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Abstract

This study investigates the effectiveness of a hybrid quantum-classical framework for plant disease
detection, with a focus on improving classification accuracy compared to conventional approaches.
Image-based datasets of crop diseases were processed and encoded into variational quantum circuits
(VQCs), which were then integrated with classical machine learning classifiers. The proposed model
achieved an overall classification accuracy of 95.2%, outperforming a baseline convolutional neural
network that recorded 91.4% accuracy on the same dataset. Performance evaluation was carried out
using multiple metrics including precision, recall, and F1-score, with the hybrid approach showing
consistent gains across all categories. Furthermore, the model demonstrated reduced overfitting and
improved robustness when tested under noisy and high-dimensional input conditions. These results
highlight the potential of quantum-assisted machine learning to significantly enhance crop disease
detection, offering a scalable and accurate pathway for sustainable agriculture and precision farming.

Keywords: Quantum computing, hybrid quantum-classical model, plant disease detection, accuracy
improvement, variational quantum circuits, precision agriculture, sustainable agriculture

Introduction

Agriculture remains the backbone of food security and global economic development, yet it
continues to face significant challenges due to crop diseases that drastically reduce yield and
quality. According to the Food and Agriculture Organization (FAO), nearly 20-40% of
global agricultural production is lost annually to pests and diseases, leading to substantial
economic and social impacts. Early and accurate detection of crop diseases is therefore
essential for preventing large-scale losses and enabling sustainable farming practices. Recent
advances in artificial intelligence (Al) and machine learning (ML), particularly deep learning
models such as convolutional neural networks (CNNSs), have shown promising results in
plant disease recognition using leaf images. However, these classical approaches are often
computationally intensive, require large-scale annotated datasets, and struggle to generalize
effectively under noisy or high-dimensional conditions.

Problem Statement

Despite progress in Al-based solutions, existing plant disease detection systems suffer from
limited accuracy when confronted with diverse crop species, variable environmental
conditions, and complex visual symptoms. Moreover, the computational demand of training
deep learning models presents barriers to scalability in resource-constrained agricultural
settings. With the emergence of quantum computing, new opportunities exist to address
these limitations by exploiting quantum parallelism, faster optimization, and enhanced
pattern recognition capabilities. Yet, the practical application of quantum computing in
agriculture, particularly for plant disease detection, remains underexplored.

Research Gap

Most current studies focus exclusively on classical deep learning approaches, with limited
attention to hybrid quantum-classical techniques. While quantum computing has been
investigated in fields such as drug discovery, cryptography, and financial modeling, its
integration into agricultural informatics is still in its infancy. Preliminary studies have
suggested potential performance improvements using variational quantum circuits (VQCs)
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for image classification, but empirical evidence specific to
plant disease detection, along with systematic accuracy
comparisons against classical baselines, is scarce. This
creates a clear gap in understanding the true potential of
quantum-assisted models in precision agriculture.

Objectives

The main objective of this study is to design, implement,

and evaluate a hybrid quantum-classical model for plant

disease detection that addresses the shortcomings of
conventional deep learning techniques. The specific
objectives are:

1. To preprocess and encode crop disease image datasets
for compatibility with quantum feature representation.

2. To develop a hybrid framework that integrates
variational quantum circuits with classical machine
learning models.

3. To evaluate the proposed approach against baseline
CNNs using standard performance metrics (accuracy,
precision, recall, F1-score).

4. To analyze the improvements in classification accuracy,
robustness, and scalability provided by the hybrid
model.

5. To explore the implications of quantum computing in
advancing sustainable agriculture and precision farming
practices.

