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Abstract 
This study investigates the effectiveness of a hybrid quantum-classical framework for plant disease 
detection, with a focus on improving classification accuracy compared to conventional approaches. 
Image-based datasets of crop diseases were processed and encoded into variational quantum circuits 
(VQCs), which were then integrated with classical machine learning classifiers. The proposed model 
achieved an overall classification accuracy of 95.2%, outperforming a baseline convolutional neural 
network that recorded 91.4% accuracy on the same dataset. Performance evaluation was carried out 
using multiple metrics including precision, recall, and F1-score, with the hybrid approach showing 
consistent gains across all categories. Furthermore, the model demonstrated reduced overfitting and 
improved robustness when tested under noisy and high-dimensional input conditions. These results 
highlight the potential of quantum-assisted machine learning to significantly enhance crop disease 
detection, offering a scalable and accurate pathway for sustainable agriculture and precision farming. 
 

Keywords: Quantum computing, hybrid quantum-classical model, plant disease detection, accuracy 
improvement, variational quantum circuits, precision agriculture, sustainable agriculture 
 

Introduction 
Agriculture remains the backbone of food security and global economic development, yet it 
continues to face significant challenges due to crop diseases that drastically reduce yield and 
quality. According to the Food and Agriculture Organization (FAO), nearly 20-40% of 
global agricultural production is lost annually to pests and diseases, leading to substantial 
economic and social impacts. Early and accurate detection of crop diseases is therefore 
essential for preventing large-scale losses and enabling sustainable farming practices. Recent 
advances in artificial intelligence (AI) and machine learning (ML), particularly deep learning 
models such as convolutional neural networks (CNNs), have shown promising results in 
plant disease recognition using leaf images. However, these classical approaches are often 
computationally intensive, require large-scale annotated datasets, and struggle to generalize 
effectively under noisy or high-dimensional conditions. 
 
Problem Statement 
Despite progress in AI-based solutions, existing plant disease detection systems suffer from 
limited accuracy when confronted with diverse crop species, variable environmental 
conditions, and complex visual symptoms. Moreover, the computational demand of training 
deep learning models presents barriers to scalability in resource-constrained agricultural 
settings. With the emergence of quantum computing, new opportunities exist to address 
these limitations by exploiting quantum parallelism, faster optimization, and enhanced 
pattern recognition capabilities. Yet, the practical application of quantum computing in 
agriculture, particularly for plant disease detection, remains underexplored. 
 
Research Gap 
Most current studies focus exclusively on classical deep learning approaches, with limited 
attention to hybrid quantum-classical techniques. While quantum computing has been 
investigated in fields such as drug discovery, cryptography, and financial modeling, its 
integration into agricultural informatics is still in its infancy. Preliminary studies have 
suggested potential performance improvements using variational quantum circuits (VQCs) 
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for image classification, but empirical evidence specific to 

plant disease detection, along with systematic accuracy 

comparisons against classical baselines, is scarce. This 

creates a clear gap in understanding the true potential of 

quantum-assisted models in precision agriculture. 

 

Objectives 

The main objective of this study is to design, implement, 

and evaluate a hybrid quantum-classical model for plant 

disease detection that addresses the shortcomings of 

conventional deep learning techniques. The specific 

objectives are: 

1. To preprocess and encode crop disease image datasets 

for compatibility with quantum feature representation. 

2. To develop a hybrid framework that integrates 

variational quantum circuits with classical machine 

learning models. 

3. To evaluate the proposed approach against baseline 

CNNs using standard performance metrics (accuracy, 

precision, recall, F1-score). 

4. To analyze the improvements in classification accuracy, 

robustness, and scalability provided by the hybrid 

model. 

5. To explore the implications of quantum computing in 

advancing sustainable agriculture and precision farming 

practices. 

 

Literature Review 

The use of artificial intelligence for crop disease detection 

has expanded rapidly over the last decade. Early approaches 

relied on image processing methods such as texture, color, 

and shape analysis to identify diseased leaves, but these 

methods struggled with accuracy and generalization across 

different crops and environments (Patil & Kumar, 2011) [9]. 

Machine learning techniques, including support vector 

machines (SVMs) and random forests, improved 

classification by learning discriminative features from data, 

though their performance remained limited on large-scale 

datasets (Camargo & Smith, 2009) [3]. 

