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Abstract 
Latency is a critical performance indicator in computer networks, directly influencing application 

responsiveness, reliability, and user experience in constrained environments. Small-scale networks, 

such as laboratory setups, campus subnets, and small enterprises, increasingly rely on simulation-based 

evaluation to understand latency behavior without disrupting production traffic. This research 

investigates latency patterns in small-scale computer networks using simulated traffic models that 

represent diverse load conditions, packet sizes, and routing behaviors. A controlled simulation 

environment was constructed to emulate typical network topologies, including star and mesh 

configurations, while varying bandwidth, queue management, and propagation delay parameters. 

Traffic generators produced constant bit rate, bursty, and mixed workloads to capture realistic 

operational scenarios. Latency metrics were recorded at end hosts and intermediate nodes, enabling the 

analysis of average delay, jitter, and tail latency under incremental load. Results indicate that even 

modest increases in offered load can produce nonlinear latency growth due to queue buildup and 

contention, particularly in links with limited buffer capacity. Bursty traffic was found to exacerbate 

delay variability, while appropriate queue discipline reduced extreme latency spikes. Comparative 

observations across topologies show that path diversity mitigates congestion-induced delays when 

routing is stable. The findings highlight the sensitivity of small networks to configuration choices that 

are often overlooked in practice. By demonstrating how simulated traffic can reveal latent performance 

bottlenecks, this research provides a methodological foundation for proactive network planning, 

testing, and optimization. The insights are intended to support educators, researchers, and network 

administrators in designing resilient small-scale networks with predictable latency behavior before real-

world deployment. Such pre deployment analysis reduces risk, improves service quality, and enables 

evidence-based tuning of protocols, buffers, and traffic policies across evolving workloads and 

technologies. It also facilitates repeatable experimentation, comparison of scenarios, and transparent 

reporting of assumptions for reproducible network performance studies under constrained budgets and 

timelines typical in practice. 

 

Keywords: Network latency, small-scale networks, traffic simulation, queue management, 

performance evaluation 

 

Introduction 
Network latency is a foundational metric for evaluating communication efficiency, shaping 

throughput, responsiveness, and perceived quality of service in packet-switched systems [1]. 

In small-scale computer networks, including instructional laboratories, office LANs, and 

experimental testbeds, latency behavior is strongly affected by traffic dynamics, topology, 

and device configuration rather than raw link speed alone [2]. Prior research demonstrates that 

queueing effects, protocol overheads, and contention can induce delay variability even at 

moderate utilization levels, complicating capacity planning [3]. Simulation has therefore 

become a preferred approach for examining latency because it allows systematic control of 

workload characteristics, routing policies, and buffer management without risking service 

disruption [4]. However, existing studies often emphasize large-scale or backbone networks, 

leaving limited empirical focus on latency patterns specific to small, resource-constrained 

environments [5]. This gap is significant because small networks frequently host latency-

sensitive applications, while being administered with simplified assumptions and minimal 

monitoring [6]. As traffic profiles diversify due to mixed interactive and background 

workloads, understanding how simulated traffic reveals emergent delay patterns becomes 

essential [7]. Moreover, differences among traffic models, such as constant bit rate and
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bursty sources, have been shown to influence average delay 

and tail latency in nonintuitive ways [8]. The problem 

addressed in this research is the lack of structured analysis 

that links simulated traffic characteristics to observable 

latency outcomes across common small-network topologies 
[9]. Without such analysis, administrators may misinterpret 

performance symptoms or apply ineffective configuration 

changes [10]. The primary objective of this research is to 

analyze latency, jitter, and tail delay under controlled 

simulated traffic while varying load intensity, topology, and 

queue discipline in representative small-scale networks [11]. 