Literature Review

The use of artificial intelligence for crop disease detection
has expanded rapidly over the last decade. Early approaches
relied on image processing methods such as texture, color,
and shape analysis to identify diseased leaves, but these
methods struggled with accuracy and generalization across
different crops and environments (Patil & Kumar, 2011) ©1.
Machine learning techniques, including support vector
machines (SVMs) and random forests, improved
classification by learning discriminative features from data,
though their performance remained limited on large-scale
datasets (Camargo & Smith, 2009) &1,

The introduction of deep learning, particularly convolutional
neural networks (CNNs), significantly advanced plant
disease detection. For instance, Mohanty et al. (2016) ["]
demonstrated that deep CNNs trained on the PlantVillage
dataset could achieve accuracies exceeding 99% across 38
crop-disease classes. Subsequent studies employed
architectures such as ResNet, Inception, and VGG to
enhance performance under varying conditions (Sladojevic
et al., 2016; Brahimi et al., 2018) 12 2. Despite their
success, CNNs are data-hungry, computationally intensive,
and sensitive to variations in environmental factors such as
illumination and background clutter, limiting their real-
world scalability (Too et al., 2019) [*31,

In recent years, research across computing, communication,
and artificial intelligence has expanded into diverse
domains, with particular emphasis on applications in
agriculture, data science, and emerging communication
technologies. The collection of studies reviewed here
reflects a multidisciplinary effort to address pressing
challenges such as crop disease detection, big data
management, and the integration of advanced computational
frameworks for practical solutions. Taken together, these
works not only highlight theoretical contributions but also
demonstrate applied innovations that link technology with
societal and agricultural development.

http://www.computersciencejournals.com/ijcpdm

Agriculture has been a recurring theme in several studies,
where researchers have explored how computational tools
can transform traditional crop disease management.
Chauhan, Parihar, and Singh (2025) [l presented an
approach that connects physical observations of diseased
plants with computational techniques, aptly titled “From
Leaves to Lab.” This work bridges plant pathology with
data-driven diagnostic models, underscoring the importance
of integrating field-level practices with laboratory-based
analysis. Purani and Singh (2025) 4 advanced a similar
vision in their article on innovations in plant disease
diagnosis, which examined how technological platforms can
assist farmers in detecting diseases earlier and with greater
accuracy. Complementing these conceptual advances,
Mehta, Singh, and Awasthi (2025) [ provided a
comprehensive review of loT-based technologies for rice
disease monitoring. Their study documented how sensors,
cloud storage, and edge computing form a distributed
architecture that allows farmers and researchers to collect,
analyze, and act upon data in real time. This theme of loT
integration is directly extended by Sharma, Sethi, and Singh
(2025) 281, who proposed tech-driven strategies for paddy
disease prevention. Their article emphasized predictive
modeling and data-informed interventions, ensuring that
farmers can mitigate losses before diseases spread widely.
Building on such preventive approaches, Patel, Singh, and
Awasthi (2025) 221 developed a Python-based computational
framework for paddy leaf disease detection, showing how
relatively simple programming tools can deliver robust
classification results. This thread of work culminates in
Singh, Solanki, and Vashi (2025) Y, whose multiple
disease prediction system demonstrates how agricultural
informatics is scaling toward multi-class, multi-crop
diagnosis, rather than focusing on single pathogens.
Collectively, these studies portray agriculture as a domain
undergoing  transformation  through  computational
intelligence, positioning technology as an indispensable
partner in ensuring food security.

Alongside agriculture, the reviewed works also illustrate the
adaptability of machine learning and deep learning
techniques across fields. Kumar, Chawda, and Singh (2021)
(28] applied deep learning combined with genetic algorithms
to traffic classification, providing insights into how complex
network data can be analyzed effectively. The algorithmic
strategies outlined here are not limited to transport but
mirror the challenges in plant disease classification, where
distinguishing between visually similar categories requires
equally robust models. The flexibility of artificial
intelligence is further highlighted by Singh, R., Chawda,
and Singh (2021) 281, who explored machine learning in the
context of gaming, developing models for predicting player
placement in Player Unknown’s Battlegrounds (PUBG).
Although distinct from agriculture, the work reveals how
predictive analytics can support decision-making in
dynamic environments, a feature directly relevant to
precision agriculture where conditions shift rapidly. Such
studies demonstrate that artificial intelligence forms a
universal framework for solving classification and
prediction problems, regardless of dataset type.