The introduction of deep learning, particularly convolutional 

neural networks (CNNs), significantly advanced plant 

disease detection. For instance, Mohanty et al. (2016) [7] 

demonstrated that deep CNNs trained on the PlantVillage 

dataset could achieve accuracies exceeding 99% across 38 

crop-disease classes. Subsequent studies employed 

architectures such as ResNet, Inception, and VGG to 

enhance performance under varying conditions (Sladojevic 

et al., 2016; Brahimi et al., 2018) [12, 2]. Despite their 

success, CNNs are data-hungry, computationally intensive, 

and sensitive to variations in environmental factors such as 

illumination and background clutter, limiting their real-

world scalability (Too et al., 2019) [13]. 

In recent years, research across computing, communication, 

and artificial intelligence has expanded into diverse 

domains, with particular emphasis on applications in 

agriculture, data science, and emerging communication 

technologies. The collection of studies reviewed here 

reflects a multidisciplinary effort to address pressing 

challenges such as crop disease detection, big data 

management, and the integration of advanced computational 

frameworks for practical solutions. Taken together, these 

works not only highlight theoretical contributions but also 

demonstrate applied innovations that link technology with 

societal and agricultural development. 

Agriculture has been a recurring theme in several studies, 

where researchers have explored how computational tools 

can transform traditional crop disease management. 

Chauhan, Parihar, and Singh (2025) [14] presented an 

approach that connects physical observations of diseased 

plants with computational techniques, aptly titled “From 

Leaves to Lab.” This work bridges plant pathology with 

data-driven diagnostic models, underscoring the importance 

of integrating field-level practices with laboratory-based 

analysis. Purani and Singh (2025) [24] advanced a similar 

vision in their article on innovations in plant disease 

diagnosis, which examined how technological platforms can 

assist farmers in detecting diseases earlier and with greater 

accuracy. Complementing these conceptual advances, 

Mehta, Singh, and Awasthi (2025) [19] provided a 

comprehensive review of IoT-based technologies for rice 

disease monitoring. Their study documented how sensors, 

cloud storage, and edge computing form a distributed 

architecture that allows farmers and researchers to collect, 

analyze, and act upon data in real time. This theme of IoT 

integration is directly extended by Sharma, Sethi, and Singh 

(2025) [26], who proposed tech-driven strategies for paddy 

disease prevention. Their article emphasized predictive 

modeling and data-informed interventions, ensuring that 

farmers can mitigate losses before diseases spread widely. 

Building on such preventive approaches, Patel, Singh, and 

Awasthi (2025) [22] developed a Python-based computational 

framework for paddy leaf disease detection, showing how 

relatively simple programming tools can deliver robust 

classification results. This thread of work culminates in 

Singh, Solanki, and Vashi (2025) [31], whose multiple 

disease prediction system demonstrates how agricultural 

informatics is scaling toward multi-class, multi-crop 

diagnosis, rather than focusing on single pathogens. 

Collectively, these studies portray agriculture as a domain 

undergoing transformation through computational 

intelligence, positioning technology as an indispensable 

partner in ensuring food security. 

Alongside agriculture, the reviewed works also illustrate the 

adaptability of machine learning and deep learning 

techniques across fields. Kumar, Chawda, and Singh (2021) 

[28] applied deep learning combined with genetic algorithms 

to traffic classification, providing insights into how complex 

network data can be analyzed effectively. The algorithmic 

strategies outlined here are not limited to transport but 

mirror the challenges in plant disease classification, where 

distinguishing between visually similar categories requires 

equally robust models. The flexibility of artificial 

intelligence is further highlighted by Singh, R., Chawda, 

and Singh (2021) [28], who explored machine learning in the 

context of gaming, developing models for predicting player 

placement in Player Unknown’s Battlegrounds (PUBG). 

Although distinct from agriculture, the work reveals how 

predictive analytics can support decision-making in 

dynamic environments, a feature directly relevant to 

precision agriculture where conditions shift rapidly. Such 

studies demonstrate that artificial intelligence forms a 

universal framework for solving classification and 

prediction problems, regardless of dataset type. 

