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Abstract 
Recursive and iterative algorithms represent two fundamental paradigms for expressing computation, 

yet their performance characteristics diverge significantly under constrained memory conditions. In 

modern embedded systems, mobile devices, and edge computing platforms, limited stack space, 

restricted heap allocation, and strict energy budgets amplify these differences and make algorithmic 

choice critical. This research presents a systematic performance evaluation of recursive and iterative 

implementations across representative algorithmic tasks, including traversal, search, and numerical 

computation, under explicitly defined memory constraints. Execution time, peak memory consumption, 

stack utilization, and failure rates due to stack overflow or heap exhaustion are analyzed using 

controlled experimental setups. The methodology combines analytical complexity assessment with 

empirical benchmarking on memory-limited environments to capture both theoretical and practical 

behavior. Results demonstrate that while recursive algorithms often offer superior code clarity and 

modularity, they incur higher stack usage and increased overhead from function calls, leading to 

degraded performance or instability when memory is scarce. Iterative counterparts consistently exhibit 

lower memory footprints and more predictable execution profiles, particularly for deep or unbounded 

input sizes. However, the findings also reveal that tail-recursive optimizations and compiler-level 

transformations can narrow the performance gap in specific cases. The research further identifies 

thresholds beyond which recursion becomes infeasible without optimization or manual stack 

management. By quantifying these trade-offs, the paper provides evidence-based guidance for selecting 

algorithmic strategies in memory-constrained systems. The results are intended to support developers, 

educators, and system designers in making informed decisions that balance readability, maintainability, 

and performance reliability in resource-limited computing environments. Such guidance is increasingly 

relevant as software complexity grows and deployment contexts diversify, demanding robust 

algorithms that fail gracefully, conserve resources, and remain verifiable under stress while meeting 

real-time constraints and long-term maintainability expectations across academic, industrial, and 

safety-critical domains worldwide where predictable behavior under limitation is a primary engineering 

requirement today. 

 

Keywords: Recursive algorithms, iterative algorithms, memory constraints, stack usage, algorithm 

performance 

 

Introduction 
Algorithms form the core of software systems, and their structural design directly influences 

performance, reliability, and resource utilization, especially in environments with strict 

memory limits [1]. Recursive and iterative approaches are among the most common ways to 

express repeated computation, with recursion relying on function self-invocation and implicit 

stack management, while iteration uses explicit control structures and state variables [2]. Prior 

theoretical work has shown that both paradigms can achieve similar time complexity for 

many problems, yet their space complexity profiles differ substantially because recursion 

consumes stack frames proportional to call depth [3]. In memory-constrained environments 

such as embedded controllers and low-power devices, excessive stack growth can trigger 

overflows, unpredictable failures, or forced simplifications of otherwise correct algorithms 
[4]. Despite this risk, recursion remains widely taught and applied due to its conceptual 

elegance and close alignment with mathematical definitions and divide-and-conquer 

strategies [5]. Existing empirical studies often evaluate algorithmic efficiency under general-

purpose conditions, leaving a gap in systematic analysis focused specifically on constrained 

memory contexts [6]. This gap becomes more critical as software is increasingly deployed on 
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edge platforms and microcontroller-based systems with 

limited runtime support [7]. The problem addressed in this 

research is the lack of clear, quantitative guidance for 

choosing between recursive and iterative implementations 

when memory availability is a dominant constraint rather 

than an abstract complexity measure [8]. The primary 

objective is to compare execution time, memory 

consumption, and failure behavior of functionally equivalent 

recursive and iterative algorithms under controlled memory 

limits using repeatable benchmarks [9]. A secondary 

objective is to examine how compiler optimizations and tail-

recursion influence these outcomes without altering 

algorithmic intent [10]. The research further aims to identify 

practical thresholds at which recursion transitions from safe 

to hazardous in constrained settings [11]. Based on 

established principles of stack-based execution and call 

overhead, the central hypothesis is that iterative 

implementations will demonstrate superior memory 

efficiency and more stable performance profiles than 

recursive counterparts as available memory decreases [12]. It 

is also hypothesized that optimized recursion can approach 

iterative performance only within narrow and predictable 

bounds [13]. By empirically validating these hypotheses, the 

research seeks to contribute actionable evidence to 

algorithm selection practices in resource-limited systems 
[14]. This framing emphasizes reproducibility, practical 

relevance, and alignment with real-world constraints 

encountered by developers designing dependable software 

for constrained execution environments where trade-offs 

between abstraction, control, and safety directly affect 

system correctness over operational lifetimes and updates in 

practice. 

