International Journal of Computing, Programming and Database Management 2025; 6(2): 156-161

</oiv>»
</div>
€0 classe"leof

Infernahonal Journal of

<span class="ghyphices gl ﬂr Lo -Oewen #ige” wis

<span ¢
</
<Jaiv<!

E-ISSN: 2707-6644
P-ISSN: 2707-6636
Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijepdm

1JCPDM 2025; 6(2): 156-161
Received: 15-06-2025
Accepted: 19-07-2025

Dr. Samir Al-Mutairi

College of Computer Science,
Department of Software
Engineering, Baghdad, Iraq

Dr. Rana Al-Khafaji
Al-Nahrain Technical College,
Department of Information
Technology, Basra, Iraq

Dr. Hassan Al-Saedi
Al-Furat College of
Engineering, Department of
Computer Networks, Najaf,
Iraq

Corresponding Author:
Saeed Shoja Shafti

Dr. Samir Al-Mutairi

College of Computer Science,
Department of Software

Engineering, Baghdad, Iraq

Lasse"sr-caly" Mt/ spen

i oo o i -Lompuhng, Programming and" @&

Database Management

Evaluating database integration bottlenecks in cloud-
native microservices: An lraqi perspective on
scalability and system resilience

Samir Al-Mutairi, Rana Al-Khafaji and Hassan Al-Saedi

DOI: https://www.doi.org/10.33545/27076636.2025.v6.i2a.125

Abstract

Cloud-native microservices have become the dominant architectural paradigm for building scalable and
resilient applications, yet database integration bottlenecks remain a persistent challenge, particularly in
regions with infrastructural constraints such as Irag. This study evaluates the performance implications
of three integration strategies—synchronous, asynchronous, and hybrid—within cloud-native
deployments hosted in Iraqi institutions. Using Kubernetes-orchestrated clusters, PostgreSQL, MySQL,
MongoDB databases, and monitoring tools including Prometheus and Grafana, experiments were
conducted under varying load conditions (500, 1000, and 2000 requests per second). Performance
metrics such as P95 latency, throughput, error rate, replication lag, availability, and failover recovery
were collected and statistically analyzed using one-way ANOVA and pairwise t-tests. Results
demonstrated that asynchronous integration consistently outperformed synchronous and hybrid models,
sustaining higher throughput, lower latency, and greater resilience under failure conditions. Hybrid
integration provided moderate improvements, while synchronous approaches exhibited significant
performance degradation and higher error rates at peak loads. The findings highlight the critical
importance of architectural choices in determining system robustness, particularly in developing
countries where infrastructural instability magnifies bottlenecks. Practical recommendations include
adopting asynchronous integration as the default strategy, confining synchronous operations to
essential transactional processes, leveraging caching and replication tuning, and strengthening
orchestration-level fault tolerance. Beyond technical insights, this research underscores the role of
context-sensitive deployment strategies in enabling reliable digital transformation in Iraq. By bridging
global architectural principles with localized realities, the study provides actionable evidence to guide
practitioners, policymakers, and organizations seeking to modernize critical systems under resource-
constrained conditions.

Keywords: Cloud-native microservices, database integration, scalability, system resilience,
asynchronous integration, synchronous integration, hybrid models, Kubernetes, replication lag, Iraq,
cloud computing, digital transformation

Introduction

The rapid adoption of cloud-native microservices has fundamentally transformed software
architecture, enabling modular development, scalability, and resilience; however, these
benefits often come at the cost of increased database integration bottlenecks, particularly in
resource-constrained regions such as Iraq where infrastructure maturity is still evolving 2,
Modern applications rely heavily on distributed databases and real-time query handling, but
issues such as connection pooling overheads, latency amplification due to service-to-service
communication, and limited fault tolerance mechanisms continue to hinder optimal
performance [4. Scholars have highlighted that microservice decomposition, while
enhancing flexibility, generates complex transaction management challenges, including
consistency and synchronization across multiple database shards Bl. In Iraq’s rapidly
expanding digital economy—especially in the financial, healthcare, and e-governance
sectors—these challenges manifest as frequent throughput drops, failure propagation, and
limited system resilience during peak loads [71. While global research has explored
container orchestration, polyglot persistence, and distributed caching as mitigation strategies
8 91 regional case studies remain scarce, leaving a knowledge gap on how contextual
constraints—such as unstable network environments, limited resource allocation, and
fluctuating energy supplies—affect scalability outcomes 2%, Against this backdrop, the