Supporting these applied innovations are foundational 

contributions in communication and computational 

infrastructure. Kriti, Chawda, and Singh (2021) [28] explored 

the evolution of wireless technology with a particular focus 

on 5G, identifying how greater bandwidth and reduced 
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latency can support emerging applications such as IoT-

driven agriculture and autonomous systems. Pandey, 

Chawda, and Singh (2021) [28] added further depth through a 

dedicated literature review on 5G, emphasizing how this 

next-generation network enables real-time communication 

between devices, sensors, and cloud platforms. Pathak, 

Chawda, and Singh (2021) [23] examined cloud computing as 

another infrastructural backbone, showing how scalable 

resources can be provisioned for data-intensive tasks such as 

disease image classification and model deployment. These 

studies align with broader transformations in digital 

ecosystems, underscoring that without advancements in 

communication and cloud technology, many of the 

applications in agriculture and artificial intelligence would 

remain limited. 

Another cluster of studies within this review centers on data 

management and big data analytics. Singh (2020) [29] 

analyzed different aspects of big data, pointing out 

challenges related to handling volume, variety, and velocity 

across domains. Shrivas and Singh (2016) [27] reviewed big 

data analytics frameworks, while Singh and Shrivas (2017) 

[30] examined privacy issues associated with big data, 

drawing attention to ethical and security concerns in large-

scale data usage. Together, these works stress that while AI 

and IoT deliver promising applications, their success 

depends on effective data handling, secure infrastructures, 

and robust privacy protections. Indeed, data challenges cut 

across agriculture, healthcare, and industrial domains, 

making these reviews foundational to the application-

oriented studies discussed earlier. 

Other works in this body of research expand the scope of 

technology applications into novel contexts. Dewangan, 

Chawda, and Singh (2021) [28] examined the coronavirus 

pandemic, focusing on how respiratory infections can be 

analyzed through computational and scientific lenses. This 

demonstrates the responsiveness of research to global health 

crises. Sahu, Chawda, and Singh (2021) [28] applied 

computational modeling to create a virtual reality flight 

simulator, while Kashyap, Chawda, and Singh (2021) [28] 

designed an e-voting application integrating voter 

authentication. Each of these contributions highlights how 

computational tools can be tailored to address specific, real-

world problems, whether in healthcare, education, 

governance, or entertainment. 

Taken together, these studies reveal a coherent trajectory: 

from agricultural informatics to general AI problem-solving, 

from communication frameworks to data security, and from 

applied case studies in gaming and VR to pandemic 

analysis. A central theme across all is the interplay between 

data, computation, and application. On one hand, 

agriculture-focused works by Chauhan et al. (2025) [14], 

Mehta et al. (2025) [19], Sharma et al. (2025) [26], and others 

demonstrate the immediate benefits of technology for food 

security. On the other hand, foundational works by Kriti et 

al. (2021) [17], Pathak et al. (2021) [23], and Shrivas and Singh 

(2016) [30] remind us that these applications are only as 

strong as the infrastructures supporting them. Meanwhile, 

applied contributions outside agriculture highlight the 

universality of computational methods, suggesting that 

lessons learned in one field may transfer to others. 

They collectively show that advances in AI, IoT, cloud 

computing, and data management are not isolated 

achievements but interdependent threads weaving into a 

larger narrative of digital transformation. By connecting 

agricultural sustainability, network evolution, and 

computational intelligence, these works establish a 

foundation for future studies that will likely extend into 

hybrid quantum-classical methods, greater integration of 

IoT in precision farming, and expanded applications of AI 

across all sectors. This convergence of applied problem-

solving and theoretical insight ensures that research in these 

domains will continue to shape not only the academic 

community but also the technological and agricultural 

landscapes of the future. 

 

Quantum Machine Learning (QML) and Hybrid 

Approaches 

Quantum computing, which harnesses superposition and 

entanglement through qubits, has emerged as a promising 

paradigm for handling high-dimensional and 

computationally complex tasks (Nielsen & Chuang, 2010). 

In the machine learning domain, quantum machine learning 

(QML) methods have been explored for tasks such as image 

classification, clustering, and optimization. Variational 

Quantum Circuits (VQCs), in particular, have shown 

potential for learning nonlinear feature representations with 

fewer resources (Biamonte et al., 2017) [1]. 

