International Journal of Computing, Programming and Database Management 2026; 7(1): 31-35

</oiv>»
</div>
€0 classe"leof

Infernahonal Journal of

<span class="ghyphices gl ﬂr Lo -Oewen #ige” wis

<span ¢
</
<Jaiv<!

E-ISSN: 2707-6644
P-ISSN: 2707-6636
Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijepdm

1JCPDM 2026; 7(1): 31-35
Received: 21-09-2025
Accepted: 27-11-2025

Lucas Reinhardt

Department of Embedded
Systems, Polytechnic Institute
of Milan, Milan, Italy

Elena Rossi

Department of Embedded
Systems, Polytechnic Institute
of Milan, Milan, Italy

Johan Svensson

Department of Embedded
Systems, Polytechnic Institute
of Milan, Milan, Italy

Corresponding Author:

Lucas Reinhardt

Department of Embedded
Systems, Polytechnic Institute
of Milan, Milan, Italy

Lasse"sr-caly" Mt/ spen

i oo o i -Lompuhng, Programming and" @&

Database Management

An empirical analysis of process scheduling behavior
in lightweight operating systems

Lucas Reinhardt, Elena Rossi and Johan Svensson

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.151

Abstract

Lightweight operating systems have become foundational components of contemporary embedded,
cyber-physical, and edge computing platforms where constrained resources and deterministic behavior
are primary design requirements. Process scheduling in such systems directly influences latency,
throughput, energy efficiency, and real-time responsiveness, yet empirical evaluations remain
fragmented across platforms and workloads. This research presents an empirical analysis of process
scheduling behavior in representative lightweight operating systems, focusing on how scheduler design
choices affect execution fairness, response time, and context-switch overhead under realistic operating
conditions. Controlled experiments were conducted using synthetic and application-oriented workloads
to capture scheduler performance across varying task arrival rates, priority distributions, and
computational intensities. Quantitative metrics including average waiting time, turnaround time,
response time variance, CPU utilization, and pre-emption frequency were systematically measured and
compared. The analysis reveals that while priority-based pre-emptive schedulers offer superior
responsiveness for time-critical tasks, they may induce starvation risks under sustained mixed
workloads. Conversely, round-robin and time-slice-based approaches demonstrate improved fairness
and predictability but incur higher context-switch overhead in high-frequency task environments. The
results further indicate that scheduler tuning parameters, such as quantum length and priority aging
mechanisms, significantly moderate performance trade-offs. By correlating observed scheduling
behavior with workload characteristics, this research highlights practical design implications for
selecting and configuring schedulers in lightweight operating systems. The findings contribute
empirical evidence that supports informed scheduler selection for embedded and real-time applications,
emphasizing that no single scheduling strategy is universally optimal. Instead, performance efficiency
emerges from aligning scheduler policies with workload demands, timing constraints, and resource
limitations inherent to lightweight operating environments. These insights provide guidance for system
designers, researchers, and practitioners seeking to balance responsiveness, fairness, and efficiency
when deploying lightweight operating systems across diverse embedded scenarios and evolving edge
workloads under practical constraints, real-time demands, and long-term maintainability considerations
within constrained hardware ecosystems globally applicable.

Keywords: Lightweight operating systems, process scheduling, empirical analysis, real-time systems,
embedded computing

Introduction

Lightweight operating systems have gained prominence with the proliferation of embedded
devices, sensor networks, and edge platforms that demand predictable performance under
constrained computational and memory resources . Unlike general-purpose operating
systems, these platforms prioritize minimal kernel footprints, low interrupt latency, and
deterministic scheduling to satisfy real-time and energy-aware requirements 2. At the core
of such systems, process scheduling governs how limited CPU time is allocated among
competing tasks, directly shaping responsiveness, fairness, and overall system stability [,
Prior studies have examined classical scheduling policies, including round-robin, fixed-
priority, and earliest-deadline-first approaches, largely through analytical modeling or
simulation-centric evaluations ™. However, the increasing heterogeneity of workloads in
modern lightweight environments, ranging from periodic sensing tasks to bursty
communication and control routines, exposes limitations in purely theoretical assessments 1,
Empirical investigations that measure scheduler behavior under realistic workloads remain
comparatively limited, particularly with respect to quantifying trade-offs between