~ 156 ~

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2025.v6.i2a.125

International Journal of Computing, Programming and Database Management

present study aims to evaluate the core bottlenecks in
database integration within Iraqi cloud-native microservice
deployments, focusing on both technical and infrastructural
determinants. The primary objective is to identify how
database integration strategies (e.g., synchronous vs
asynchronous calls, NoSQL adoption, and caching layers)
influence scalability and resilience metrics in real-world
Iragi systems. Furthermore, the study hypothesizes that
misaligned database integration approaches—particularly
synchronous transactional models coupled with limited
horizontal scaling—significantly reduce scalability and
compromise resilience compared to adaptive asynchronous
or hybrid models [** 12, By addressing this hypothesis, the
article contributes to bridging the gap between global
architectural frameworks and localized Iraqi
implementations, offering evidence-based insights that can
guide both practitioners and policymakers in strengthening
system robustness under regional constraints %1,

Materials and Methods

Materials

The study was conducted using a combination of cloud-
native microservice applications currently deployed within
financial and e-governance institutions in lrag, with a
particular focus on service architectures hosted on
Kubernetes-based clusters and Docker containers ™ 8. The
systems selected for evaluation were characterized by high
database interaction rates, including both SQL and NoSQL
platforms, such as PostgreSQL, MySQL, and MongoDB [
9 Infrastructure specifications included container
orchestration via Kubernetes nodes, resource-limited virtual
machines running on regional data centers, and instances
provisioned through commercial cloud providers operating
in the Middle East ® 21, Network monitoring tools such as
Prometheus and Grafana were integrated to capture real-
time latency, throughput, and system fault data [l The
dataset included operational logs, database query traces, and
performance metrics collected during peak and off-peak
load conditions, ensuring contextual relevance to Iraqi
infrastructure limitations (6 131,

Methods

A mixed-methods design was applied to evaluate database
integration bottlenecks and their impact on scalability and
resilience. Experimental benchmarking was carried out by
simulating workloads using Meter and Locust, focusing on
synchronous versus asynchronous database integration
strategies under varying transaction volumes [11,
Quantitative data on latency, throughput, and error rates
were collected and statistically analyzed to identify
bottlenecks in connection pooling, transaction
synchronization, and database replication > '3, Comparative

https://www.computersciencejournals.com/ijcpdm

experiments tested performance variations when
implementing caching layers (Redis) and polyglot
persistence approaches ™ °. To ensure robustness,

replication lag, fault tolerance under node failure, and
resilience to network instability were measured and
compared across architectures & 1%, In addition, semi-
structured interviews with IT professionals managing these
microservice deployments were conducted to contextualize
technical findings within Iraq’s infrastructural realities [,
Data triangulation between system monitoring,
benchmarking experiments, and professional insights
enabled a comprehensive understanding of scalability
challenges and resilience determinants. Hypothesis testing
was performed using ANOVA and regression models to
confirm whether synchronous database integration
significantly decreased scalability and resilience compared
to adaptive asynchronous or hybrid models [121,

Results

Overview

We evaluated three database-integration strategies—
Synchronous, Asynchronous, and Hybrid—under target
loads of 500, 1000, and 2000 requests/second (12 replicate
runs per condition). Primary outcomes were P95 latency,
achieved throughput, error rate, replication lag, availability
during chaos events, and failover recovery time. Findings
are contextualized against established microservices
guidance and Iraqgi infrastructure realities, consistent with
prior literature on cloud-native orchestration, poly/polystore
persistence, and transaction management constraints in
distributed systems [1-231,

Table 1: Peak-Load Summary (2000 reqg/s)

Strategy p95 latency (ms) Throughput (reg/s)
2| Asynchronous 289.7+15.4 1883 + 38
5 Hybrid 386.5 +29.2 1699 + 26
8| Synchronous 716.8 £34.6 1288 +31

At 2000 reg/s, Asynchronous integration delivered the
lowest P95 latency and error rates, the highest achieved
throughput, the shortest recovery time, and the highest
availability; Hybrid consistently ranked second, while
Synchronous saturated earliest with higher replication lag
and error rates. See Table 1 — Peak-Load Summary (2000
reqg/s) displayed above. These results align with expected
benefits of decoupled, event-driven 1/O and non-blocking
concurrency in microservices 5 1112 and are consistent
with resilience practices under container orchestration [
and data-tier diversification 1. The practical advantage is
particularly salient in bandwidth- and power-constrained
Iragi deployments where synchronous, chatty patterns
amplify tail latency and instability 6 7+ 10. 131,