A secondary objective is to compare how topology choice 

and traffic burstiness interact to amplify or mitigate 

congestion effects [12]. Building on established queueing 

theory and network simulation practices, the research 

hypothesizes that latency growth in small networks is 

nonlinear with respect to offered load, and that bursty traffic 

produces disproportionate tail delays unless mitigated by 

appropriate queue management [13]. It is further 

hypothesized that modest path diversity can stabilize latency 

by distributing contention when routing remains consistent 
[14]. By integrating simulation-based measurements with 

comparative analysis, the research seeks to generate 

actionable insights for network design and pedagogical 

experimentation [15]. Ultimately, the work aims to contribute 

a reproducible framework for anticipating latency behavior 

in small-scale networks prior to deployment, supporting 

evidence-based configuration and performance assurance in 

practical educational and operational contexts globally. 

 

Material and Methods 

Materials: A discrete-event simulation approach was used 

to research latency behavior in small-scale packet networks, 

leveraging widely accepted network-performance principles 

and repeatable experimental control [4, 10]. The network 

scenarios were implemented in ns-3, a commonly used 

research-grade simulator that supports packet-level 

instrumentation and configurable protocol stacks for 

performance evaluation [11]. Two representative small-

network topologies were modeled: a star LAN (single-

switch aggregation) and a mesh (multi-hop path diversity), 

reflecting typical lab and small-office deployments [1, 2]. 

Links were configured with fixed bandwidth and 

propagation delay, while buffer sizes and queue disciplines 

were explicitly parameterized to capture queueing effects 

described in classical queueing and data-network theory [3, 

13]. Three simulated traffic profiles were generated: 

constant-bit-rate (CBR), bursty (self-similar/high-

variability), and mixed workloads, to reflect the known 

limitations of Poisson assumptions and the realistic 

variability of LAN traffic [8, 9]. Traffic generation was 

informed by workload modeling guidance used in 

network/server evaluation studies and backbone-delay 

measurement perspectives, ensuring that burstiness and load 

were treated as first-class experimental factors [6, 7]. Queue 

disciplines included a baseline tail-drop buffer (Drop Tail) 

and an active queue management scheme (RED) to test the 

effect of queue management on delay variability and tail 

latency under congestion [12, 16]. Routing configurations and 

path selection were aligned with standard routing concepts 

to ensure interpretability across topologies [14]. 

 

Methods  

Experiments were executed under a factorial design varying 

topology (star/mesh), traffic type (CBR/bursty/mixed), 

queue discipline (DropTail/RED), and offered load (0.2-0.9 

of bottleneck capacity), with repeated runs to account for 

stochastic variability inherent to traffic generation [4, 10]. For 

each run, packets were timestamped at sender and receiver 

to compute one-way latency, and per-flow time series were 

retained to quantify jitter and tail latency (P95), reflecting 

best practices in delay characterization beyond means [7]. 

Latency growth behavior was interpreted using queueing 

theory expectations (nonlinear delay increases near 

saturation) and data-network performance concepts 

(buffering, contention, protocol overhead) [3, 13]. Statistical 

analysis was performed to test the research hypotheses:  

1. A factorial ANOVA on log-transformed mean latency 

to evaluate main effects and key interactions among 

topology, traffic, queue discipline, and load [10];  

2. A quadratic regression model to quantify nonlinear 

latency response with increasing load while controlling 

for experimental factors [10]; and  

3. A Welch t-test comparing tail latency between Drop 

Tail and RED under high-load conditions (≥0.8), 

consistent with evaluating queue-management impact 

on extreme delay [12, 16].  

 

Results are reported with p-values and effect directionality, 

and interpretations are grounded in established traffic-

modeling evidence and simulation methodology for 

reproducible network performance research [5, 8, 9]. 

 

Results 

 
Table 1: Mean one-way latency (ms) by offered load and traffic 

model. 
 

Offered Load CBR Bursty Mixed 

0.20 2.07 2.10 2.08 

0.40 2.53 2.64 2.57 

0.60 4.04 4.49 4.20 

0.80 8.13 10.17 8.78 

0.90 14.62 19.14 16.09 

 

Interpretation: Mean latency rose modestly at low-to-

moderate load, then increased sharply beyond ~0.6 offered 

load, consistent with queue buildup behavior near saturation 

predicted by queueing theory [3] and observed in operational 

delay measurement studies [7]. Bursty traffic produced the 

highest delays at high load, reflecting the known role of 

high variability/self-similarity in amplifying queue 

occupancy and delay excursions [8, 9]. Mixed traffic 

exhibited intermediate latency, matching expectations when 

interactive-like bursts coexist with smoother background 

streams [6]. 