Supporting these applied innovations are foundational
contributions in  communication and computational
infrastructure. Kriti, Chawda, and Singh (2021) (28! explored
the evolution of wireless technology with a particular focus
on 5G, identifying how greater bandwidth and reduced
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latency can support emerging applications such as loT-
driven agriculture and autonomous systems. Pandey,
Chawda, and Singh (2021) [?81 added further depth through a
dedicated literature review on 5G, emphasizing how this
next-generation network enables real-time communication
between devices, sensors, and cloud platforms. Pathak,
Chawda, and Singh (2021) 231 examined cloud computing as
another infrastructural backbone, showing how scalable
resources can be provisioned for data-intensive tasks such as
disease image classification and model deployment. These
studies align with broader transformations in digital
ecosystems, underscoring that without advancements in
communication and cloud technology, many of the
applications in agriculture and artificial intelligence would
remain limited.

Another cluster of studies within this review centers on data
management and big data analytics. Singh (2020) [
analyzed different aspects of big data, pointing out
challenges related to handling volume, variety, and velocity
across domains. Shrivas and Singh (2016) 7] reviewed big
data analytics frameworks, while Singh and Shrivas (2017)
[30 examined privacy issues associated with big data,
drawing attention to ethical and security concerns in large-
scale data usage. Together, these works stress that while Al
and loT deliver promising applications, their success
depends on effective data handling, secure infrastructures,
and robust privacy protections. Indeed, data challenges cut
across agriculture, healthcare, and industrial domains,
making these reviews foundational to the application-
oriented studies discussed earlier.

Other works in this body of research expand the scope of
technology applications into novel contexts. Dewangan,
Chawda, and Singh (2021) [?8 examined the coronavirus
pandemic, focusing on how respiratory infections can be
analyzed through computational and scientific lenses. This
demonstrates the responsiveness of research to global health
crises. Sahu, Chawda, and Singh (2021) 8 applied
computational modeling to create a virtual reality flight
simulator, while Kashyap, Chawda, and Singh (2021) [¢]
designed an e-voting application integrating voter
authentication. Each of these contributions highlights how
computational tools can be tailored to address specific, real-
world problems, whether in healthcare, education,
governance, or entertainment.

Taken together, these studies reveal a coherent trajectory:
from agricultural informatics to general Al problem-solving,
from communication frameworks to data security, and from
applied case studies in gaming and VR to pandemic
analysis. A central theme across all is the interplay between
data, computation, and application. On one hand,
agriculture-focused works by Chauhan et al. (2025) 14,
Mehta et al. (2025) ', Sharma et al. (2025) [?¢], and others
demonstrate the immediate benefits of technology for food
security. On the other hand, foundational works by Kriti et
al. (2021) ™1, pathak et al. (2021) 231, and Shrivas and Singh
(2016) B remind us that these applications are only as
strong as the infrastructures supporting them. Meanwhile,
applied contributions outside agriculture highlight the
universality of computational methods, suggesting that
lessons learned in one field may transfer to others.

They collectively show that advances in Al, loT, cloud
computing, and data management are not isolated
achievements but interdependent threads weaving into a
larger narrative of digital transformation. By connecting
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agricultural  sustainability, network evolution, and
computational intelligence, these works establish a
foundation for future studies that will likely extend into
hybrid quantum-classical methods, greater integration of
10T in precision farming, and expanded applications of Al
across all sectors. This convergence of applied problem-
solving and theoretical insight ensures that research in these
domains will continue to shape not only the academic
community but also the technological and agricultural
landscapes of the future.

Quantum Machine Learning (QML) and Hybrid
Approaches

Quantum computing, which harnesses superposition and
entanglement through qubits, has emerged as a promising
paradigm for handling high-dimensional and
computationally complex tasks (Nielsen & Chuang, 2010).
In the machine learning domain, quantum machine learning
(QML) methods have been explored for tasks such as image
classification, clustering, and optimization. Variational
Quantum Circuits (VQCs), in particular, have shown
potential for learning nonlinear feature representations with
fewer resources (Biamonte et al., 2017) [,

Hybrid quantum-classical models, which integrate quantum
circuits for feature encoding with classical optimizers, have
been tested in various domains. Schuld & Killoran (2019)
(111 demonstrated that quantum feature maps can enhance
classical classifiers in supervised learning tasks. Havlicek et
al. (2019) B! applied quantum-enhanced models to image
and signal classification, showing improved generalization
compared to classical baselines. More recent work by Farhi
& Neven (2018) ™ proposed hybrid models for
reinforcement learning, further demonstrating the flexibility
of quantum approaches.