Hybrid quantum-classical models, which integrate quantum 

circuits for feature encoding with classical optimizers, have 

been tested in various domains. Schuld & Killoran (2019) 

[11] demonstrated that quantum feature maps can enhance 

classical classifiers in supervised learning tasks. Havlíček et 

al. (2019) [5] applied quantum-enhanced models to image 

and signal classification, showing improved generalization 

compared to classical baselines. More recent work by Farhi 

& Neven (2018) [4] proposed hybrid models for 

reinforcement learning, further demonstrating the flexibility 

of quantum approaches. 

Despite this progress, applications of QML in agriculture 

remain sparse. Only a handful of studies have experimented 

with QML for plant or crop-related data, and these are often 

limited to proof-of-concept demonstrations without rigorous 

accuracy comparisons to established deep learning models 

(Li et al., 2022) [6]. 

While CNNs have achieved state-of-the-art results in plant 

disease classification, their dependency on large labeled 

datasets and computationally expensive training remains a 

challenge. Conversely, hybrid QML approaches promise 

higher accuracy, robustness to noisy data, and more efficient 

feature extraction, but systematic studies applying them to 

plant disease detection are lacking. Existing research has not 

yet provided comprehensive benchmarks comparing CNNs 

with hybrid quantum-classical models in agricultural 

contexts. This gap motivates the present study, which aims 

to explore the potential of QML to improve accuracy in 

plant disease detection and contribute to sustainable 

precision agriculture. 

 

Methodology 

The design and implementation of the proposed hybrid 

quantum-classical framework for plant disease detection 

followed a structured five-stage methodology encompassing 

dataset collection, preprocessing, quantum feature encoding, 

hybrid model training, and evaluation. In the first stage, 

dataset collection, images were sourced from the widely 

used PlantVillage dataset, which provides a benchmark 

repository for agricultural disease research, and were 

supplemented with additional field samples of tomato, 
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maize, and potato leaves. These images included both 

healthy and diseased samples, covering multiple disease 

classes, to ensure diversity and real-world relevance. The 

second stage, preprocessing, was essential for preparing the 

raw data for analysis. All images were standardized to a 

fixed resolution of 256 × 256 pixels and normalized within 

the range [0,1] to maintain consistency across the dataset. 

Furthermore, data augmentation techniques such as random 

rotations, horizontal flipping, and zoom transformations 

were applied. This not only increased the effective size of 

the dataset but also minimized overfitting, thereby 

improving the model’s generalization capacity to unseen 

data. The third stage involved quantum feature encoding, 

where image features were mapped into Variational 

Quantum Circuits (VQCs) using amplitude encoding. Each 

image was flattened into a vector and embedded into 

quantum states, enabling the circuits to exploit quantum 

superposition and entanglement for capturing complex, non-

linear patterns in the data that might be overlooked by 

classical feature extraction methods. In the fourth stage, 

hybrid model training was carried out by integrating 

quantum and classical components. Specifically, the 

quantum layers (VQCs) were employed as feature 

extractors, while the subsequent classical neural network 

layers performed optimization and classification tasks. Due 

to limited accessibility to physical quantum processors, 

training and simulation were conducted on a quantum 

simulator, ensuring that the methodology remains adaptable 

to future hardware advancements. Finally, in the fifth stage, 

evaluation, the model’s performance was rigorously 

assessed using standard classification metrics, including 

Accuracy, Precision, Recall, and F1-score. This 

methodological pipeline ensures a systematic investigation 

of how quantum computing can enhance crop disease 

detection, offering both technical rigor and practical 

relevance for sustainable agriculture. 

A comparative analysis against a baseline CNN trained on 

the same dataset was conducted to highlight the 

improvements achieved by the hybrid approach, and 

statistical tests were employed to validate the significance of 

observed performance differences. 

 

 
 

Fig 1: Illustrates the flow from input features → quantum encoding → variational layers → measurement. 

 

Results and Findings 

The evaluation of the proposed hybrid quantum-classical 

framework was carried out using the PlantVillage dataset 

along with additional field samples collected from tomato, 

maize, and potato crops. The results are presented in terms 

of overall classification performance, statistical robustness, 

and comparative analysis against conventional deep learning 

models. In this section, the findings are elaborated across 

multiple dimensions to provide both a quantitative and 

qualitative understanding of the efficacy of the model. 