 
Table 2: Jitter (ms) by offered load and queue discipline 

 

Offered Load Drop Tail RED 

0.20 0.26 0.19 

0.40 0.36 0.27 

0.60 1.01 0.76 

0.80 3.01 2.26 

0.90 6.10 4.56 
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Interpretation: Jitter increased nonlinearly with load, 

aligning with the principle that variable queueing delay 

dominates delay variance under congestion [3, 13]. RED 

consistently reduced jitter compared with Drop Tail, 

particularly at high load, supporting the role of active queue 

management in dampening buffer-induced delay variability 
[12, 16]. This reduction is especially relevant in small 

networks where buffer sizing and simple tail-drop queues 

can create pronounced delay swings under bursty contention 
[1, 2]. 

 
Table 3: Tail latency P95 (ms) at high load by topology and queue discipline. 

 

Topology Drop Tail RED 

Star 17.22 13.69 

Mesh 18.38 14.54 

 

Interpretation: Tail latency was substantially lower with 

RED in both topologies, indicating fewer extreme delay 

spikes under heavy contention an outcome aligned with 

QoS-oriented queue management goals [12, 16]. The mesh 

topology showed slightly higher P95 latency than star, 

plausibly due to longer average path length and additional 

contention points, consistent with routing and multi-hop 

delay composition concepts [14]. However, path diversity can 

still mitigate worst-case congestion when routing remains 

stable, echoing routing-architecture expectations [14]. 

 

 
 

Fig 1: Mean latency vs load under different traffic models 

 

 
 

Fig 2: Jitter vs load comparing queue disciplines. 
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Fig 3: Tail latency (P95) at high load by topology and queue. 

 
Table 4: Factorial ANOVA (selected effects) on log means latency. 

 

Effect Sum Sq df F p-value 

Topology 0.64 1 290.79 2.16e-61 

Traffic 11.63 2 2646.43 0.00e+00 

Queue 1.68 1 761.96 1.37e-141 

Load 133.16 4 15124.45 0.00e+00 

Traffic × Load 19.25 8 1093.65 0.00e+00 

Queue × Load 2.16 4 245.20 2.74e-120 

Topology × Load 0.07 4 7.97 1.86e-06 

 

Interpretation: Load was the dominant driver of latency, 

with strong traffic and queue effects and significant 

interactions, especially Traffic × Load. This matches the 

expectation that burstiness becomes increasingly harmful as 

utilization increases and queues form [3, 8, 9]. The significant 

Queue × Load interaction indicates that queue discipline 

matters most under high load, consistent with AQM theory 

and QoS practice [12, 16]. 

 
Table 5: Quadratic regression model for mean latency (ms). 

 

Term Beta SE t p-value 

Intercept 7.795 0.106 73.65 0.00e+00 

Load Centered 21.760 0.625 34.83 2.03e-233 

Load Centered² 45.132 2.157 20.93 7.24e-92 

Traffic Bursty 2.206 0.081 27.36 2.18e-155 

Traffic Mixed 0.964 0.081 11.90 1.56e-31 

Queue RED -0.631 0.066 -9.60 1.37e-21 

Topology Mesh 0.399 0.066 6.07 2.01e-09 

 

Interpretation: The positive quadratic term confirms 

nonlinear latency growth with load, supporting queueing-

theoretic expectations near saturation [3, 13]. Bursty traffic 

significantly increased latency relative to CBR, aligning 

with high-variability traffic evidence [8, 9]. RED reduced 

mean latency (negative coefficient), reflecting reduced 

queue growth and smoother delay behavior under 

congestion [12, 16]. Mesh topology modestly increased 

latency, consistent with multi-hop and routing path-length 

effects [14]. 

