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Abstract 
The predicted precipitation accuracy in light of the current global climate change is very important. 
The Back-Propagation Neural Network (BPNN) technique then utilized the Artificial Neural Network 
(ANN) to correctly forecast rainfall. The study is based on data from three Nigerian terrestrial 
microwave connections operating at frequencies of 23 and 38 GHz. At 23 GHz, a normal distribution 
with an average of zero is the best represented fade slope distribution, contrary to the model ITU-R 
earth to satellite rain fade slope. Based on the data analysis observed at 23 GHz, a novel prediction 
model is developed. The suggested model is validated using 38 GHz fade slope data and shown to 
work well with nearly all attenuation levels. A chi-square fitness test is used to further validate the 
model. The suggested model will be critical in the development of rainfall mitigation methods for 
tropical terrestrial connections. The findings of the research indicate that BPNN models may be utilized 
as a prediction algorithm that offers a high predictive accuracy of three types of design: 500, 1000 and 
1,500.The experiment examined data on precipitation using the BPNN Architecture's two-hidden 
layers, from three periods of time [2-50-10-1, 500]. The average square error is used for categorization 
work performance evaluation. The results of the experiment indicate that the design of the 100-year-old 
[2-50-20-1, MSE of 0 00096341] is excellent. Moreover, the BPNN algorithm provides an efficient 
Southwestern Nigeria predictor model. 
 

Keywords: artificial neural network (ANN), prediction, rain attenuation and terrestrial link 

 

Introduction 
The high bandwidth and low traffic congestion are typical in today's microwave point-to-
point networks with frequencies over 10 GHz [1]. However, rain attenuation dominates the 
performance of the fixed service (FS) in these frequency bands. Pluvial diminution losses are 
compounded by rainfall inhomogeneity, which further increases the impact on link 
performance of propagation effects (ITU-R) [2, 4]. A severe issue may develop, particularly 
when rain attenuation is high in low percentages of time. For decades, the International 
Telecommunications Union-Radio Sector (ITU-R) has been looking for a worldwide model 
to forecast rain-inducing attenuation at terrestrial microwave connections [5, 6]. Tropical and 
equatorial radio connections utilizing the ITU-R forecast technique for rain attenuation 
provide unsatisfactory results. The most significant amount for determining the rain 
attenuation for terrestrial and slant roads per unit distance (dB/km) is the rain attenuation. 
Specific attenuation is an essential component in developing a prediction rain attenuation 
model that minimizes the effect on a Satellite dish and enables direct light measurements to 
be compared to model forecasts, [9, 12]. As a solution, the Ku-band (11/14 GHz) is proposed. 
As a result of rain, the radio wave is expected to be attenuated significantly. When it comes 
to countries with tropical rainfall climates, using Ku/ka-band is more complicated than when 
it comes to countries with temperate climates. For countries with temperate climates, the 
accuracy of the present rainfall prediction models will be tested [10]. As a result of these 
effects, extreme flooding and droughts have been reported. As a result, a good and accurate 
rain-prediction method is essential for predicting the effects. 
As a consequence, many techniques were created to provide effective and reliable results for 
rainfall and weather forecasting. The predictions of rainfall were produced using a statistical 
model. Examples of models that operate with the decrease in the data equation include a 
simple regression analysis (SRA), decomposition, exponential smoothing (ES) (ARIMA). 
The non-linear nature of weather data has been shown in a number of studies to make these 
methods of forecasting rainfall and weather still inaccurate.  

https://doi.org/10.33545/27076636.2022.v3.i1a.35


International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm 

~ 16 ~ 

It is true that the statistical method of rainfall prediction is 

sometimes successful in producing accurate predictions [6, 10, 

11].  

In spite of the various globally accepted rain attenuated 

models developed for optimal link planning especially for 

communications in the Ku band, digital terrestrial television 

links still suffer noticeable impairments during heavy 

rainfall events this accounting for total loss of the signal. 