 

Overall Model Performance 

The hybrid quantum-classical model, which integrates 

Variational Quantum Circuits (VQCs) with a classical 

neural classifier, achieved an overall classification accuracy 

of 95.2%. This marks a significant improvement over the 

baseline convolutional neural network (CNN), which 

recorded an accuracy of 91.4% under identical conditions. 

 Accuracy measures the proportion of correctly 

identified samples out of the total, and a nearly 4% gain 

highlights the hybrid model’s ability to capture subtle 

patterns in crop leaf images. 

 Precision rose from 90.7% in CNNs to 94.5% in the 

hybrid model, which suggests that the hybrid approach 

is better at minimizing false positives - i.e., fewer 

healthy leaves were misclassified as diseased. 

 Recall improved from 91.0% to 95.0%, indicating 

enhanced sensitivity of the hybrid system in correctly 

identifying diseased leaves, a crucial factor in early 

intervention scenarios. 

 F1-score, which balances precision and recall, 

improved from 90.8% to 94.7%, further validating the 

consistency and reliability of the hybrid approach. 

Taken together, these results demonstrate that the quantum-

classical integration not only enhances accuracy but also 

ensures balanced improvements across multiple 

performance indicators. 

 

 
 

Confusion Matrix Analysis 

A confusion matrix was constructed for both the CNN and 

the hybrid quantum-classical models to analyze the 

distribution of predictions across disease classes. 
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 For the CNN, the most common misclassifications 

occurred between Tomato Early Blight and Tomato 

Late Blight, as their visual symptoms are often very 

similar in early growth stages. 

 The hybrid model, however, showed fewer confusions 

between these two categories, suggesting that quantum 

feature encoding captures more discriminative features. 

 In the case of Potato Leaf Early Blight, recall improved 

from 89% in CNNs to 94% in the hybrid model, which 

implies that the hybrid system reduced the risk of false 

negatives. 

 

Such findings are particularly important because false 

negatives (diseased leaves classified as healthy) pose greater 

agricultural risks than false positives, as they can lead to 

undetected disease spread. 

 

Statistical Validation 

To ensure that the observed improvements were statistically 

significant rather than incidental, a paired t-test was 

conducted between the CNN and hybrid model accuracies 

across multiple runs (10-fold cross-validation). 

 

 
 

 The mean difference in accuracy was 3.8%, with a p-

value < 0.01, confirming that the improvements were 

statistically significant at the 99% confidence level. 

 Standard deviation of accuracies was lower in the 

hybrid model (±0.9%) compared to CNNs (±1.7%), 

indicating greater stability and consistency of 

performance across dataset splits. 

 

This statistical robustness further supports the conclusion 

that hybrid quantum-classical approaches are not only more 

accurate but also more reliable. 

 

Performance Across Crop Types 

To assess the generalizability of the proposed model, 

separate evaluations were conducted for tomato, maize, and 

potato crops. 

 

 
 

 Tomato diseases: Accuracy improved from 92.1% 

(CNN) to 95.6% (Hybrid). 

 Maize diseases: Accuracy rose from 90.4% to 94.8%, 

with notable gains in detecting Maize Streak Virus. 

 Potato diseases: Accuracy improved from 91.8% to 

95.2%, particularly for early blight detection. 

 

Computational Considerations 

While CNNs require extensive training time, especially with 

large-scale datasets, the hybrid model showed comparable 

training efficiency when executed on simulated quantum 

environments. Although real quantum hardware is still 

limited by noise and qubit scalability, simulations 

demonstrated that hybrid models could achieve superior 

accuracy without excessive computational overhead. 

Interestingly, the parameter count in the hybrid model was 

lower than in deep CNNs, as the quantum circuits 

effectively compressed feature spaces. This suggests that 

hybrid models may eventually offer lighter, more efficient 

architectures, which could be especially advantageous in 

agricultural IoT systems with limited resources. 
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Comparison with State-of-the-Art Approaches 

To benchmark the hybrid model, comparisons were made 

with other deep learning architectures: 

 ResNet-50: 92.5% accuracy 

 Inception-v3: 93.0% accuracy 

 EfficientNet-B0: 92.8% accuracy 

 Proposed Hybrid QML Model: 95.2% accuracy 

 

The hybrid approach consistently outperformed state-of-the-

art CNNs, highlighting the additional representational power 

offered by quantum feature encoding. 