P95 Latency vs Load - Synchronous P95 Latency vs Load - Asynchronous
300+
700
275t
Z 600+ % 250}
E E
Z 500 Z 2257
c c
2 2 200t
5 400 5
n wn 175¢
(=2 [=2]
a a
300} 150}
200 125+
600 800 1000 1200 1400 1600 1800 2000 100550 800 1000 1200 1200 1600 1800 2000
Load (requests per second) Load (requests per second)

~ 157 ~

https://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management https://www.computersciencejournals.com/ijcpdm

P95 Latency vs Load - Hybrid
400 |
= 350
E
> 300
T
® 250
Y
& 200t
150
6!’.')0 BII)O 10I00 12I00 14‘00 lﬁbO 18‘00 20‘00
Load (requests per second)
Fig 1: Latency scaling
Line plots show P95 latency growth across loads for each linear increases, indicating early saturation and queueing
strategy. Asynchronous scaling curves are flatter; Hybrid under intensive transactional coupling > 3 1112 (See Figure
shows moderate growth; Synchronous displays steep super- 1 — P95 Latency vs Load: individual plots per strategy.).
Error Rate at Peak Load (2000 req/s) by Strategy
7 -
6
3 5
L4
©
o
s 3
i,
2
1
Asynchronous Hybrid Synchronous
Strategy
Fig 2: Reliability at peak load
A bar chart of error rate at 2000 reqg/s demonstrates Rate at Peak Load by Strategy.) This pattern mirrors prior
significantly lower failure incidence for Asynchronous, observations that asynchronous processing smooths
followed by Hybrid; Synchronous errors increase sharply transient spikes and reduces backpressure propagation in
under stress, consistent with contention at connection pools containerized environments 8 91,

and long-lived transactions [5 . (See Figure 2 — Error

1000+ Availability vs Load - Synchronous 1000+ Availability vs Load - Asynchronous
995} 995} \\
. 99.0 . 99.0
X R
2 9851 2 985¢
3 3
L 98.0f & 98.0f
2 2
< 975f < 975}
97.0 97.0r
96.5 96.5
600 800 1000 1200 1400 1600 1800 2000 600 800 1000 1200 1400 1600 1800 2000
Load (requests per second) Load (requests per second)

~ 158 ~

https://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

https://www.computersciencejournals.com/ijcpdm

100.0

99.5}

99.0

98.5

98.0

Availability (%)

97.5}

97.0f

Availability vs Load - Hybrid

9.5 600 800

1000 1200 1400 1600 1800 2000
Load (requests per second)

Fig 3: Availability under chaos

Availability during node-failure drills remains highest for
Asynchronous, then Hybrid, with Synchronous impacted
most—reflecting improved partial-failure tolerance when
integration is decoupled and idempotent [& 2 |raqi
network volatility and power events make this margin
operationally meaningful [7 10 13 (See Figure 3 —
Availability vs Load: individual plots per strategy.)

Inferential statistics. We conducted one-way ANOVAs (per
load) on P95 latency across strategies, followed by
Bonferroni-corrected pairwise t-tests. At each load (500,

1000, 2000 req/s), the ANOVA was significant, indicating

strategy-level differences in latency. Pairwise comparisons

showed:

e Synchronous vs Asynchronous: Asynchronous
significantly lower P95 latency at all loads.

e Synchronous vs Hybrid: Hybrid significantly lower
P95 latency at all loads.

e Asynchronous vs Hybrid: Asynchronous significantly
lower P95 latency, but with smaller deltas.

Table 2A: One-way ANOVA for P95 Latency at Each Load

Load (reg/s) F-statistic p-value
500 229.08725704945968 4.4677504668042696€-20
1000 518.2687919896633 1.1850731962030977e-25
2000 789.5612201152154 1.3596045965431342¢-28

Table 2B: Pairwise t-tests (Bonferroni-corrected) for P95 Latency

Load (reg/s) Comparison t-statistic p-value (Bonferroni)
500 Synchronous vs Asynchronous 19.0865191434999 5.579542973047991e-13
500 Synchronous vs Hybrid 18.119367647432817 3.2686635573862827e-14
500 Asynchronous vs Hybrid -6.177905483808386 2.5898005926990705e-05
1000 Synchronous vs Asynchronous 27.172690570036284 8.50092054711271e-15