The issue of frequency scaling is not simple, since 

atmospheric gases and clouds have a significant attenuation 

impact above 20GHz. Consequently, the physical 

components of attenuation must be separated. Attenuation 

components are then scaled using particular scaling factors 

derived from ground meteorological data. The contribution 

of frequency scaling to the total uplink prediction error is 

higher than that of downlink prediction, according to an 

analysis of the contributions.  

 

Materials and Methods 

A. Site Details  

Due to its sea exposure, the tropical climate of Nigeria is 

marked by constant temperatures, high humidity and 

substantial annual average precipitation of 4184.3mm. 

Thunderstorm precipitation is the most common type of 

precipitation in Nigerian climes. Annual moon-soon cycles 

(from October to March north-east, from April to September 

south-west) have an effect on the distribution of the monthly 

rainfall based on per minute. Table 1 provides information 

on the measurement locations. 

 
Table 1: Measurement sites’ details 

 

Location Longitude (0E) Latitude (0N) Frequency (GHz) Pathlength (km) 

Ibadan 4.01 7.21 14.8 11.3 

Osogbo 4.31 7.42 14.8 5.83 

Akure 5.12 7.18 15.3 4.85 

Abeokuta 3.21 7.07 14.8 3.96 

Ilorin 4.34 8.32 14.8 3.48 

Ikeja 6.25 6.25 14.8 5.36 

Source: National Space Research and Development Agency (NASRDA, 2021) 

 

B. Procedure of the experiment 

It was gathered from Nigerian space research agency Abuja. 

A related data collecting and processing system exists as 

part of any microwave system. With every second of the 

data gathered, each link runs at a frequency of 23 GHz and 

38 GHz. For both broadcast and receive antennas, horizontal 

polarization is utilized (for example, the elevation angle is 

approximately zero degrees). Rain attenuation tests were 

performed utilizing radome-covered antennas, to guarantee 

reliable results. The antennas were positioned to prevent the 

sidelobes from facing the ground. Sidelobe contamination 

(noise) is thus maintained to a minimum. Additional 

variables like scintillation and air absorption along the 

propagation path were not taken into consideration in the 

study. With the conversion conversation from 

manufacturers, the AGC level (volt) automatic gain control 

was transferred to the matching receiver data in dBm. The 

conversion process is unsteady, with fluctuations of almost 

±4dB. Rain attenuation data based on the calibration is 98 

percent correct. The highest signal strength is approximately 

50 dB with significant attenuation in the dynamic range 

(i.e., rain). 
 

Table 2: 15GHZ Link Specifications 
 

Type of antenna Front-fed parabolic 

Frequency band (GHz) 23 GHz, 38 GHz 

Polarization Horizontal 

Maximum transmit power (dBm) +18.0 

10-6 BER (2X2 Mbps) Received threshold (dBm) -84.0 

Antenna beam width 2.30 

Dynamic range (dB) 50 Db 

Antenna for both transmit and receive side Size (m) 0.6 Gain (dBi) 37.0 

 

The rainfall measurements were collected concurrently by 

placing a Casella rain gauge equipped with a programmed 

data recorder fairly near to the receiving antenna. The rain 

gauge is of the kind of tipper and the size of the bucket is 

0.5 mm. The tipping time cannot be recorded, but the 

number of tips has been captured and saved in the built-in 

rain gauge data recorder. The sensitivity and availability of 

the rain gauge are 0.5mm/min and 100%, respectively. The 

temperature range is −10 to 500C and extremely dependable 

with ±1.00 percent tipping accuracy 

A Casella rain gauge with a programmed data recorder was 

positioned very close to the receiving antenna in order to 

capture the rain rate. Tipping 0.5mm rain bucket gauge is 

utilized. The tipping time was not recorded; however, the 

number of tips was recorded. The rain gauge is set at 0.5 

mm/min and 100% in terms of sensitivity and availability. 

