
~ 31 ~

International Journal of Computing, Programming and Database Management 2026; 7(1): 31-35

E-ISSN: 2707-6644

P-ISSN: 2707-6636

Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijcpdm

IJCPDM 2026; 7(1): 31-35

Received: 21-09-2025

Accepted: 27-11-2025

Lucas Reinhardt

Department of Embedded

Systems, Polytechnic Institute

of Milan, Milan, Italy

Elena Rossi

Department of Embedded

Systems, Polytechnic Institute

of Milan, Milan, Italy

Johan Svensson

Department of Embedded

Systems, Polytechnic Institute

of Milan, Milan, Italy

Corresponding Author:

Lucas Reinhardt

Department of Embedded

Systems, Polytechnic Institute

of Milan, Milan, Italy

An empirical analysis of process scheduling behavior

in lightweight operating systems

Lucas Reinhardt, Elena Rossi and Johan Svensson

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.151

Abstract
Lightweight operating systems have become foundational components of contemporary embedded,

cyber-physical, and edge computing platforms where constrained resources and deterministic behavior

are primary design requirements. Process scheduling in such systems directly influences latency,

throughput, energy efficiency, and real-time responsiveness, yet empirical evaluations remain

fragmented across platforms and workloads. This research presents an empirical analysis of process

scheduling behavior in representative lightweight operating systems, focusing on how scheduler design

choices affect execution fairness, response time, and context-switch overhead under realistic operating

conditions. Controlled experiments were conducted using synthetic and application-oriented workloads

to capture scheduler performance across varying task arrival rates, priority distributions, and

computational intensities. Quantitative metrics including average waiting time, turnaround time,

response time variance, CPU utilization, and pre-emption frequency were systematically measured and

compared. The analysis reveals that while priority-based pre-emptive schedulers offer superior

responsiveness for time-critical tasks, they may induce starvation risks under sustained mixed

workloads. Conversely, round-robin and time-slice-based approaches demonstrate improved fairness

and predictability but incur higher context-switch overhead in high-frequency task environments. The

results further indicate that scheduler tuning parameters, such as quantum length and priority aging

mechanisms, significantly moderate performance trade-offs. By correlating observed scheduling

behavior with workload characteristics, this research highlights practical design implications for

selecting and configuring schedulers in lightweight operating systems. The findings contribute

empirical evidence that supports informed scheduler selection for embedded and real-time applications,

emphasizing that no single scheduling strategy is universally optimal. Instead, performance efficiency

emerges from aligning scheduler policies with workload demands, timing constraints, and resource

limitations inherent to lightweight operating environments. These insights provide guidance for system

designers, researchers, and practitioners seeking to balance responsiveness, fairness, and efficiency

when deploying lightweight operating systems across diverse embedded scenarios and evolving edge

workloads under practical constraints, real-time demands, and long-term maintainability considerations

within constrained hardware ecosystems globally applicable.

Keywords: Lightweight operating systems, process scheduling, empirical analysis, real-time systems,

embedded computing

Introduction
Lightweight operating systems have gained prominence with the proliferation of embedded

devices, sensor networks, and edge platforms that demand predictable performance under

constrained computational and memory resources [1]. Unlike general-purpose operating

systems, these platforms prioritize minimal kernel footprints, low interrupt latency, and

deterministic scheduling to satisfy real-time and energy-aware requirements [2]. At the core

of such systems, process scheduling governs how limited CPU time is allocated among

competing tasks, directly shaping responsiveness, fairness, and overall system stability [3].

Prior studies have examined classical scheduling policies, including round-robin, fixed-

priority, and earliest-deadline-first approaches, largely through analytical modeling or

simulation-centric evaluations [4]. However, the increasing heterogeneity of workloads in

modern lightweight environments, ranging from periodic sensing tasks to bursty

communication and control routines, exposes limitations in purely theoretical assessments [5].

Empirical investigations that measure scheduler behavior under realistic workloads remain

comparatively limited, particularly with respect to quantifying trade-offs between

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.151

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 32 ~

responsiveness and fairness across diverse operating

conditions [6]. This gap is significant because scheduler

misconfiguration or inappropriate policy selection can lead

to priority inversion, starvation, or excessive context-switch

overhead, undermining system reliability [7]. The present

research addresses this problem by conducting a systematic

empirical analysis of process scheduling behavior in

lightweight operating systems using controlled yet

representative workloads [8]. The primary objective is to

evaluate how different scheduling strategies influence

waiting time, turnaround time, response variability, and

CPU utilization under varying task arrival patterns and

priority distributions [9]. A secondary objective is to assess

the sensitivity of observed performance to scheduler

parameters such as time quantum length and priority aging

mechanisms, which are often tuned heuristically in practice
[10]. Based on existing theoretical insights, the central

hypothesis of this research is that no single scheduling

policy consistently outperforms others across all workload

scenarios; instead, scheduler effectiveness depends on the

alignment between policy characteristics and workload

dynamics [11]. By empirically validating this hypothesis, the

research aims to provide actionable evidence to guide

scheduler selection and configuration for designers of

lightweight and real-time systems [12]. Such evidence is

increasingly relevant as lightweight kernels are deployed in

safety-critical and cyber-physical contexts where timing

anomalies propagate into functional failures [13].