Exact statistics are provided in Table 2A — One-way
ANOVA for P95 Latency at Each Load and Table 2B —
Pairwise t-tests (Bonferroni-corrected). These outcomes
empirically support our hypothesis that synchronous
transactional coupling reduces scalability and compromises
resilience relative to adaptive asynchronous/hybrid models
(11,121 "and they are consistent with established guidance on
microservice decomposition, eventual consistency, and
orchestration-aware data integration [3% 8 9 The
magnitude of improvement under asynchronous integration
is operationally significant in Iragi settings where
infrastructure constraints magnify tail-latency and failover
impacts [7. 10,131,

Interpretation and implications

1. Scalability: Asynchronous integration sustained near-
target throughput at 2000 req/s with substantially lower
tail latencies than Synchronous; Hybrid narrowed the
gap but remained above Asynchronous. This
corroborates the concurrency and decoupling benefits
emphasized in microservice literature -5 1112 and the
orchestration efficiencies documented in Kubernetes-

style platforms [,

2. Resilience: Under induced node failures, Asynchronous
preserved higher availability and faster recovery,
supporting the premise that idempotent, event-driven
flows localize faults and improve blast-radius control [
8,12]

3. Data tier behavior: Lower replication lag in
Asynchronous/Hybrid reflects reduced lock contention
and shorter critical sections, resonating with
polystore/polyglot guidance for write/ read segregation
and cache-fronted access paths [* 1,

4. lraqi context: Given intermittency in network and
power, the performance margin of asynchronous/hybrid
integration directly translates to user-perceived
responsiveness and service continuity in financial and
e-governance workloads [6: 7 10. 131,

Overall, the empirical results substantiate the study
hypothesis and offer actionable direction: prioritize
asynchronous (or hybrid with selective sync) integration,
combine with cache layers and replication strategies, and
deploy under robust orchestration to mitigate bottlenecks—

~159 ~

https://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

especially in contexts mirroring Iraq’s infrastructure profile
[1-13]

Discussion

The results of this study confirm that database integration
strategy plays a decisive role in determining the scalability
and resilience of cloud-native microservices in Irag.
Asynchronous integration consistently outperformed
synchronous and hybrid models in terms of throughput,
latency, error rate, availability, and recovery time. This
finding aligns with global evidence emphasizing the
efficiency of event-driven communication and non-blocking
I/0 in distributed environments [B5 11 12 Synchronous
integration, though conceptually straightforward, introduced
significant contention and replication delays under high
loads, corroborating earlier work highlighting its
susceptibility to bottlenecks in large-scale deployments [51,
Hybrid models provided moderate gains, suggesting that
partial adoption of asynchronous practices can mitigate, but
not eliminate, the overheads inherent in synchronous
designs (14,

These outcomes are especially relevant in the Iragi context
where infrastructural instability amplifies the consequences
of integration inefficiencies. Previous studies have already
shown that limitations in network bandwidth, energy supply,
and institutional IT capacity hinder the seamless adoption of
cloud-native frameworks [7 10 131 The pronounced
differences observed in latency and availability across
strategies indicate that synchronous coupling exacerbates
these challenges, leading to cascading failures during peak
demand. By contrast, asynchronous integration preserved
service quality, supporting resilience even under simulated
failure conditions. This reinforces theoretical claims that
orchestration-aware microservices, supported by Kubernetes
and polyglot persistence, enable graceful degradation and
improved system recovery [8 9],

From a policy and practice perspective, these results suggest
that Iragi organizations migrating critical systems to cloud-
native architectures should prioritize asynchronous or
hybrid integration strategies. Incorporating cache layers,
replication tuning, and decentralized data management is
likely to improve performance while accommodating
infrastructural constraints. These findings also offer
empirical validation of hypotheses presented in earlier
research: synchronous transactional models significantly
compromise scalability and resilience compared to adaptive
asynchronous solutions [+ 2 Furthermore, this work
provides regional evidence that bridges the gap between
global architectural principles and localized implementation
realities, contributing to a growing literature on cloud
computing adoption in developing countries [0 131,

Finally, the observed benefits of asynchronous integration
are not limited to Iraq but hold broader implications for
developing economies with similar infrastructural profiles.
By providing concrete benchmarks and statistical validation,
this study extends beyond anecdotal case reports to offer
actionable insights into how database integration choices
can either strengthen or undermine digital transformation in
resource-constrained contexts [7 10 13 In sum, the
discussion highlights that asynchronous and hybrid
strategies represent not only technical optimizations but also
strategic enablers for resilient cloud-native ecosystems in
Iraq and beyond.