Operating temperature range 10 to 500C; 1.00% precision of 

tipping. 

Rainfall measurements were performed over a four-year 

period in Ibadan, Osogbo, Akure, Abeokuta, Ilorin and 

Ikeja. The rainfall rates were collected at six locations with 

an integrated time of one minute, and the average 

measurement values for four years were associated with the 

one-year attenuation data measured. Data from the Nigerian 

Meteorological Station (NMS) were used for the other four 

sites (Ibadan, Ilorin, Akure and Ikeja). The Chebil and 

Rahman model is thus utilized to convert 1-hour rain data 

into 1-minute rain data.  

 

Prediction of Rain Rate on per minute with both 

Forward and Backward Neural Network 

For the 500 input weights, there are only a limited amount 
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 of training values accessible. In order to make the network 

smaller, it was essential to do so. Given the 

interconnectedness and intricacy of the network's internal 

connections, it is not always clear which input parameters 

are essential and whether any of them should be discarded. 

Even simple techniques, such as comparing runs with 

various input combinations omitted, may provide findings 

that are difficult to understand. "Network pruning" is a more 

robust approach. An extra criteria of weight minimization is 

used when the network is pruned. This is achieved by using 

an algorithm that takes into consideration Size as well as 

number of weights in a complexity term Z. 

 

 (1) 

 

Where W1ij are the input and the second layer connected 

weights; where W0 is the experimentally obtained weight 

scaling parameter; where input and second-layer nodes 

areN1 and N2. 

The total cost function of the improved network is decreased 

 

C = msd + Z.  (2) 

 

The learning technique adjusts the weight to the gradient of 

the total cost function C with the low complexity network 

constraints. Unnecessary nodes are weighed down. Small 

input weight factors may be eliminated. To validate this 

pruning method, a random number input was supplied to the 

ANN. We verified that weights linked to this input have 

been pruned to zero. 

When CCD data at many different temperature thresholds 

were incorporated, the raw TIR data and associated 

geographic variation could be removed. It was also 

determined that latitude and longitude, which indicate a 

station's location, were not significant. As detailed in the 

next section, improvements in validation statistics 

corroborated these findings. Thirty input variables and two 

hidden levels of the settings generated better validation 

statistics than the one of the input variables with 30 and two 

hidden layers  

The effect of network training on a variety of stations has 

also been evaluated. Maximum results were achieved during 

the training using all 25 pixels of the calibration gauge, but 

results with just two of them may be obtained. 

A minor issue with this ANN setup was that zero rainfall 

was difficult to produce. This led to estimations of 

extremely little precipitation (< 1 mm) across vast regions. 

Although this is not substantial on a daily basis, it is clearly 

non-physical and may create issues if daily values are 

included over longer periods. All pixel estimations should 

be set to nil for CCD = 0 for Tt = -300C. 

Due to the architecture of the ANN, zero precipitation could 

not be produced. This resulted in estimates of extremely 

little precipitation (<1 mm) across vast regions. When daily 

data are mixed over longer periods, this may create 

problems. If CCD = 0 for Tt = -300C, the estimations of 

pixels were set to nil. 

For the remainder of this finding, the final technique stated 

in the previous paragraphs will be used by TAMANN. 

 

3.2.1 BPNN Flow for Prediction 

These are the steps of the BPNN algorithm for predicting 

precipitation data: 

i. all weights begin simultaneously; 

ii. Repeat steps 2-8 if the termination condition has not 

been fulfilled; 

iii. Then repeat steps 3-8 for each data set 

 

Phase 1: Future spread of feed 

iv. The signals are received and sent to the top unit 

concealed from view by each unit. Calculate all output 

on hidden units of layer zj (j = 1, 2, …, p) 

v. Determine the output of the network output. . yk (k = 1, 

2, …, m) 

