for the 

noncontact, real-time detection of walking duration and 

activity. The suggested system makes use of deep learning 

algorithms and freestanding millimeter wave radar sensors 
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determined by the Internet of Things (IoT) to enable 

autonomous, free-living activity recognition and gait 

analysis. For training deep learning models, we employ 

range-Doppler maps generated from a collection of real-

world in-home activities. Following a comparison of the 

prediction time and accuracy of other models using deep 

learning, the gating recurrent network approach was 

selected for real-time implementation because to its 

effective balancing of the two measures. The other two 

models, 2D-CNNLSTM and LSTM, were also considered. 

When it comes to categorising exercise routines performed 

at home by trained individuals, the GRU model achieves an 

overall accuracy of 93% and an accuracy of 86% when 

applied to fresh subjects. The system not only categorises 

the subject's walking durations and activities, but it also 

tracks their level of activity over time, how often they use 

the loo, how long they sleep, how active they are, how long 

they are out of the house, their present condition, and gait 

metrics. The fact that the individual is not compelled to 

wear or take any extra gadgets ensures that the system 

upholds privacy. 

This study [10] puts forth a complete plan for modern oilfield 

as well as well surveillance by using cutting-edge edge 

computer applications, an innovative form of transmitting 

information technology, and internally developed 

algorithms for autonomous condition monitoring of SRP 

systems. The intention is to relieve relevant specialized staff 

members of routine duties such as data collection and 

preparation, allowing them to focus on important decisions 

pertaining to oilfield management. The dyno-cards 

generated by the electric load cells are sent to the 

proprietary production assistance software platform using an 

internal LPWAN-based data communication system. The 

incoming dyno cards may have their conditions detected 

automatically by using appropriately coded AI-algorithms, 

which also convert and analyse the related subsurface 

dynamograms. 

The use of AI algorithms has been shown in research [11]. 

Incorporating edge computing into IoT systems is new to 

this study; doing so improves IoT system performance by 

lowering cloud load. When transmitting data at the network 

level, the Wi-Fi protocol is used. One way to create an edge 

server is using a Raspberry Pi. The overarching goal of this 

initiative is to forestall the occurrence of air, water, and 

other forms of pollution that pose serious threats to human 

and environmental health. City air management, 

transportation and traffic management, efficient electricity 

utilisation, and water pollution monitoring are all 

components of this smart city programme. A variety of 

sensors, including cameras, gas detectors, water quality 

monitors, and others, carry out this monitoring. We collect 

physiological data through the surrounding sensors, enter it 

into a database, run analyses to make informed decisions, 

display the results on the website, and communicate this 

information to the user over SMTP email. 

The ideas presented in the [12] article are based on the IoT, 

computer vision, edge computing, and machine learning. 

The agricultural sector makes advantage of this synergy to 

track apple orchard production, with a focus on detection 

and data extraction for picking apples. The previously 

described concept creates a low-power information relay 

that connects battery-operated "things" to the internet in the 

form of a regional or global architecture by using the 

LoRaWAN (Low Power Wide Area Network) protocol. An 

edge device that runs on batteries handles pictures and data 

processing apart from the grid. Using specially trained 

weights and installing the whole YoloV4 architecture on a 

single-board machine (SBC) equipped with the appropriate 

camera seems like a plausible plan. Even in very dense and 

complicated surroundings, the suggested method achieves 

an excellent apple detection performance of up to 66.89%. 

These early findings demonstrate the viability of this 

cutting-edge computing strategy using AI and IoT. 

An exhaustive literature review of AI big data analytics 

applied to BAMSs is provided in [13]. Load forecasting, 

water administration, occupancy detection, indoor 

environmental quality tracking, and other AI-based 

functions are covered. This article begins by providing an 

overview of current frameworks using a well-designed 

taxonomy. Various facets, such as the instructional 

procedure, physical space, computer systems, and potential 

use case, are examined in detail. After that, we conduct a 

critical conversation to determine the present difficulties. 