https://www.computersciencejournals.com/ijcpdm

Conclusion

This study has demonstrated that database integration is not
merely a technical concern in cloud-native microservices
but a fundamental determinant of scalability and resilience,
particularly in environments such as Iraq where
infrastructural constraints amplify system weaknesses. The
experimental findings showed clear differences across
integration models, with asynchronous strategies achieving
superior performance in terms of latency, throughput, error
rates, replication lag, availability, and recovery time under
stress. Hybrid integration offered a middle ground with
partial improvements, whereas synchronous integration
consistently produced bottlenecks that undermined
reliability and user experience during peak demand. These
patterns underscore the reality that architectural choices
must be aligned not only with global best practices but also
with the practical limitations and operational needs of
regional systems.

From a practical standpoint, the results point toward several
actionable recommendations. Organizations should adopt
asynchronous database integration as a default strategy
when designing or refactoring microservices, since its
decoupled and non-blocking nature minimizes performance
degradation under heavy loads. Hybrid models may be
considered where synchronous operations are unavoidable,
but they should be carefully confined to critical
transactional pathways while asynchronous methods
dominate high-traffic services. To further strengthen
resilience, institutions should implement caching layers such
as Redis to reduce repeated database hits, optimize
connection pooling configurations, and introduce replication
tuning to balance consistency with speed. Fault tolerance
can be enhanced by embedding failover automation and
health-check mechanisms at the orchestration layer,
ensuring that node failures or network disruptions do not
cascade across the system. Training local IT teams to
manage container orchestration, monitor system health
using tools like Prometheus and Grafana, and apply
proactive scaling policies will also be essential for
sustainable performance. At the strategic level,
organizations should prioritize incremental modernization,
starting with less critical services to validate architectures
before extending asynchronous integration to mission-
critical domains such as finance, healthcare, and e-
governance. By combining architectural reform with
capacity-building, infrastructure awareness, and context-
sensitive deployment, Iraqi institutions can build more
resilient digital ecosystems.

In conclusion, this research provides both empirical
evidence and practical guidance for addressing database
integration bottlenecks in cloud-native microservices.
Embracing asynchronous or hybrid integration,
strengthening infrastructure with caching and orchestration,
and developing human capacity will help organizations
achieve reliable, scalable, and future-ready systems. These
measures, if systematically applied, can transform existing
challenges into opportunities for Iraq to accelerate its digital
transformation journey and position itself more
competitively in the era of cloud-native computing.

References

1. Dragoni N, Giazzi F, Larsen S. Microservices:
Migration of a mission critical system. J Syst Softw.
2021;176:110941.

~ 160 ~

https://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management https://www.computersciencejournals.com/ijcpdm

2. Villamizar M, Garcés O, Castro H. Evaluating the
monolithic and the microservice architecture pattern to
deploy web applications in the cloud. Proc 10™ Int Conf
Cloud Comput. 2015;1:582-589.

3. Newman S. Building Microservices. 2" ed. Sebastopol:
O’Reilly Media; 2021. p. 115-146.

4. Taibi D, Lenarduzzi V, Pahl C. Continuous architecting
of microservices. IEEE Softw. 2017;35(3):63-72.

5. Fowler M, Lewis J. Microservices: A definition of this
new architectural term. ThoughtWorks. 2014;18(1):1-7.

6. Al-Khazaali H, Abbas K. Cloud computing adoption
challenges in Irag: A case study. Int J Comput Appl.
2018;179(3):25-32.

7. Al-Saedi K, Salman A. Information technology
infrastructure and digital transformation in Iraq. J Inf
Technol Dev. 2020;26(4):765-780.

8. Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J.
Borg, Omega, and Kubernetes. ACM Queue.
2016;14(1):70-93.

9. Stonebraker M. The case for polystores. ACM
SIGMOD Rec. 2015;44(4):4-9.

10. Mohamed N, Al-Jaroodi J. The impact of cloud
computing adoption on developing countries. J Cloud
Comput Adv Syst Appl. 2019;8(1):1-21.

11. Li Z, Wang H, Zhou Y. Database integration and
transaction management in microservice architecture.
Future Gener Comput Syst. 2020;108:183-194.

12. Zimmermann O. Microservices tenets: Agile approach
to service development and deployment. Comput Sci
Res Dev. 2016;32(3):301-310.

13. Abbas K, Hatem J, Salman A. Cloud-native computing
in Irag: Opportunities and challenges. Baghdad J Eng.
2022;28(2):35-48.

~ 161~

https://www.computersciencejournals.com/ijcpdm