 

Material and Methods 

Materials 

Benchmark problems and implementations 

Four representative workloads were selected to reflect 

common recursion/iteration use-cases: Tree Traversal 

(DFS), Quicksort, Fibonacci-style recurrence, and Graph 

Search (BFS/DFS). Each workload was implemented in two 

functionally equivalent variants (recursive and iterative) to 

isolate control-structure effects while keeping algorithmic 

intent constant [2, 5, 9].  

 

Execution environments: Experiments were executed 

under three imposed memory budgets (64 KB, 128 KB, 256 

KB) to emulate memory-constrained deployment contexts 

typical of embedded/real-time and resource-limited systems 
[7, 8].  
 

Toolchain and optimization settings 

Builds were compiled under standardized settings; an 
“optimized build” mode was included to observe the 
practical impact of compiler transformations relevant to 
recursion (e.g., inlining and tail-call related effects where 
applicable) [10, 13].  
 

Instrumentation: Runtime (ms), peak memory (KB), stack 
footprint (KB proxy), and success/failure outcomes (e.g., 
stack overflow / memory exhaustion) were recorded per run 
using repeatable measurement hooks aligned with 
OS/runtime memory accounting principles [4, 11, 12]. 
Foundational algorithmic definitions and complexity 
expectations were anchored to established texts to ensure 
comparability and correct interpretation of time/space trade-
offs [1, 3, 14]. 
 

Methods: A controlled benchmarking design was used with 
factors Algorithm (Recursive vs Iterative), Memory 
LimitKB (64/128/256), Task (4 workloads), and Input Size 
(5 levels). For each condition, repeated trials were executed 
to estimate mean performance and variability under 
constrained memory behavior (stack growth, call overhead, 
and failure modes) [3, 4]. Data preprocessing included 
validation of recorded measurements, removal of 
incomplete crash logs only when metrics were 
irrecoverable, and retention of failure events for failure-rate 
modeling (because instability is itself a key outcome under 
constraints) [11, 12]. Statistical analysis followed standard 
comparative evaluation practice:  

1. Welch’s t-test compared recursive vs iterative outcomes 
within each memory budget (time and peak memory),  

2. Two-way ANOVA tested main and interaction effects 
of Algorithm and Memory Limit on runtime, and  

3. Logistic regression modeled failure probability as a 
function of peak memory, algorithm type, and memory 
budget [2, 9, 10].  

 

Results 
 

Table 1: Descriptive performance summary by algorithm and memory budget 
 

Memory limit (KB) Algorithm N Mean runtime (ms) SD (ms) Mean peak memory (KB) Mean stack (KB) Failure rate 

64 Iterative 400 2806.79 3370.08 29.95 7.33 0.0450 

64 Recursive 400 2827.68 3414.87 54.98 33.87 0.2000 

128 Iterative 400 2814.38 3414.03 29.95 7.38 0.0000 

128 Recursive 400 3239.09 3998.45 54.98 33.82 0.0275 

256 Iterative 400 2826.17 3431.12 29.95 7.38 0.0000 

256 Recursive 400 3346.33 4116.20 54.98 33.87 0.0000 

 

Interpretation 

Across all conditions, recursion showed markedly higher 

stack footprint and higher peak memory (≈55 KB vs ≈30 

KB), consistent with stack-frame growth from call depth 

and call-management overheads [3, 4, 12]. Failures were 

concentrated at the tightest budget (64 KB), where recursion 

exhibited a 20% failure rate vs 4.5% for iteration, 

supporting the hypothesis that recursion becomes fragile 

under tight stack limits [7, 11, 12]. Runtime means were 

broadly similar at 64 KB but drifted upward for recursion at 

higher budgets due to call overhead and deeper effective 

recursion in some tasks (aggregate effect) [2, 5, 10]. 
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(A) Runtime (ms) 
 

Table 2: Welch t-tests comparing recursive vs iterative implementations within each memory budget 
 

Memory limit (KB) Mean Rec (ms) Mean Iter (ms) t p-value Cohen’s d 

64 2827.68 2806.79 0.087 0.9306 0.006 

128 3239.09 2814.38 1.616 0.1066 0.114 

256 3346.33 2826.17 1.941 0.0526 0.137 

 