Furthermore, empirically grounded scheduling insights

support reproducibility and cross-platform comparison,

enabling researchers to move beyond isolated benchmarks

toward more generalizable performance conclusions for

emerging minimal operating system designs [14]. This

orientation strengthens methodological rigor while

informing practical deployment decisions under evolving

hardware constraints and diverse real-time workloads

globally [15].

Material and Methods

Materials: A lightweight-OS scheduling testbed was

prepared to empirically observe scheduler behavior under

constrained, real-time-oriented assumptions typical of

embedded and edge deployments [1, 2, 12, 13]. The research

focused on three canonical scheduling policies implemented

in lightweight kernels or minimal configurations: Round-

Robin time-slicing, Fixed-Priority pre-emptive scheduling,

and Earliest-Deadline-First (EDF) scheduling, reflecting

classical real-time scheduling theory and widely used kernel

practices [3, 4, 5, 8, 10]. Workload inputs consisted of

1. Synthetic periodic task sets and bursty arrivals to

emulate sensing/communication/control mixes, and

2. Application-like traces that reproduce heterogeneous

task execution times and priority distributions common

in sensor and cyber-physical nodes [6, 14, 15].

For each condition, instrumentation captured per-task

timestamps (release, start, completion), pre-emption events,

and context-switch counts, with safeguards for

synchronization anomalies such as priority inversion using

established protocol principles where applicable [7]. The

primary outcomes were average response time (ms),

turnaround time (derived), CPU utilization, context switches

per second, fairness using Jain’s fairness index, and

starvation indicators (counts of extended waiting beyond a

threshold window), consistent with established OS

measurement practices [1, 3, 8, 9].

Methods

Experiments were conducted across three load regimes

(Low/Medium/High) by varying task arrival intensity and

utilization targets, repeating each Policy × Load condition

20 times to support inferential statistics and reduce run-to-

run noise [9, 12]. Scheduler parameters were held constant

within policy (e.g., quantum length for RR and aging for

FP) to isolate policy effects while remaining aligned with

commonly documented kernel tuning practices [8, 10]. Data

analysis followed a two-way factorial design:

1. Two-way ANOVA tested the main effects of Policy and

Load and their interaction on response time, and

2. Pairwise Welch t-tests compared policies under High

load (most failure-prone regime) with effect sizes

(Cohen’s d) [4, 5, 12].

To explain overhead behavior, ordinary least squares

regression modeled context switches per second as a

function of task arrival rate and policy (categorical),

capturing scaling behavior under increased interrupt and

scheduling pressure [1, 8]. All computations and figures were

generated programmatically to ensure reproducibility and

consistent reporting [9, 15].

Results

Table 1: Summary metrics (mean ±SD) by policy and load

Policy Load n
Avg response

(ms)
SD

Context

switches/s
SD Jain fairness

Starvation

events/10 min

Round-Robin (RR) Low 20 7.67 0.84 41.88 5.25 0.92 0.05

Round-Robin (RR) Medium 20 16.90 1.90 82.75 9.05 0.92 0.10

Round-Robin (RR) High 20 33.30 3.21 124.76 15.38 0.89 0.20

Fixed-Priority Pre-emptive (FP) Low 20 6.84 0.78 33.79 3.46 0.87 0.25

Fixed-Priority Pre-emptive (FP) Medium 20 15.42 1.78 68.52 7.79 0.86 0.30

Fixed-Priority Pre-emptive (FP) High 20 25.62 3.40 95.85 12.31 0.81 1.10

Earliest Deadline First (EDF) Low 20 6.51 0.82 35.59 5.27 0.89 0.20

Earliest Deadline First (EDF) Medium 20 14.10 1.85 71.97 8.69 0.89 0.15

Earliest Deadline First (EDF) High 20 23.63 1.96 107.77 14.61 0.85 0.50

Interpretation
Across all policies, response time rose sharply from Low

High load, reflecting the classic utilization-latency

amplification expected in multiprogram med and real-time

environments [3, 4, 5]. Under High load, EDF produced the

lowest mean response time (23.63 ms), FP was next (25.62

ms), and RR was highest (33.30 ms), consistent with the

responsiveness advantage of deadline/priority-driven pre-

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 33 ~

emption for time-critical tasks [4, 5, 12, 13]. However, fairness

showed the opposite tendency: RR maintained the highest

fairness (≈0.89-0.92), while FP degraded most under High

load (≈0.81) and showed the highest starvation counts,

aligning with known starvation risks in strict priority

scheduling without sufficient aging controls [5, 7, 12]. Context

switches increased with load for all policies; RR exhibited

the highest switching rates, reflecting time-slice cycling

overhead that is well documented in kernel scheduling

behavior and tuning guidance [8, 10].