𝑦_𝑛𝑒 𝑡𝑘=𝑤𝑘𝑜+ 𝑧𝑗
𝑝
𝑗=1 𝑤𝑘𝑗 ;𝑦𝑘 = 𝑓(𝑦_𝑛𝑒𝑡𝑘) =

1

1+𝑒−𝑦 _𝑛𝑒 𝑡𝑘
         (3) 

  (3) 

Phase 2: Back to Future 

Factor = output unit calculation based on unit output 

inaccuracy yk (k = 1, 2, …, m)  

 

k = (tk – yk) f’(y-netk) = (tk -yk) yk(1-yk)  (4) 

tk = output target;  = output unit that will be used in the 

layer underneath the weight change 

Calculate weight change wkj, with the learning rate α( wji 

= α k zj, k = 1,2,…,m; j = 0,1,…,p) 

Calculate the hidden layer factor unit based on 

inaccuracy on each unit of hidden layer zj (j = 1, 2, … p) 

 

 (5) 

 

Factor  hidden layer unit [ j =  _netj f’ (z_netj) =  netj 

zj (1-zj)] 

Calculate weight change rate vji [ vji = α k zj, k = 1, 

2,…,p; j = 0,1,…,n] 
 

Phase 3: Weight modification 

: Calculate the weight of all the changes that led to the 

output unit 

 

wkj(new) = wkj(old) + wji; (k = 1, 2, …, p; j = 0, 1, …, n) (6) 

 

Weight changes that led to the hidden layer units 

 

[vkj(new) = vkj(old) + vji; (j = 1,2,…,p; w = 0,1,…,n) 

 
 

Inputs First Second Output 

Layer Hidden Hidden Layer 

(2) Layer Layer (1) 

 (50) (20)  
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Fig. 1: BPNN architecture 

 

P = [p(t-2), p(t-1)] and the output layer were chosen in 

Table 3.5 for T-2, t-1, and T for all the input layers of this 

research. Two layers were used for illustration of the 

hidden layers: the first layer was 50 pixels thick and the 

second layer was 10 pixels thick. As Figure 3.2 shows, 

there are numerous components of the BPNN. 

 

Result and Discussion 

Comparison with other Rain Attenuation Models 

This study compares the findings of slant trajectory 

measurements with the two generally recognized models 

(IITU-R model P.618-10 and Crane global model). The 

emphasis is on attenuation induced by rain. As 

demonstrated in Figure 4.7, when both models have 

understated the rainfall rate observed, particularly in high 

rates, rainfall exceeding 4-year measures was comparable 

to the ones anticipated by ITU-R P.837-6 and the Crane 

global model. For example, the first forecasts that the rain 

rate is 0.01 percent, while it is 90.2 mm/h, and the second 

predicts the rain rate is 90.2 mm/h. The measured rain 

attenuation observed is compared with forecasts, as 

illustrated in Figure 4.8 and then tested using the ITU-R 

P.311-13 for the two prediction models. 

 

 
 

Fig. 2: Comparison of rainfall rate exceedance. 
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Fig 3: Comparison of rain Attenuation Exceedance. 

 

The fading slope's conditional distribution functions for the 

1, 3, 5, 8, 10 and 15 dB attenuation levels at 23 GHz are 

shown on one graph in Fig. 3. The following observations 

are taken into account. In the first place, all the fading pitch 

distributions presented are symmetric to 0 dB/s. Second, all 

CPDFs follow the usual zero average distribution. Third, as 

the attenuation level rises, the dispersion gets wider. 

Finally, with the reduction level, the amplitude of the 

fading slope rises, while the quantity of data drops. 

The T-test is used to demonstrate that the fading slope 

distribution follows the normal distribution. For the T-test, 

two hypotheses are examined. The first is the null 

hypothesis (H = 0), which assumes that the observed data 

follow a standard distribution of μ = 0. The second is the 

alternative (H = 1) hypothesis, wherein the observed data 

are taken into account, follow a normal distribution of 

mean μ to 0. 