The purpose of the second section is to educate the reader 

on the practical uses of artificial intelligence and big data 

analytics. These three case studies highlight the use of AI-

big analysis of information in BAMSs: energy detection of 

abnormalities in residential and commercial buildings; 

energy and performance optimization in sports facilities; 

and both. The study ends with some recommendations for 

the future and practical steps that may be taken to improve 

the efficiency and dependability of BAMSs in intelligent 

structures. 

Researchers in [14] presented a unique, environmentally 

friendly mask with a customizable filter in (ME) 2, the 

Monitoring Equipment Mask Environment. The wearer's 

vital signs may be continuously monitored on (ME) 2 thanks 

to a rechargeable batteries, Bluetooth connection, and a 

computationally capable system-on-a-chip micro-controller. 

Its placement allows it to non-invasively monitor vitals like 

temperature, heart rate, as well as oxygen saturation. An 

accompanying smartphone app gives customers access to 

their health records using (ME) 2. In addition, Edge AI 

modules for computing allow for the detection of abnormal 

as well as early symptoms associated with potential 

diseases, such as those affecting the respiratory or heart 

systems, and the subsequent execution of predictive 

analyses, alerts, and recommendations. We evaluated a 

model based on machine learning that could differentiate 

between COVID-19 and seasonal flu using just vital signs in 

order to confirm the viability of integrated in-app Edge AI 

modules. We validate the very dependable performance of 

such a model with a 94.80% accuracy rate by creating fresh 

synthetic data. 

The multitarget detection capabilities of smart IoT systems 

for real-time monitoring are the main focus of the authors' 

work [15]. An end-edge-cloud surveillance device is 

considering to use a newly developed deep neural network 

architecture called A-YONet, which is named by its ability 

to accomplish lightweight training and feature learning 

utilizing little computing resources. The advantages of 

YOLO with MTCNN are combined to create this model. An 

intelligent detection technique is then built using a 

preadjusting anchor box system and a multilayer fusion of 

features mechanism. Our proposed method is effective in 

increasing both detection precision and training efficiency, 

especially for multitarget recognition in smart IoT 

applications. Experiments and evaluations using two data 
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sets-public and private-obtained from actual surveillance 

systems show this. 

 

Proposed Work  

System Model  

To prove AI-driven monitoring as well as autoscaling 

performance's superiority over other approaches, the 

research ran a simulation of the system. To enhance 

monitoring and autoscaling, the simulation integrates 

machine learning techniques [Fig. 1] that are grounded on 

reinforcement training and neural networks. A task with 

different intensity and throughput is carried out, and the 

outcomes are compared. The measures are included in the 

performance comparison study between the AI-powered 

model and fixed count and rule-based scaling. 

 

 
 

Fig 1: Reinforcement learning-based autoscaling framework 
 

RL model for Autoscaling  

 

 
 

Fig 2: RL for Auto Scaling 

 

It's also critical to emphasize that the following factors serve 

as the primary driving force behind addressing the 

automatic scaling issues facing apps in clouds from an RL 

perspective  

1. Policies are dynamic, meaning that they determine an 

appropriate action based on the application execution 

and the present condition of the environment, rather 

than a static plan previously determined as in remedies 

based on meta-heuristics;  

2. Policies are adaptable, meaning that online policy 

learning enables policy improvement as well as 

constant updates; and  

3. Policies are transparent, meaning they do not require 

human involvement or deep domain knowledge. As a 

result, unlike rules learnt offline, learned policies are 

able to adjust to changes in the structure of the Cloud 

environment. 

 

The input data consists of the following: the current state, 

the action taken, the reward earned, and the future state. The 

future state, or the state of the environment once the agent 

decides what to do, takes action, and gets a prompt 

response, represents the current state of the environment. 

With the use of this input data, reinforcement learning (RL) 

algorithms may solve complex problems in dynamic 

scenarios by iteratively interacting with the environment and 

optimizing cumulative benefits over time. Measurements 

like CPU (%), Memory utilization, Throughput (requests per 

minute), and Request delay (milliseconds) are collected 
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using an application tracking agent to ascertain the current 

state. Seasonal trend data is also considered an input. 

 

Working Procedure  

1. The behavior of the learning agent at a certain moment 

is defined by a policy. A rule 𝛱: 𝑆 ⟶ Mapping 

observed environmental conditions to appropriate 

actions to perform in such states is known as 𝐴.  