~31~

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.151

International Journal of Computing, Programming and Database Management

responsiveness and fairness across diverse operating
conditions . This gap is significant because scheduler
misconfiguration or inappropriate policy selection can lead
to priority inversion, starvation, or excessive context-switch
overhead, undermining system reliability 1. The present
research addresses this problem by conducting a systematic
empirical analysis of process scheduling behavior in
lightweight operating systems using controlled yet
representative workloads 1. The primary objective is to
evaluate how different scheduling strategies influence
waiting time, turnaround time, response variability, and
CPU utilization under varying task arrival patterns and
priority distributions 1. A secondary objective is to assess
the sensitivity of observed performance to scheduler
parameters such as time quantum length and priority aging
mechanisms, which are often tuned heuristically in practice
(19, Based on existing theoretical insights, the central
hypothesis of this research is that no single scheduling
policy consistently outperforms others across all workload
scenarios; instead, scheduler effectiveness depends on the
alignment between policy characteristics and workload
dynamics 4, By empirically validating this hypothesis, the
research aims to provide actionable evidence to guide
scheduler selection and configuration for designers of
lightweight and real-time systems 12, Such evidence is
increasingly relevant as lightweight kernels are deployed in
safety-critical and cyber-physical contexts where timing
anomalies propagate into functional failures [,
Furthermore, empirically grounded scheduling insights
support reproducibility and cross-platform comparison,
enabling researchers to move beyond isolated benchmarks
toward more generalizable performance conclusions for
emerging minimal operating system designs 4. This
orientation strengthens methodological rigor while
informing practical deployment decisions under evolving
hardware constraints and diverse real-time workloads
globally (51,

Material and Methods

Materials: A lightweight-OS scheduling testbed was
prepared to empirically observe scheduler behavior under
constrained, real-time-oriented assumptions typical of
embedded and edge deployments [2 12 181 The research
focused on three canonical scheduling policies implemented
in lightweight kernels or minimal configurations: Round-
Robin time-slicing, Fixed-Priority pre-emptive scheduling,

http://www.computersciencejournals.com/ijcpdm

and Earliest-Deadline-First (EDF) scheduling, reflecting

classical real-time scheduling theory and widely used kernel

practices [3 458101 ‘Workload inputs consisted of

1. Synthetic periodic task sets and bursty arrivals to
emulate sensing/communication/control mixes, and

2. Application-like traces that reproduce heterogeneous
task execution times and priority distributions common
in sensor and cyber-physical nodes [14151,

For each condition, instrumentation captured per-task
timestamps (release, start, completion), pre-emption events,
and context-switch counts, with safeguards for
synchronization anomalies such as priority inversion using
established protocol principles where applicable). The
primary outcomes were average response time (ms),
turnaround time (derived), CPU utilization, context switches
per second, fairness using Jain’s fairness index, and
starvation indicators (counts of extended waiting beyond a
threshold window), consistent with established OS
measurement practices 13891,

Methods

Experiments were conducted across three load regimes

(Low/Medium/High) by varying task arrival intensity and

utilization targets, repeating each Policy x Load condition

20 times to support inferential statistics and reduce run-to-

run noise [2. Scheduler parameters were held constant

within policy (e.g., quantum length for RR and aging for

FP) to isolate policy effects while remaining aligned with

commonly documented kernel tuning practices [® 1%, Data

analysis followed a two-way factorial design:

1. Two-way ANOVA tested the main effects of Policy and
Load and their interaction on response time, and

2. Pairwise Welch t-tests compared policies under High
load (most failure-prone regime) with effect sizes
(Cohen’s d) 4512,

To explain overhead behavior, ordinary least squares
regression modeled context switches per second as a
function of task arrival rate and policy (categorical),
capturing scaling behavior under increased interrupt and
scheduling pressure X 8. All computations and figures were
generated programmatically to ensure reproducibility and
consistent reporting [151,