 

 
 

Findings in Agricultural Context 

The results carry important implications for smart farming 

and precision agriculture: 

1. Higher Accuracy in Early Detection: Since recall 

improved significantly, the model is more effective 

in detecting diseases in early stages, which is 

crucial for preventing outbreaks. 

2. Reduced Misclassification of Healthy Leaves: 
Precision gains suggest fewer unnecessary 

interventions, saving farmers from wasting 

resources on healthy crops. 

3. Potential for Deployment in IoT Systems: With 

lighter parameterization and efficient feature 

extraction, the hybrid approach is well-suited for 

integration into farm-based IoT devices. 

4. Scalability for Multi-Crop Systems: Performance 

across tomato, maize, and potato datasets indicates 

scalability to other crops, supporting cross-crop 

disease monitoring. 

 

Limitations and Future Prospects 

Despite its promising performance, the study acknowledges 

certain limitations: 

 Quantum Hardware Limitations: Current 

experiments were performed on simulators due to 

limited access to stable quantum processors. Noise and 

qubit scalability remain challenges for real-world 

implementation. 

 Dataset Diversity: While the dataset included multiple 

crops, extending experiments to more geographically 

diverse datasets is necessary for global applicability. 

 Computational Cost: Although the hybrid model was 

efficient in simulations, actual quantum computation 

may impose additional overheads until hardware 

matures. 

 

Extended Data Interpretation 

To emphasize the data-driven nature of this study, additional 

interpretations are provided: 

 Precision vs Recall Trade-off: The hybrid model did 

not compromise one metric for the other. While CNNs 

often showed a trade-off (higher recall but lower 

precision or vice versa), the hybrid approach 

maintained consistent improvements in both. 

 F1-Score Improvements: The nearly 4% gain in F1-

score reflects that the hybrid model achieved a more 

balanced classification, especially important in 

agricultural settings where both false negatives and 

false positives carry significant consequences. 

 Stability Across Cross-Validation: Variability in 

accuracy across folds was significantly reduced in the 

hybrid model, suggesting improved generalization. 

 Class-Specific Insights: The hybrid model particularly 

excelled in distinguishing visually similar diseases such 

as Tomato Early Blight vs Tomato Late Blight, a known 

challenge in traditional image-based models. 

 

Key Findings Summary 

 The hybrid quantum-classical model achieved 95.2% 

accuracy, outperforming CNN (91.4%) and other deep 

learning baselines (92-93%). 

 Precision, recall, and F1-score all improved by nearly 

4%, reducing both false positives and false negatives. 

 Statistical tests confirmed that accuracy improvements 

were highly significant (p<0.01). 

 Performance gains were consistent across tomato, 

maize, and potato datasets, demonstrating model 

generalizability. 

 The hybrid approach shows potential for real-world 

deployment in precision agriculture and sustainable 

farming systems. 

 

Discussion 

The findings of this study provide strong evidence that 

integrating quantum computing principles into classical 

machine learning pipelines can significantly enhance the 

performance of plant disease detection systems. The 

proposed hybrid quantum-classical model achieved 95.2% 

accuracy, outperforming conventional CNNs and even state-

of-the-art deep learning architectures such as ResNet-50 and 

Inception-v3. These results align with the broader trend 

observed in recent literature, where hybrid quantum models 
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have shown potential for outperforming purely classical 

approaches in domains such as finance, image recognition, 

and drug discovery (Schuld & Killoran, 2019; Havlíček et 

al., 2019) [11, 5]. However, this research represents one of the 

first comprehensive applications of such models within 

agricultural informatics, addressing a critical gap in current 

knowledge. 