2. A reward signal serves as the main justification for 

changing the policy as it assesses the immediate impact 

of the actions made in relation to the objective of the 

RL issue that is being confronted.  

3. A value function is essential for improving policy since 

it outlines what is beneficial over the long run. The 

predicted gain, or cumulative reward over time, to be 

earned beginning from this state is represented by the 

state-value functional 𝑉 (𝑠). Value functions forecast 

future rewards associated with a given policy; the goal 

of value estimation is to modify policy in order to 

maximize reward. The environment immediately 

provides rewards, but values need to be (re-)estimated 

based on the series of experiences an agent gathers over 

time. There are situations when estimating the values 

associated with each action is necessary since the state 

function of values is insufficient to recommend a course 

of action. The projected benefit taking into account the 

state-action pair is represented by the action-value 

functional (𝑠, 𝑎). 

4. The environment's model imitates the dynamic that 

dictates the environment's behavior. The model may be 

able to predict the subsequent state and reward given a 

state as well as an action. Models are used to make 

decisions about what to do by taking into account 

potential future circumstances before they arise (in 

offline mode). Nevertheless, the environment's 

dynamics are subject to change throughout time, and an 

accurate representation of the environment is not 

always accessible. In some instances, learning depends 

on real-world experiences (via the internet). Unlike the 

more straightforward model-free approaches, which are 

openly trial and error learners, model-based techniques 

solve RL issues using models. 

 

Resource auto scaling enables cloud service providers 

running contemporary data centers to offer the greatest 

number of clients while guaranteeing client QoS standards 

in compliance with SLAs and minimizing client resource 

costs. To adapt resources as workloads vary, existing auto 

scaling systems need user interaction and API development. 

Reactive resource scaling causes overheads in terms of 

performance and also adds complexity to cloud 

infrastructure development. This study offers a look-ahead 

resource distribution method based on model predictive 

management that changes resources assigned to users in 

advance by predicting future workloads based on a 

constrained horizon. This approach helps to overcome these 

issues. Empirical findings assessing our methodology 

provide noteworthy advantages for Cloud service providers 

as well as consumers. The work shown shows that our 

technique is feasible when just a few machines are used. 

Future research will examine how scalable our methods are 

under the heavy workloads and many resources that 

characterize current applications. 

The three components of the cost functional shown in 

Equation 5 have been utilized to assess the effectiveness of 

our just-in-time allocation of resources. Note that the cost of 

leasing a device, the cost of restructuring the app when a 

machine is either leased or released, and the penalty for 

exceeding SLA constraints are the three separate parts of the 

cost function. Every one of these elements has a weight 

associated with it. By setting the weight to an arbitrarily 

high number, one may force the system to always minimize 

a certain component. The elements of the cost functional are 

listed in Table 1. 

 

 (1) 

 
Table 1: Components of Cost Function 

 

Component Description Unit 

Wr Penalty for SL.A violation S/sec 

We Cost of Leasing a Machine per hour S/machine 

Wf Cost of reconfiguring application S/machine 

Rsia SL.A given response time sec 

R Maximum response time of application sec 

Mk Number of machines used in the kth interval Numeric 

Mk-1 Number of machines mesed in the k-1th interval Numeric 

 

Parameters: In the MDP model, the action space was set as 

 

  (2) 

 

SLA "penalty" (r) =r was selected as the punishment 

function, and a constant c was set to at 0.1. DQN and SOR-

DQN both made use of the same neural network. Due to the 

limited dimensionality of the state, we used a basic fully 

connected network with three hidden layers. Four, eight, and 

sixteen neurons, respectively, were selected for each of 

these layers. With the exception of the output layer, which 

used "linear" activation, all levels employed the "ReLU" 

activation function. Eleven neurons make up the output 

layer, which is equal to the total amount of activities in the 

MDP paradigm. Figure 1 displays a schematic design of the 

network. 