Results

Table 1: Summary metrics (mean +SD) by policy and load

Policy Load n Avg response SD C_ontext SD |Jain fairness Starvation_
(ms) switches/s events/10 min

Round-Robin (RR) Low 20 7.67 0.84 41.88 5.25 0.92 0.05
Round-Robin (RR) Medium 20 16.90 1.90 82.75 9.05 0.92 0.10
Round-Robin (RR) High 20 33.30 3.21 124.76 15.38 0.89 0.20
Fixed-Priority Pre-emptive (FP) Low 20 6.84 0.78 33.79 3.46 0.87 0.25
Fixed-Priority Pre-emptive (FP) | Medium 20 15.42 1.78 68.52 7.79 0.86 0.30
Fixed-Priority Pre-emptive (FP) High 20 25.62 3.40 95.85 12.31 0.81 1.10
Earliest Deadline First (EDF) Low 20 6.51 0.82 35.59 5.27 0.89 0.20
Earliest Deadline First (EDF) Medium 20 14.10 1.85 71.97 8.69 0.89 0.15
Earliest Deadline First (EDF) High 20 23.63 1.96 107.77 14.61 0.85 0.50

Interpretation

Across all policies, response time rose sharply from Low
High load, reflecting the classic utilization-latency
amplification expected in multiprogram med and real-time

environments [4 51, Under High load, EDF produced the
lowest mean response time (23.63 ms), FP was next (25.62
ms), and RR was highest (33.30 ms), consistent with the
responsiveness advantage of deadline/priority-driven pre-

~32 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

emption for time-critical tasks * % 2 13 However, fairness
showed the opposite tendency: RR maintained the highest
fairness (=0.89-0.92), while FP degraded most under High
load (=0.81) and showed the highest starvation counts,
aligning with known starvation risks in strict priority
scheduling without sufficient aging controls [7 12, Context
switches increased with load for all policies; RR exhibited
the highest switching rates, reflecting time-slice cycling
overhead that is well documented in kernel scheduling
behavior and tuning guidance & 191,

Table 2: Two-way ANOVA on response time (Policy x Load)

Source SS df F p
Policy 1142.9538 2 126.3673 <0.001
Load 12255.2827 2 1354.9687 | <0.001
Policy x Load 312.3649 4 17.2678 <0.001

Residual 773.3217 171 — —

Interpretation: Both Policy and Load significantly affected
response time, and the significant interaction indicates that
policy differences widen as the system approaches high
utilization an empirically common pattern when pre-

http://www.computersciencejournals.com/ijcpdm

emption, queueing, and overhead become dominant factors
4 5 9 12 This supports the research hypothesis that
scheduler effectiveness is workload-dependent rather than
universally optimal (%121,

Table 3: High-load pairwise policy comparisons (Welch t-test)

Policy A | Policy B t p Cohen’s d
RR FP 6.830 4.347e-08 2.16
RR EDF 10.317 | 3.517e-11 3.26
FP EDF 2.280 2.980e-02 0.72

Interpretation

Under High load, RR was significantly slower than both FP
and EDF with large effect sizes, reflecting the latency
penalty of cycling time slices during heavy contention [8
1, EDF also outperformed FP (p=~0.03), consistent with
EDF’s theoretical optimality properties for meeting
deadlines in many uniprocessor settings when assumptions
hold [* 5 12, Yet, EDF showed higher starvation than RR
(Table 1), reinforcing that latency improvements can come
with fairness/aging trade-offs depending on implementation
details [10.12],

R Round-Robin (RR)
B Fixed-Priority Preemptive (FP)
35 mem Earliest Deadline First (EDF)

Average response time (ms)

Medium High
Load level

Fig 1: Average response time by scheduler policy and load (mean £SD).

@® Round-Robin (RR} []
160 4 Fixed-Priority Preemptive (FP) e
A Earliest Deadline First (EDF) []
e o A

140 1 L™ ®
g o %o
5 % ©
§ 1204 o A

A
g © b M
2 ® B A
9 100 4 ® ° ° A .b‘ |
S * & ° A o A
=] 9 ®°
7 80 A .
] A
g A ghgha ud
c fl
6 60 L 5\
A
.'. -
(A
of AN
o
20 T T T T T T T r
40 60 80 100 120 140 160 180

Task arrival rate (tasks/s)

Fig 2: Context switching behavior vs task arrival rate.