Despite this progress, applications of QML in agriculture
remain sparse. Only a handful of studies have experimented
with QML for plant or crop-related data, and these are often
limited to proof-of-concept demonstrations without rigorous
accuracy comparisons to established deep learning models
(Li et al., 2022) [61,

While CNNs have achieved state-of-the-art results in plant
disease classification, their dependency on large labeled
datasets and computationally expensive training remains a
challenge. Conversely, hybrid QML approaches promise
higher accuracy, robustness to noisy data, and more efficient
feature extraction, but systematic studies applying them to
plant disease detection are lacking. Existing research has not
yet provided comprehensive benchmarks comparing CNNs
with hybrid quantum-classical models in agricultural
contexts. This gap motivates the present study, which aims
to explore the potential of QML to improve accuracy in
plant disease detection and contribute to sustainable
precision agriculture.

Methodology

The design and implementation of the proposed hybrid
quantum-classical framework for plant disease detection
followed a structured five-stage methodology encompassing
dataset collection, preprocessing, quantum feature encoding,
hybrid model training, and evaluation. In the first stage,
dataset collection, images were sourced from the widely
used PlantVillage dataset, which provides a benchmark
repository for agricultural disease research, and were
supplemented with additional field samples of tomato,
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maize, and potato leaves. These images included both
healthy and diseased samples, covering multiple disease
classes, to ensure diversity and real-world relevance. The
second stage, preprocessing, was essential for preparing the
raw data for analysis. All images were standardized to a
fixed resolution of 256 x 256 pixels and normalized within
the range [0,1] to maintain consistency across the dataset.
Furthermore, data augmentation techniques such as random
rotations, horizontal flipping, and zoom transformations
were applied. This not only increased the effective size of
the dataset but also minimized overfitting, thereby
improving the model’s generalization capacity to unseen
data. The third stage involved quantum feature encoding,
where image features were mapped into Variational
Quantum Circuits (VQCs) using amplitude encoding. Each
image was flattened into a vector and embedded into
quantum states, enabling the circuits to exploit quantum
superposition and entanglement for capturing complex, non-
linear patterns in the data that might be overlooked by
classical feature extraction methods. In the fourth stage,
hybrid model training was carried out by integrating
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quantum and classical components. Specifically, the
quantum layers (VQCs) were employed as feature
extractors, while the subsequent classical neural network
layers performed optimization and classification tasks. Due
to limited accessibility to physical quantum processors,
training and simulation were conducted on a quantum
simulator, ensuring that the methodology remains adaptable
to future hardware advancements. Finally, in the fifth stage,
evaluation, the model’s performance was rigorously
assessed using standard classification metrics, including
Accuracy, Precision, Recall, and F1-score. This
methodological pipeline ensures a systematic investigation
of how quantum computing can enhance crop disease
detection, offering both technical rigor and practical
relevance for sustainable agriculture.

A comparative analysis against a baseline CNN trained on
the same dataset was conducted to highlight the
improvements achieved by the hybrid approach, and
statistical tests were employed to validate the significance of
observed performance differences.

Dataset Collection
PlantVillage + Field Samp| Resize, Normalize, Aug

Preprocessing Quantum Feature Encoding
Amplitude Encoding into Qubits] VQC + Classical | Accuracy, Precision, Recall, F1-score

Hybrid Training|

Evaluation ]

Input Features

Quantum Encoding
(Amplitude Encoding

Parameterized

Measurement
(Variatio| (Quantum State - Classical Output)

Fig 1: Illustrates the flow from input features — quantum encoding — variational layers — measurement.

Results and Findings

The evaluation of the proposed hybrid quantum-classical
framework was carried out using the PlantVillage dataset
along with additional field samples collected from tomato,
maize, and potato crops. The results are presented in terms
of overall classification performance, statistical robustness,
and comparative analysis against conventional deep learning
models. In this section, the findings are elaborated across
multiple dimensions to provide both a quantitative and
qualitative understanding of the efficacy of the model.