 

Linking to Prior Work 

Traditional machine learning and deep learning methods 

have long been considered the backbone of plant disease 

detection. Studies such as Mohanty et al. (2016) [7] 

demonstrated accuracies exceeding 99% on controlled 

datasets like PlantVillage, but performance often dropped in 

real-world conditions due to environmental noise, variability 

in crop morphology, and dataset imbalance. Similar 

limitations were reported by Too et al. (2019) [13], where 

CNN models required significant data augmentation and 

preprocessing to maintain acceptable accuracy levels. 

Our results demonstrate that the hybrid quantum-classical 

model not only outperforms CNN baselines but also offers 

better generalization to noisy and high-dimensional datasets, 

an area where classical models often struggle. For example, 

distinguishing Tomato Early Blight from Tomato Late 

Blight remains a challenge in classical vision-based systems 

due to the high visual similarity of symptoms. The hybrid 

model reduced this misclassification significantly, 

confirming the advantage of quantum-enhanced feature 

encoding. This suggests that quantum circuits may be 

capable of extracting more abstract and discriminative 

features than classical convolutional filters. 

 

Novelty of the Approach 

The novelty of this study lies in three main areas: 

1. First large-scale agricultural application of hybrid 

QML: While quantum machine learning has been 

explored in fields like finance, chemistry, and health 

sciences, its use in agriculture has been minimal. This 

research bridges that gap by systematically applying 

hybrid QML to a multi-crop disease dataset. 

2. Balanced performance improvements: Unlike many 

classical models, which tend to improve accuracy at the 

expense of precision or recall, the hybrid approach 

demonstrated simultaneous gains across all metrics 

(accuracy, precision, recall, and F1-score). This 

balanced improvement is particularly critical in 

agricultural applications where false negatives (missed 

diseases) can lead to crop losses, and false positives 

(healthy crops misclassified as diseased) waste 

resources. 

3. Demonstrated statistical robustness: Through cross-

validation and statistical testing, this study established 

that the observed improvements were not incidental but 

statistically significant at p<0.01. Such rigor is often 

missing in applied AI studies within agriculture. 

 

Implications for Precision Agriculture 

The enhanced accuracy of the hybrid model carries practical 

implications for smart farming and sustainable agriculture. 

First, the ability to detect diseases earlier and more reliably 

can help farmers intervene promptly, preventing large-scale 

crop losses. Second, improved precision reduces 

unnecessary pesticide use, aligning with sustainability goals 

and lowering economic and environmental costs. Third, the 

relatively lighter parameterization of the hybrid model 

suggests that, once hardware limitations are addressed, these 

models could be deployed on resource-constrained IoT 

devices in farms. 

Moreover, the success across tomato, maize, and potato 

datasets indicates that hybrid QML models are scalable 

across crops, paving the way for integrated multi-crop 

monitoring systems. This scalability is crucial for real-world 

deployment, especially in developing countries where farms 

often cultivate multiple crops simultaneously. 

 

Challenges and Limitations 

Despite its promise, this research acknowledges certain 

limitations. Current experiments were conducted on 

quantum simulators due to restricted access to scalable 

quantum hardware. As noted by Preskill (2018), we are in 

the Noisy Intermediate-Scale Quantum (NISQ) era, where 

quantum devices are limited by qubit counts, coherence 

times, and susceptibility to noise. Although simulation 

allows proof-of-concept validation, the real-world 

deployment of such models will depend on future advances 

in quantum hardware. 

Another limitation relates to dataset diversity. While this 

study included both controlled and field samples, global 

agricultural environments present far more variability in 

lighting, soil conditions, and crop varieties. Extending this 

research to larger, geographically diverse datasets is 

essential for ensuring true generalizability. 

 

Future Directions 

This study opens multiple avenues for future research: 

1. Deployment on NISQ devices: As quantum hardware 

matures, validating hybrid models on actual quantum 

processors will be an important step toward practical 

adoption. 

2. Quantum transfer learning: Combining pre-trained 

classical CNNs with quantum layers could further 

enhance performance while reducing training costs. 

3. Explainability in QML: Future work should 

investigate how quantum circuits encode features, to 

provide interpretability for agricultural experts. 

4. Integration with IoT and edge computing: 
Optimizing hybrid QML models for deployment in 

farm-based IoT devices could enable real-time, on-site 

disease detection. 

5. Multi-modal disease detection: Beyond leaf images, 

integrating spectral, environmental, and genomic data 

into quantum-classical models may enhance accuracy 

further. 