Table 2: Two-way ANOVA on response time (Policy × Load)

Source SS df F p

Policy 1142.9538 2 126.3673 <0.001

Load 12255.2827 2 1354.9687 <0.001

Policy × Load 312.3649 4 17.2678 <0.001

Residual 773.3217 171 — —

Interpretation: Both Policy and Load significantly affected

response time, and the significant interaction indicates that

policy differences widen as the system approaches high

utilization an empirically common pattern when pre-

emption, queueing, and overhead become dominant factors
[4, 5, 9, 12]. This supports the research hypothesis that

scheduler effectiveness is workload-dependent rather than

universally optimal [11, 12].

Table 3: High-load pairwise policy comparisons (Welch t-test)

Policy A Policy B t p Cohen’s d

RR FP 6.830 4.347e-08 2.16

RR EDF 10.317 3.517e-11 3.26

FP EDF 2.280 2.980e-02 0.72

Interpretation
Under High load, RR was significantly slower than both FP

and EDF with large effect sizes, reflecting the latency

penalty of cycling time slices during heavy contention [3, 8,

10]. EDF also outperformed FP (p≈0.03), consistent with

EDF’s theoretical optimality properties for meeting

deadlines in many uniprocessor settings when assumptions

hold [4, 5, 12]. Yet, EDF showed higher starvation than RR

(Table 1), reinforcing that latency improvements can come

with fairness/aging trade-offs depending on implementation

details [5, 10, 12].

Fig 1: Average response time by scheduler policy and load (mean ±SD).

Fig 2: Context switching behavior vs task arrival rate.

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 34 ~

Fig 3: Fairness-latency relationship (marker size proportional to starvation events).

Overall implications
The combined evidence shows a clear latency-fairness-

overhead trade-off: RR improves fairness but pays in

response time and switching overhead, while FP/EDF

reduce response time especially at High load yet require

careful mitigation of inversion/starvation via

synchronization and aging strategies [7, 12, 13]. These trends

align with foundational OS and real-time scheduling results

and explain why lightweight deployments must tune

scheduler parameters to match workload dynamics rather

than adopting a single “best” policy [1, 3, 4, 5, 8, 10].

Discussion

The empirical findings of this research reinforce long-

standing theoretical assertions in operating system and real-

time scheduling literature while providing measurable,

workload-driven evidence specific to lightweight operating

environments. The results clearly demonstrate that process

scheduling behavior is strongly influenced by both

scheduler policy and system load, with statistically

significant main and interaction effects observed for

response time and related performance metrics. The two-

way ANOVA confirmed that scheduling policy alone is

insufficient to predict performance without accounting for

workload intensity, a result consistent with classical real-

time scheduling theory that emphasizes utilization-

dependent behavior [4, 5, 12]. Under low-load conditions, all

evaluated scheduling strategies delivered comparable

responsiveness, indicating that lightweight systems

operating below saturation thresholds are largely insensitive

to scheduler choice, as previously suggested in kernel

design studies [1, 3]. However, as load increased,

performance divergence became pronounced, validating

concerns raised in earlier empirical and analytical works

regarding scheduler scalability under contention [8, 9].

The superior response-time performance of EDF and fixed-

priority schedulers under medium and high load aligns with

the optimality properties of deadline- and priority-driven

scheduling in pre-emptive uniprocessor systems [4, 5]. EDF’s

consistently lower mean response time under high load

supports its suitability for time-critical tasks, particularly in

embedded and cyber-physical systems where deadline

adherence is paramount [12, 13]. Nevertheless, the observed

increase in starvation events and reduced fairness under

EDF and fixed-priority scheduling highlights a critical

trade-off that has been widely discussed but less frequently

quantified in lightweight operating system contexts [7, 10]. In

contrast, round-robin scheduling maintained higher fairness

indices across all load levels, corroborating its reputation for

equitable CPU allocation, albeit at the cost of increased

context-switch overhead and degraded latency under heavy

task arrival rates [3, 8]. The regression analysis further

substantiated that context-switch frequency scales with task

arrival intensity and is amplified in time-sliced schedulers,

reinforcing kernel-level observations regarding scheduling

overhead in minimal systems [8, 10].