Overall Model Performance

The hybrid quantum-classical model, which integrates

Variational Quantum Circuits (VQCs) with a classical

neural classifier, achieved an overall classification accuracy

of 95.2%. This marks a significant improvement over the
baseline convolutional neural network (CNN), which
recorded an accuracy of 91.4% under identical conditions.

e Accuracy measures the proportion of correctly
identified samples out of the total, and a nearly 4% gain
highlights the hybrid model’s ability to capture subtle
patterns in crop leaf images.

e  Precision rose from 90.7% in CNNs to 94.5% in the
hybrid model, which suggests that the hybrid approach
is better at minimizing false positives - i.e., fewer
healthy leaves were misclassified as diseased.

e Recall improved from 91.0% to 95.0%, indicating
enhanced sensitivity of the hybrid system in correctly

identifying diseased leaves, a crucial factor in early
intervention scenarios.

e Fl-score, which balances precision and recall,
improved from 90.8% to 94.7%, further validating the
consistency and reliability of the hybrid approach.

Taken together, these results demonstrate that the quantum-

classical integration not only enhances accuracy but also

ensures  balanced  improvements across  multiple
performance indicators.
100
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Confusion Matrix Analysis

A confusion matrix was constructed for both the CNN and
the hybrid quantum-classical models to analyze the
distribution of predictions across disease classes.
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e For the CNN, the most common misclassifications
occurred between Tomato Early Blight and Tomato
Late Blight, as their visual symptoms are often very
similar in early growth stages.

e The hybrid model, however, showed fewer confusions
between these two categories, suggesting that quantum
feature encoding captures more discriminative features.

e Inthe case of Potato Leaf Early Blight, recall improved
from 89% in CNNs to 94% in the hybrid model, which
implies that the hybrid system reduced the risk of false
negatives.

Such findings are particularly important because false
negatives (diseased leaves classified as healthy) pose greater
agricultural risks than false positives, as they can lead to
undetected disease spread.

Statistical Validation

To ensure that the observed improvements were statistically
significant rather than incidental, a paired t-test was
conducted between the CNN and hybrid model accuracies
across multiple runs (10-fold cross-validation).

=

96
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[{=] o f=] o
~N w & (v}

w
-

=

CNN (Baseline)

o
o

89

Hybrid QML

e The mean difference in accuracy was 3.8%, with a p-
value < 0.01, confirming that the improvements were
statistically significant at the 99% confidence level.

e Standard deviation of accuracies was lower in the
hybrid model (£0.9%) compared to CNNs (£1.7%),
indicating greater stability and consistency of
performance across dataset splits.

This statistical robustness further supports the conclusion
that hybrid quantum-classical approaches are not only more
accurate but also more reliable.

Performance Across Crop Types

To assess the generalizability of the proposed model,
separate evaluations were conducted for tomato, maize, and
potato crops.

100
CNN (Baseline)

= Hybrid QML
98 Y

96

94

92

Accuracy (%)

90

881

86

Tomato Maize Potato

e Tomato diseases: Accuracy improved from 92.1%
(CNN) to 95.6% (Hybrid).

e Maize diseases: Accuracy rose from 90.4% to 94.8%,
with notable gains in detecting Maize Streak Virus.

e Potato diseases: Accuracy improved from 91.8% to
95.2%, particularly for early blight detection.

Computational Considerations

While CNNs require extensive training time, especially with
large-scale datasets, the hybrid model showed comparable
training efficiency when executed on simulated quantum
environments. Although real quantum hardware is still
limited by noise and qubit scalability, simulations
demonstrated that hybrid models could achieve superior
accuracy without excessive computational overhead.
Interestingly, the parameter count in the hybrid model was
lower than in deep CNNs, as the quantum circuits
effectively compressed feature spaces. This suggests that
hybrid models may eventually offer lighter, more efficient
architectures, which could be especially advantageous in
agricultural 10T systems with limited resources.
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Comparison with State-of-the-Art Approaches

To benchmark the hybrid model, comparisons were made
with other deep learning architectures:

e ResNet-50: 92.5% accuracy

e Inception-v3: 93.0% accuracy

e EfficientNet-B0: 92.8% accuracy

http://www.computersciencejournals.com/ijcpdm

e Proposed Hybrid QML Model: 95.2% accuracy

The hybrid approach consistently outperformed state-of-the-
art CNNs, highlighting the additional representational power
offered by quantum feature encoding.