 

Results and Discussion 

Using many virtual machines (VMs) on cloud infrastructure, 

an efficient computing environment is built up for the 

experiment (Fig. 1). The virtual machines' specifications are 

comparable, and their memory, processor, and network 

bandwidth are all the same. Workloads that vary 

dynamically, akin to real-world or organizational scenarios, 

are executed by a workload generator. For autoscaling and 

monitoring, a variety of metrics are taken into account. In 

tests, Amazon AWS uses a linear auto-scaling technique 
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that it refers to as "AWS scaling." The primary performance 

measure parameter is CPU usage. There are two threshold 

settings set up for auto-scaling: the CPU high alert threshold 

at 80% and the CPU cool down signal threshold at 70%. Put 

otherwise, the AWS dynamically raises or removes an NFV 

every time CPU usage rises over 80% or falls below 70%. 

CPU utilization as well as memory consumption are the two 

indicators taken into account in performance measurements 

with the DC/OS system. Two threshold values-the 

maximum CPU utilization threshold set at 80% and the 

maximum memory utilization threshold set at 90%-are set 

up for auto-scaling. 

 
Table 2: VM cost 

 

Scaling technique VM time (min) Aw SVM cost Total Cost % Saving 

Fixed VM count 43200 $0.264/Hour $190.08 0% 

Rule based scaling 26311 $0.264/Hour $115.77 39.1% 

Scaling with Prediction 25108 $0.264/Hour $110.48 42.1% 

 
Table 3: Request latency with scaling strategies 

 

Scaling technique Response time P90 ms Response time P99 ms Response time Avg ms 

Fixed VM count 57.1 121.7 76.45 

Rule based scaling 56.3 102.2 68.65 

Scaling with prediction 55.9 96.9 62.23 

 

The program under test was examined using a variety of 

metrics, and it was found that the CPU% as well as request 

latency were especially impacted. Different scaling 

strategies were used to examine the metrics CPU% as well 

as request delay after a workload was simulated throughout 

both peak as well as off peak hours. Request latencies were 

impacted when a particular amount of virtual machines 

(VMs) were being used because of either low CPU usage or 

a surge to a higher value (>75%). However, even with rule-

based scaling, there was a brief increase in the CPU% until 

the virtual machine (VM) was ready to take on the load. 

This situation is shown in Fig. 2 shows how it led to more 

VM requests. This sometimes resulted in the overuse of VM 

resources. To fulfill future requests, virtual machines (VMs) 

were requested far in advance thanks to prediction-based 

scaling. This method offered a more effective solution by 

processing requests within the anticipated CPU range and 

latencies. Comparing the assessment of VM expenses to the 

use of a fixed VM count, Table 1 shows a noteworthy 39% 

savings.  

The experimental findings demonstrate the superiority of 

AI-driven autoscaling and monitoring over other techniques 

in high-performance computing settings. But there are 

several places that might need better for more effective 

capabilities. Precisely stated performance indicators are 

important for accuracy assessment and monitoring. Metrics 

and KPIs need to match business objectives and user 

expectations. Examples of specific metrics include error 

frequencies, user satisfaction, throughput, reaction time, and 

resource usage. The system has to collect, analyze, and store 

pertinent monitoring data. Network traffic, user interactions, 

system logs, and performance counters are some examples 

of specific pertinent data points in tracking performance and 

autoscaling. For this architecture, a sophisticated 

configuration framework calls for advanced knowledge. For 

the IT staff, setting up AI-powered automatic scaling and 

tracking may be difficult and time-consuming. 

 

Conclusion  

This work has examined the difficulties associated with 

autoscaling and performance computing settings, as well as 

the benefits and drawbacks of using RL-powered models. 

The research looks at capacity issues and a number of 

autoscaling strategies, including rule-based, fixed, and 

predictive autoscaling. According to the testing results, the 

RL-powered methodology outperformed the other 

techniques in terms of response time, throughput, CPU use, 

and memory consumption. It can be demonstrated that RL is 

superior.  

 

Future Work  

Nevertheless, complexity, scalability issues, and dynamic 

workload fluctuations persist in RL-powered models. Future 

developments may concentrate on boosting data quality and 

prediction model accuracy to enhance policy compliance, 

security, and decision-making. Creating a heuristic to 

ascertain the significance of w for every issue occurrence 

would be helpful. We think that the algorithm's capacity to 

generalize would greatly increase with a decent heuristic for 

selecting w. 
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