 

Broader Impact 

The results of this study demonstrate that quantum 

computing can play a transformative role in the future of 

sustainable farming systems. By achieving higher accuracy 

and robustness in plant disease detection, hybrid QML 

models directly contribute to food security, environmental 

sustainability, and the economic viability of farming 

communities. As agriculture continues to face increasing 

pressure from climate change, pests, and growing global 

demand, the fusion of emerging technologies such as 

quantum computing with precision agriculture provides a 

promising pathway for innovation. 
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Conclusion and Future Work 

This study proposed and evaluated a hybrid quantum-

classical framework for plant disease detection, 

demonstrating its potential to revolutionize smart farming 

and sustainable agriculture. By integrating Variational 

Quantum Circuits (VQCs) into a classical neural network 

pipeline, the model achieved an accuracy of 95.2%, 

significantly outperforming the baseline CNN (91.4%) and 

other deep learning architectures such as ResNet-50 and 

Inception-v3. Beyond accuracy, the model also recorded 

notable improvements in precision, recall, and F1-score, 

thereby ensuring that both false positives and false negatives 

were minimized. These improvements are critical in 

agricultural contexts, where misclassifications can either 

lead to crop losses or unnecessary pesticide use. 

The findings highlight three major contributions. First, this 

research demonstrates one of the first large-scale 

applications of quantum-enhanced machine learning in 

agriculture, addressing a gap in the literature where most 

prior work was limited to classical AI models. Second, the 

hybrid framework achieved balanced improvements across 

all evaluation metrics, unlike many deep learning systems 

that trade precision for recall or vice versa. Third, the study 

validated its results through statistical testing, confirming 

that the observed gains were both significant and robust 

across multiple dataset splits. Together, these contributions 

establish the viability of hybrid quantum-classical 

approaches in real-world agricultural decision-making 

systems. 

Despite these promising results, the research is not without 

limitations. The experiments were carried out on quantum 

simulators, given the current constraints of quantum 

hardware in terms of qubit count, noise resilience, and 

stability. While simulations provide proof-of-concept 

validation, the ultimate test of feasibility will depend on 

deploying such models on Noisy Intermediate-Scale 

Quantum (NISQ) devices. Furthermore, while the dataset 

combined both controlled and field images of tomato, 

maize, and potato crops, agricultural environments are 

inherently diverse. Factors such as lighting variability, soil 

conditions, and crop diversity across geographies need to be 

incorporated in future studies for stronger generalizability. 

Finally, although training time was found to be competitive 

with classical CNNs in simulations, the computational 

overhead on actual quantum processors may initially be 

higher until hardware matures. 

Looking ahead, several directions emerge for future 

research. First, as quantum devices advance, it will be 

critical to test hybrid models on real quantum processors, 

accounting for hardware noise and scalability. Second, 

quantum transfer learning-leveraging pre-trained classical 

networks with quantum layers-could reduce the demand for 

large datasets while enhancing performance. Third, there is 

a growing need for explainable quantum machine learning, 

where the features extracted by quantum circuits can be 

interpreted by agricultural experts to improve trust and 

adoption. Fourth, optimizing hybrid architectures for edge 

and IoT devices will allow on-site disease detection in 

farms, enabling real-time interventions. Finally, expanding 

beyond leaf images to include multi-modal data sources-

such as hyperspectral imagery, soil data, and genomic 

information-could lead to holistic crop health monitoring 

systems powered by quantum-classical intelligence. 

In conclusion, this research demonstrates that quantum 

computing, when integrated with classical machine learning, 

can significantly advance plant disease detection, achieving 

higher accuracy, robustness, and scalability compared to 

conventional methods. The hybrid quantum-classical 

paradigm not only opens new frontiers in agricultural 

informatics but also aligns with the broader goals of 

sustainable farming, food security, and environmental 

protection. While challenges remain in terms of hardware 

readiness and dataset diversity, the results presented here 

provide a compelling case for continued exploration of 

quantum-assisted solutions in agriculture. The pathway 

ahead involves bridging the gap between simulation and 

real-world deployment, ensuring that the theoretical promise 

of quantum computing translates into tangible benefits for 

farmers worldwide. 
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