98

96

Accuracy (%)

94t
93.0%

921

90 ResNet-50

Inception-v3

95.2%

92.8%

EfficientNet-BO Hybrid QML

Findings in Agricultural Context
The results carry important implications for smart farming
and precision agriculture:

1. Higher Accuracy in Early Detection: Since recall
improved significantly, the model is more effective
in detecting diseases in early stages, which is
crucial for preventing outbreaks.

2. Reduced Misclassification of Healthy Leaves:
Precision gains suggest fewer unnecessary
interventions, saving farmers from wasting
resources on healthy crops.

3. Potential for Deployment in 10T Systems: With
lighter parameterization and efficient feature
extraction, the hybrid approach is well-suited for
integration into farm-based 10T devices.

4. Scalability for Multi-Crop Systems: Performance
across tomato, maize, and potato datasets indicates
scalability to other crops, supporting cross-crop
disease monitoring.

Limitations and Future Prospects

Despite its promising performance, the study acknowledges

certain limitations:

e Quantum Hardware Limitations: Current
experiments were performed on simulators due to
limited access to stable quantum processors. Noise and
qubit scalability remain challenges for real-world
implementation.

o Dataset Diversity: While the dataset included multiple
crops, extending experiments to more geographically
diverse datasets is necessary for global applicability.

e Computational Cost: Although the hybrid model was
efficient in simulations, actual quantum computation
may impose additional overheads until hardware
matures.

Extended Data Interpretation

To emphasize the data-driven nature of this study, additional

interpretations are provided:

e Precision vs Recall Trade-off: The hybrid model did
not compromise one metric for the other. While CNNs

often showed a trade-off (higher recall but lower
precision or vice versa), the hybrid approach
maintained consistent improvements in both.

e F1-Score Improvements: The nearly 4% gain in F1-
score reflects that the hybrid model achieved a more
balanced classification, especially important in
agricultural settings where both false negatives and
false positives carry significant consequences.

e Stability Across Cross-Validation: Variability in
accuracy across folds was significantly reduced in the
hybrid model, suggesting improved generalization.

o  Class-Specific Insights: The hybrid model particularly
excelled in distinguishing visually similar diseases such
as Tomato Early Blight vs Tomato Late Blight, a known
challenge in traditional image-based models.

Key Findings Summary

e The hybrid quantum-classical model achieved 95.2%
accuracy, outperforming CNN (91.4%) and other deep
learning baselines (92-93%).

e  Precision, recall, and F1-score all improved by nearly
4%, reducing both false positives and false negatives.

e Statistical tests confirmed that accuracy improvements
were highly significant (p<0.01).

e Performance gains were consistent across tomato,
maize, and potato datasets, demonstrating model
generalizability.

e The hybrid approach shows potential for real-world
deployment in precision agriculture and sustainable
farming systems.

Discussion

The findings of this study provide strong evidence that
integrating quantum computing principles into classical
machine learning pipelines can significantly enhance the
performance of plant disease detection systems. The
proposed hybrid quantum-classical model achieved 95.2%
accuracy, outperforming conventional CNNs and even state-
of-the-art deep learning architectures such as ResNet-50 and
Inception-v3. These results align with the broader trend
observed in recent literature, where hybrid quantum models
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have shown potential for outperforming purely classical
approaches in domains such as finance, image recognition,
and drug discovery (Schuld & Killoran, 2019; Havlicek et
al., 2019) [*1. 51, However, this research represents one of the
first comprehensive applications of such models within
agricultural informatics, addressing a critical gap in current
knowledge.