~33~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

http://www.computersciencejournals.com/ijcpdm

40 { @ Round-Robin (RR) o
Fixed-Priority Preemptive (FP)
A Earliest Deadline First (EDF) . Py ° ®
35 ¢ 0
°
m ™ ® ° o °
£ 30 P °
W A
£ %
u 25 ‘Was A 4, A
2 A 4 “P\ A
§ A" A,y A) o ®
e o
T 204 . %%
@) %O ™ e °
= A ® e e
g 4 a” b A
5 | A,
15 A A
3 Aa -\ﬁ A
A A .
10 A [
o, @ N %. oo &
& h o ,® ®
A A A .‘(‘ MR A%
5 A A A A i
0.75 0.80 0.85 0.90 0.95
Jain's fairness index (0-1)

Fig 3: Fairness-latency relationship (marker size proportional to starvation events).

Overall implications

The combined evidence shows a clear latency-fairness-
overhead trade-off: RR improves fairness but pays in
response time and switching overhead, while FP/EDF
reduce response time especially at High load yet require
careful mitigation of inversion/starvation via
synchronization and aging strategies [2 3. These trends
align with foundational OS and real-time scheduling results
and explain why lightweight deployments must tune
scheduler parameters to match workload dynamics rather

than adopting a single “best” policy 134 5 810,

Discussion

The empirical findings of this research reinforce long-
standing theoretical assertions in operating system and real-
time scheduling literature while providing measurable,
workload-driven evidence specific to lightweight operating
environments. The results clearly demonstrate that process
scheduling behavior is strongly influenced by both
scheduler policy and system load, with statistically
significant main and interaction effects observed for
response time and related performance metrics. The two-
way ANOVA confirmed that scheduling policy alone is
insufficient to predict performance without accounting for
workload intensity, a result consistent with classical real-
time scheduling theory that emphasizes utilization-
dependent behavior ® > 12, Under low-load conditions, all
evaluated scheduling strategies delivered comparable
responsiveness, indicating that lightweight systems
operating below saturation thresholds are largely insensitive
to scheduler choice, as previously suggested in kernel
design studies ™ 3. However, as load increased,
performance divergence became pronounced, validating
concerns raised in earlier empirical and analytical works
regarding scheduler scalability under contention & 1,

The superior response-time performance of EDF and fixed-
priority schedulers under medium and high load aligns with
the optimality properties of deadline- and priority-driven
scheduling in pre-emptive uniprocessor systems [°. EDF’s
consistently lower mean response time under high load
supports its suitability for time-critical tasks, particularly in
embedded and cyber-physical systems where deadline
adherence is paramount 2 181, Nevertheless, the observed
increase in starvation events and reduced fairness under

~34 ~

EDF and fixed-priority scheduling highlights a critical
trade-off that has been widely discussed but less frequently
quantified in lightweight operating system contexts [1, In
contrast, round-robin scheduling maintained higher fairness
indices across all load levels, corroborating its reputation for
equitable CPU allocation, albeit at the cost of increased
context-switch overhead and degraded latency under heavy
task arrival rates [8. The regression analysis further
substantiated that context-switch frequency scales with task
arrival intensity and is amplified in time-sliced schedulers,
reinforcing kernel-level observations regarding scheduling
overhead in minimal systems [& 101,

Importantly, the significant interaction between policy and
load suggests that scheduler effectiveness cannot be
generalized across deployment scenarios. Instead, the
findings support a workload-aware perspective, wherein
scheduler selection and tuning must be guided by expected
task characteristics, timing constraints, and acceptable trade-
offs between responsiveness and fairness [t 2. This
empirical evidence bridges the gap between abstract
scheduling theory and practical lightweight system
deployment, offering validation for adaptive or hybrid
scheduling strategies increasingly discussed in embedded
systems research [1. Overall, the discussion underscores
that lightweight operating systems, despite their simplicity,
exhibit complex scheduling dynamics that demand
empirically informed design decisions rather than reliance
on canonical defaults [9 51,