 

  (7) 

 

where , σ are the mean and default deviation of the data 

examined. The data size is denoted by n. Table 3 sums up 

the findings of the test and demonstrates that the T test 

passes with a meaning level of 0.05 for all attenuation 

levels at 23 GHz. This implies that the null hypothesis is 

accepted with 95% confidence. 

 
Table 3: T-test results for the 23 GHz connection measured data 

 

Attenuation level (dB) N H 

1 G8 938 0 

2 51 526 0 

3 34 127 0 

5 7819 0 

8 1928 0 

10 569 0 

15 85 0 

 

 
 

Fig 4: Comparison between the standard deviation predicted and measured depending on 23 GHz attenuation levels. 
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Optimization with Adaptive neuro-fuzzy inference systems (ANFIS) 

 

 
 

Fig 5: Comparison of the observed data at 23 GHz for fade slopes for attenuation level (a) 1 dB; 2 dB; (c) 3 dB; (d) 5 dB; (e) 8 dB; and (f) 

15 dB. 

 

 
 

Fig 6: CPDF of fading slopes of the proposed model and observed data at 38 GHz for (a) 1 dB mitigation; (b) 2 dB; (c) 3 dB; (d) 5 dB; (e) 

8 dB; and (f) 15 Db 
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Table 4: The calculated ( ) and theoretical ( ) χ2 

values of 0.05 for the three experimental connections are shown in 

the same degree of freedom (df) 
 

Attenuation level (dB) 
23GHz 38GHz 

 

 

  

 

 

1 68 938 75 781 69 550 35 716 64 289 36 157 

2 51 526 67 52 055 29 508 1427 29 909 

3 34 127 9759 34 558 41 890 1427 42 367 

5 7819 8 8026 19 982 1476 20 312 

8 1928 2 2031 6816 4 7009 

15 85 2 108 1135 16 1214 

 

 (8) 

 

In this equation, the standard deviation is the sole 

parameter that affects the distribution. Figure 4.5 shows the 

standard deviation for that metric in relation to the 

attenuation levels measured at 23 GHz. MATLAB fitting 

tools may be used to determine the optimum fit.  

 

 = 0.00012A3 − 0.003A2 + 0.027A − 0.0016  (9) 

 

The correct fit is shown by the (12) curve in Figure 4.5. 

Since the average is zero, (11) may be read as 

 

 (10) 

 

The prior study's equations (4.9) and (4.10) may be utilised 

to create a new model for predicting the fading pitch 

distribution. To assess their performance, Figure 4.5 shows 

plots of both the CPDF of the proposed model's fading 

slopes and actual data of various attenuation levels at 23 

GHz. At all attenuation levels except 1 and 3 dB, the new 

model effectively fits the observed data. However, when 

comparing the results in Figures (4.4) and (4.5), the new 

model's predicted distribution outperforms the 3 dB ITU-R 

distribution. It may be assumed that the new model will 

outperform the ITU-R model for any attenuation level 

greater than 2 dB. 
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Fig 7: Comparison with other Empirical Methods 

Fig 7 shows the comparison with other existing method 

based on the prediction accuracy. Adaptive ANN shows the 

best result when compared to PSO, FUZZY and DEEP 

Learning. Adaptive ANN shows best accuracy at each 

signal level. 

 

Conclusion 

In this study the most recent and renowned comprehensive 

evaluation of rain attenuation models for the terrestrial 

connection was carried out. The existing models are 

classified as physical, statistical, empirical, optimization 

and pitch models depending on the design and wording. We 

evaluated innovative concepts, input parameters, 

advantages and disadvantages. A thorough assessment was 

given and assessed of the rain attenuation model of 

different terrestrial connections. According to this research, 

no prediction model can be seen as a worldwide model to 

meet all the criteria for a wide range of infrastructure 

features, geographical areas or climatic change throughout 

the period. 
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