Linking to Prior Work

Traditional machine learning and deep learning methods
have long been considered the backbone of plant disease
detection. Studies such as Mohanty et al. (2016) [
demonstrated accuracies exceeding 99% on controlled
datasets like PlantVillage, but performance often dropped in
real-world conditions due to environmental noise, variability
in crop morphology, and dataset imbalance. Similar
limitations were reported by Too et al. (2019) [*31, where
CNN models required significant data augmentation and
preprocessing to maintain acceptable accuracy levels.

Our results demonstrate that the hybrid quantum-classical
model not only outperforms CNN baselines but also offers
better generalization to noisy and high-dimensional datasets,
an area where classical models often struggle. For example,
distinguishing Tomato Early Blight from Tomato Late
Blight remains a challenge in classical vision-based systems
due to the high visual similarity of symptoms. The hybrid
model reduced this misclassification  significantly,
confirming the advantage of quantum-enhanced feature
encoding. This suggests that quantum circuits may be
capable of extracting more abstract and discriminative
features than classical convolutional filters.

Novelty of the Approach

The novelty of this study lies in three main areas:

1. First large-scale agricultural application of hybrid
QML: While quantum machine learning has been
explored in fields like finance, chemistry, and health
sciences, its use in agriculture has been minimal. This
research bridges that gap by systematically applying
hybrid QML to a multi-crop disease dataset.

2. Balanced performance improvements: Unlike many
classical models, which tend to improve accuracy at the
expense of precision or recall, the hybrid approach
demonstrated simultaneous gains across all metrics
(accuracy, precision, recall, and F1-score). This
balanced improvement is particularly critical in
agricultural applications where false negatives (missed
diseases) can lead to crop losses, and false positives
(healthy crops misclassified as diseased) waste
resources.

3. Demonstrated statistical robustness: Through cross-
validation and statistical testing, this study established
that the observed improvements were not incidental but
statistically significant at p<0.01. Such rigor is often
missing in applied Al studies within agriculture.

Implications for Precision Agriculture

The enhanced accuracy of the hybrid model carries practical
implications for smart farming and sustainable agriculture.
First, the ability to detect diseases earlier and more reliably
can help farmers intervene promptly, preventing large-scale
crop losses. Second, improved precision reduces
unnecessary pesticide use, aligning with sustainability goals
and lowering economic and environmental costs. Third, the

http://www.computersciencejournals.com/ijcpdm

relatively lighter parameterization of the hybrid model
suggests that, once hardware limitations are addressed, these
models could be deployed on resource-constrained loT
devices in farms.

Moreover, the success across tomato, maize, and potato
datasets indicates that hybrid QML models are scalable
across crops, paving the way for integrated multi-crop
monitoring systems. This scalability is crucial for real-world
deployment, especially in developing countries where farms
often cultivate multiple crops simultaneously.

Challenges and Limitations

Despite its promise, this research acknowledges certain
limitations. Current experiments were conducted on
qguantum simulators due to restricted access to scalable
quantum hardware. As noted by Preskill (2018), we are in
the Noisy Intermediate-Scale Quantum (NISQ) era, where
quantum devices are limited by qubit counts, coherence
times, and susceptibility to noise. Although simulation
allows proof-of-concept validation, the real-world
deployment of such models will depend on future advances
in quantum hardware.

Another limitation relates to dataset diversity. While this
study included both controlled and field samples, global
agricultural environments present far more variability in
lighting, soil conditions, and crop varieties. Extending this
research to larger, geographically diverse datasets is
essential for ensuring true generalizability.

Future Directions

This study opens multiple avenues for future research:

1. Deployment on NISQ devices: As quantum hardware
matures, validating hybrid models on actual quantum
processors will be an important step toward practical
adoption.

2. Quantum transfer learning: Combining pre-trained
classical CNNs with quantum layers could further
enhance performance while reducing training costs.

3. Explainability in QML: Future work should
investigate how quantum circuits encode features, to
provide interpretability for agricultural experts.

4. Integration with loT and edge computing:
Optimizing hybrid QML models for deployment in
farm-based 10T devices could enable real-time, on-site
disease detection.