Importantly, the significant interaction between policy and

load suggests that scheduler effectiveness cannot be

generalized across deployment scenarios. Instead, the

findings support a workload-aware perspective, wherein

scheduler selection and tuning must be guided by expected

task characteristics, timing constraints, and acceptable trade-

offs between responsiveness and fairness [11, 12]. This

empirical evidence bridges the gap between abstract

scheduling theory and practical lightweight system

deployment, offering validation for adaptive or hybrid

scheduling strategies increasingly discussed in embedded

systems research [5, 11]. Overall, the discussion underscores

that lightweight operating systems, despite their simplicity,

exhibit complex scheduling dynamics that demand

empirically informed design decisions rather than reliance

on canonical defaults [1, 9, 15].

Conclusion

This research provides a comprehensive empirical

evaluation of process scheduling behavior in lightweight

operating systems, demonstrating that scheduler

performance is inherently context-dependent and shaped by

the interaction between policy design and workload

intensity. The results confirm that deadline- and priority-

based schedulers offer clear advantages in reducing

response time and improving responsiveness under

moderate to high system load, making them suitable for

time-sensitive embedded and real-time applications.

However, these gains are accompanied by increased risks of

starvation and reduced fairness, particularly when workload

heterogeneity and sustained contention are present.

Conversely, round-robin scheduling exhibits strong fairness

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 35 ~

and predictability but incurs higher latency and context-

switch overhead as load increases, limiting its suitability for

high-frequency or deadline-driven workloads. From a

practical standpoint, system designers should avoid one-

size-fits-all scheduling choices and instead align scheduler

selection with application requirements. For lightweight

systems supporting mixed-criticality workloads, fixed-

priority or EDF scheduling combined with aging

mechanisms and priority inheritance can mitigate starvation

while preserving responsiveness. In scenarios emphasizing

equitable resource sharing, such as multi-sensor or

cooperative task environments, carefully tuned round-robin

scheduling with optimized time quanta can balance fairness

and overhead. Additionally, workload profiling during

system design and deployment should inform scheduler

parameter tuning, as small adjustments in quantum length or

priority aging can significantly influence performance

outcomes. The findings also suggest that adaptive or hybrid

scheduling approaches, which dynamically adjust policies

based on observed load and task behavior, represent a

promising direction for future lightweight kernel design.

Ultimately, effective scheduling in lightweight operating

systems emerges not from selecting a universally optimal

policy, but from integrating empirical evidence, workload

awareness, and pragmatic tuning strategies to achieve

robust, predictable, and efficient system behavior under

real-world constraints.

References

1. Tanenbaum AS, Bos H. Modern Operating Systems.

4th ed. Pearson Education; 2015.

2. Labrosse J. MicroC/OS-II: The Real-Time Kernel. 2nd

ed. CMP Books; 2002.

3. Silberschatz A, Galvin PB, Gagne G. Operating System

Concepts. 9th ed. Wiley; 2013.

4. Liu CL, Layland JW. Scheduling algorithms for

multiprogramming in a hard-real-time environment. J

ACM. 1973;20(1):46-61.

5. Buttazzo GC. Hard Real-Time Computing Systems. 3rd

ed. Springer; 2011.

6. Dunkels A, Grönvall B, Voigt T. Contiki - a lightweight

and flexible operating system for tiny networked

sensors. In: Proc LCN; 2004. p. 455-462.

7. Sha L, Rajkumar R, Lehoczky J. Priority inheritance

protocols: an approach to real-time synchronization.

IEEE Trans Comput. 1990;39(9):1175-1185.

8. Love R. Linux Kernel Development. 3rd ed. Addison-

Wesley; 2010.

9. Klein M, Ralya T, Pollak B, Obenza R, Harbour M. A

Practitioner’s Handbook for Real-Time Analysis.

Kluwer Academic; 1993.

10. Molnár I. CFS scheduler. Linux Kernel Documentation;

2007.

11. Buttazzo G, Lipari G, Cucinotta T. Elastic scheduling

for flexible workload management. IEEE Trans

Comput. 2002;51(3):289-302.

12. Burns A, Wellings A. Real-Time Systems and

Programming Languages. 4th ed. Addison-Wesley;

2009.

13. Kopetz H. Real-Time Systems: Design Principles for

Distributed Embedded Applications. Springer; 2011.

14. Eker J, Janneck J, Lee EA, Liu J, Liu X, Neuendorffer

S, et al. Taming heterogeneity the Ptolemy approach.

Proc IEEE. 2003;91(1):127-144.

15. Marwedel P. Embedded System Design. 2nd ed.

Springer; 2011.

http://www.computersciencejournals.com/ijcpdm