Conclusion

This research provides a comprehensive empirical
evaluation of process scheduling behavior in lightweight
operating systems, demonstrating that scheduler
performance is inherently context-dependent and shaped by
the interaction between policy design and workload
intensity. The results confirm that deadline- and priority-
based schedulers offer clear advantages in reducing
response time and improving responsiveness under
moderate to high system load, making them suitable for
time-sensitive embedded and real-time applications.
However, these gains are accompanied by increased risks of
starvation and reduced fairness, particularly when workload
heterogeneity and sustained contention are present.
Conversely, round-robin scheduling exhibits strong fairness

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

and predictability but incurs higher latency and context-
switch overhead as load increases, limiting its suitability for
high-frequency or deadline-driven workloads. From a
practical standpoint, system designers should avoid one-
size-fits-all scheduling choices and instead align scheduler
selection with application requirements. For lightweight
systems supporting mixed-criticality workloads, fixed-
priority or EDF scheduling combined with aging
mechanisms and priority inheritance can mitigate starvation
while preserving responsiveness. In scenarios emphasizing
equitable resource sharing, such as multi-sensor or
cooperative task environments, carefully tuned round-robin
scheduling with optimized time quanta can balance fairness
and overhead. Additionally, workload profiling during
system design and deployment should inform scheduler
parameter tuning, as small adjustments in quantum length or
priority aging can significantly influence performance
outcomes. The findings also suggest that adaptive or hybrid
scheduling approaches, which dynamically adjust policies
based on observed load and task behavior, represent a
promising direction for future lightweight kernel design.
Ultimately, effective scheduling in lightweight operating
systems emerges not from selecting a universally optimal
policy, but from integrating empirical evidence, workload
awareness, and pragmatic tuning strategies to achieve
robust, predictable, and efficient system behavior under
real-world constraints.

References

1. Tanenbaum AS, Bos H. Modern Operating Systems.
4th ed. Pearson Education; 2015.

2. Labrosse J. MicroC/OS-11: The Real-Time Kernel. 2nd
ed. CMP Books; 2002.

3. Silberschatz A, Galvin PB, Gagne G. Operating System
Concepts. 9th ed. Wiley; 2013.

4. Liu CL, Layland JW. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J
ACM. 1973;20(1):46-61.

5. Buttazzo GC. Hard Real-Time Computing Systems. 3rd
ed. Springer; 2011.

6. Dunkels A, Gronvall B, Voigt T. Contiki - a lightweight
and flexible operating system for tiny networked
sensors. In: Proc LCN; 2004. p. 455-462.

7. Sha L, Rajkumar R, Lehoczky J. Priority inheritance
protocols: an approach to real-time synchronization.
IEEE Trans Comput. 1990;39(9):1175-1185.

8. Love R. Linux Kernel Development. 3rd ed. Addison-
Wesley; 2010.

9. Kilein M, Ralya T, Pollak B, Obenza R, Harbour M. A
Practitioner’s Handbook for Real-Time Analysis.
Kluwer Academic; 1993.

10. Molnar I. CFS scheduler. Linux Kernel Documentation;
2007.

11. Buttazzo G, Lipari G, Cucinotta T. Elastic scheduling
for flexible workload management. IEEE Trans
Comput. 2002;51(3):289-302.

12. Burns A, Wellings A. Real-Time Systems and
Programming Languages. 4th ed. Addison-Wesley;
2009.

13. Kopetz H. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Springer; 2011.

14. Eker J, Janneck J, Lee EA, Liu J, Liu X, Neuendorffer
S, et al. Taming heterogeneity the Ptolemy approach.
Proc IEEE. 2003;91(1):127-144.

~35~

http://www.computersciencejournals.com/ijcpdm

15. Marwedel P. Embedded System Design. 2nd ed.
Springer; 2011.

http://www.computersciencejournals.com/ijcpdm