5. Multi-modal disease detection: Beyond leaf images,
integrating spectral, environmental, and genomic data
into quantum-classical models may enhance accuracy
further.

Broader Impact

The results of this study demonstrate that quantum
computing can play a transformative role in the future of
sustainable farming systems. By achieving higher accuracy
and robustness in plant disease detection, hybrid QML
models directly contribute to food security, environmental
sustainability, and the economic viability of farming
communities. As agriculture continues to face increasing
pressure from climate change, pests, and growing global
demand, the fusion of emerging technologies such as
quantum computing with precision agriculture provides a
promising pathway for innovation.
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Conclusion and Future Work

This study proposed and evaluated a hybrid quantum-
classical framework for plant disease detection,
demonstrating its potential to revolutionize smart farming
and sustainable agriculture. By integrating Variational
Quantum Circuits (VQCs) into a classical neural network
pipeline, the model achieved an accuracy of 95.2%,
significantly outperforming the baseline CNN (91.4%) and
other deep learning architectures such as ResNet-50 and
Inception-v3. Beyond accuracy, the model also recorded
notable improvements in precision, recall, and F1-score,
thereby ensuring that both false positives and false negatives
were minimized. These improvements are critical in
agricultural contexts, where misclassifications can either
lead to crop losses or unnecessary pesticide use.

The findings highlight three major contributions. First, this
research demonstrates one of the first large-scale
applications of quantum-enhanced machine learning in
agriculture, addressing a gap in the literature where most
prior work was limited to classical Al models. Second, the
hybrid framework achieved balanced improvements across
all evaluation metrics, unlike many deep learning systems
that trade precision for recall or vice versa. Third, the study
validated its results through statistical testing, confirming
that the observed gains were both significant and robust
across multiple dataset splits. Together, these contributions
establish the wviability of hybrid quantum-classical
approaches in real-world agricultural decision-making
systems.

Despite these promising results, the research is not without
limitations. The experiments were carried out on quantum
simulators, given the current constraints of quantum
hardware in terms of qubit count, noise resilience, and
stability. While simulations provide proof-of-concept
validation, the ultimate test of feasibility will depend on
deploying such models on Noisy Intermediate-Scale
Quantum (NISQ) devices. Furthermore, while the dataset
combined both controlled and field images of tomato,
maize, and potato crops, agricultural environments are
inherently diverse. Factors such as lighting variability, soil
conditions, and crop diversity across geographies need to be
incorporated in future studies for stronger generalizability.
Finally, although training time was found to be competitive
with classical CNNs in simulations, the computational
overhead on actual quantum processors may initially be
higher until hardware matures.

Looking ahead, several directions emerge for future
research. First, as quantum devices advance, it will be
critical to test hybrid models on real quantum processors,
accounting for hardware noise and scalability. Second,
quantum transfer learning-leveraging pre-trained classical
networks with quantum layers-could reduce the demand for
large datasets while enhancing performance. Third, there is
a growing need for explainable quantum machine learning,
where the features extracted by quantum circuits can be
interpreted by agricultural experts to improve trust and
adoption. Fourth, optimizing hybrid architectures for edge
and loT devices will allow on-site disease detection in
farms, enabling real-time interventions. Finally, expanding
beyond leaf images to include multi-modal data sources-
such as hyperspectral imagery, soil data, and genomic
information-could lead to holistic crop health monitoring
systems powered by quantum-classical intelligence.

http://www.computersciencejournals.com/ijcpdm

In conclusion, this research demonstrates that quantum
computing, when integrated with classical machine learning,
can significantly advance plant disease detection, achieving
higher accuracy, robustness, and scalability compared to
conventional methods. The hybrid quantum-classical
paradigm not only opens new frontiers in agricultural
informatics but also aligns with the broader goals of
sustainable farming, food security, and environmental
protection. While challenges remain in terms of hardware
readiness and dataset diversity, the results presented here
provide a compelling case for continued exploration of
quantum-assisted solutions in agriculture. The pathway
ahead involves bridging the gap between simulation and
real-world deployment, ensuring that the theoretical promise
of quantum computing translates into tangible benefits for
farmers worldwide.
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