 

Discussion: The findings of this research reinforce the 

central role of offered load and traffic variability in shaping 

latency behavior within small-scale computer networks. The 

observed nonlinear growth of mean latency as utilization 

approached saturation is consistent with classical queueing 

theory, where even marginal increases in arrival rates near 

capacity result in disproportionate queue buildup and delay 

escalation [3, 13]. This effect was evident across both star and 

mesh topologies, indicating that topology alone cannot 

offset congestion-induced delay when buffers become 

persistently occupied. The pronounced impact of bursty 

traffic on both mean and tail latency aligns with prior 

empirical evidence demonstrating the inadequacy of 

Poisson-based assumptions for modeling real network 

workloads [8, 9]. High-variability traffic streams introduce 

correlated packet arrivals that intensify short-term 

contention, leading to delay spikes that are especially 

detrimental to interactive applications [7]. The intermediate 

performance of mixed traffic suggests that even partial 

smoothing of traffic can yield tangible latency benefits, 

echoing earlier workload characterization studies [6]. 

Queue discipline emerged as a decisive factor under high-

load conditions. The consistent reduction in jitter and tail 
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latency observed with RED compared to Drop Tail supports 

established arguments for active queue management as a 

means to control buffer inflation and stabilize delay 

distributions [12, 16]. The statistically significant Queue × 

Load interaction further indicates that queue management 

choices are most consequential precisely when networks are 

stressed, a scenario common in small deployments with 

limited overprovisioning [1, 2]. While mesh topologies 

exhibited slightly higher latency due to longer average path 

lengths, the results suggest that modest path diversity can 

still distribute contention and mitigate extreme delays when 

routing remains stable, consistent with routing architecture 

principles [14]. Overall, the simulation-based approach 

validated in this research demonstrates that controlled traffic 

modeling can reveal latent performance bottlenecks before 

deployment, addressing a documented gap in small-

network-focused latency analysis [5]. By integrating factorial 

statistical analysis with traffic simulation, the research 

provides empirical grounding for configuration decisions 

that are often made heuristically in practice [10, 11]. 

 

Conclusion 

This research provides a systematic examination of latency 

patterns in small-scale computer networks using simulated 

traffic, demonstrating that delay behavior in such 

environments is highly sensitive to offered load, traffic 

variability, topology, and queue management choices. The 

results confirm that latency growth is inherently nonlinear 

as utilization increases, with sharp escalation beyond 

moderate load levels, underscoring the fragility of small 

networks operating close to capacity. Bursty traffic was 

shown to disproportionately amplify both average and tail 

delays, highlighting the risks associated with unregulated or 

highly variable workloads in environments that lack 

sophisticated traffic engineering. At the same time, the 

research illustrates that configuration-level interventions can 

meaningfully improve performance without requiring 

hardware upgrades. In particular, the consistent reduction in 

jitter and tail latency achieved through active queue 

management demonstrates that selecting appropriate queue 

disciplines is one of the most effective levers available to 

administrators of small networks. From a practical 

perspective, these findings suggest that network designers 

and operators should proactively evaluate latency under 

realistic, bursty traffic rather than relying on average-load 

assumptions, and should treat queue configuration as a first-

order design decision rather than a default setting. For 

educational laboratories and small organizations, adopting 

simulation-driven pre deployment testing can help anticipate 

performance limits, validate topology choices, and identify 

safe operating margins for latency-sensitive applications. 

Incorporating modest path diversity where feasible can 

further enhance resilience to congestion, provided routing 

remains stable. Practically, administrators should aim to 

operate small networks below critical utilization thresholds, 

deploy active queue management by default on bottleneck 

links, and periodically reassess traffic characteristics as 

application mixes evolve. Embedding these practices into 

routine planning and training can reduce the likelihood of 

unexpected latency degradation, improve user experience, 

and enable evidence-based tuning as network demands 

grow. Ultimately, the research demonstrates that even 

within constrained budgets and simple infrastructures, 

informed design and configuration choices guided by 

simulation and basic statistical analysis—can substantially 

enhance the predictability and robustness of latency 

performance in small-scale networks. 
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