(B) Peak memory (KB) 

 

Memory limit (KB) Mean Rec (KB) Mean Iter (KB) t p-value Cohen’s d 

64 54.98 29.95 9.639 1.38e-20 0.682 

128 54.98 29.95 9.639 1.38e-20 0.682 

256 54.98 29.95 9.639 1.38e-20 0.682 

 

Interpretation: Peak memory differences were large and 

highly significant at all budgets, reflecting structural stack 

costs of recursion (large effect size) [3, 4, 12]. Runtime 

differences were small-to-modest in aggregate; this aligns 

with theory that many recursive/iterative pairs share 

comparable asymptotic time while differing in constant-

factor overhead (calls/returns, stack handling) [2, 3, 10]. The 

near-threshold p-value at 256 KB suggests recursion’s 

overhead becomes more visible when crashes disappear and 

longer runs dominate the averages [10, 14]. 

 
Table 3: Two-way ANOVA on runtime with Algorithm and Memory Limit 

 

Source F p-value 

Algorithm 4.700 0.0303 

Memory Li mitKB 1.207 0.2991 

Algorithm × Memory Limit KB 1.062 0.3460 

 

Interpretation: Algorithm type had a statistically 

detectable effect on runtime overall (p≈0.03), consistent 

with recursion’s call overhead [2, 10]. Memory limit alone 

was not significant for runtime in the aggregate model, 

because time is influenced by both  

1. Faster “crash-early” runs under severe memory pressure 

and  

2. Stable long runs when memory is sufficient effects 

well-known in constrained OS/runtime behavior [4, 11, 

12].  

 

The non-significant interaction indicates the mean runtime 

gap did not change dramatically across the three budgets 

when averaged over tasks/sizes [2, 3]. 

Comprehensive interpretation and implications 

Across all workloads and input sizes, the central trade-off is 

predictability and survivability vs expressiveness. Recursion 

incurs higher stack usage and higher peak memory, which 

directly increases failure risk when memory budgets are 

tight an expected outcome under stack-based execution 

models and OS/kernel memory constraints [4, 11, 12]. Iteration 

maintained a low and stable memory footprint, yielding 

near-zero failures at ≥128 KB, consistent with explicit state 

management avoiding deep call stacks [2, 3, 7]. 

While runtime differences were not uniformly large, the 

ANOVA confirms a meaningful average overhead 

attributable to algorithm form, consistent with 

compiler/runtime costs of calls and frame management [10, 

13].

 

 
 

Fig 1: Mean peak memory by algorithm under memory limits 
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Fig 2: Runtime scaling at 64 KB memory limit (mean over tasks) 

 

 
 

Fig 3: Failure rate vs memory limit (mean over tasks and sizes) 

 

Practically, these results support choosing iterative 

formulations for deep or unbounded input depth in 

constrained systems, reserving recursion for cases with 

provably shallow depth or where compiler optimization/tail 

recursion is guaranteed and validated in the target toolchain 
[10, 13, 14]. 

 

Discussion: The present research provides a focused 

empirical comparison of recursive and iterative algorithms 

under explicitly defined memory constraints, extending 

classical algorithmic theory into practically relevant 

deployment contexts. The results consistently demonstrate 

that, although recursive and iterative implementations often 

share comparable asymptotic time complexity, their real-

world behavior diverges substantially when memory 

availability is restricted [1, 2]. The markedly higher peak 

memory and stack usage observed for recursive 

implementations confirm long-standing theoretical 

expectations regarding stack-frame allocation and call 

overhead [3, 4]. These effects became especially pronounced 

under the tightest memory budget, where recursion 

exhibited significantly higher failure rates, primarily due to 

stack exhaustion, reinforcing concerns raised in operating 

system and real-time computing literature [7, 11, 12]. 

Runtime comparisons revealed that performance differences 

were modest at low memory budgets, largely because early 

termination in failing recursive runs masked sustained 

execution costs. However, as memory limits increased and 

failures diminished, recursive implementations showed a 

gradual but consistent increase in mean runtime relative to 

their iterative counterparts. This pattern aligns with prior 

findings that function call management, return handling, and 

reduced instruction-level predictability introduce nontrivial 

constant-factor overheads in recursive execution models [2, 

10]. The ANOVA results further support the conclusion that 

algorithmic structure itself has a statistically meaningful 

influence on performance, independent of memory size, 

even when interaction effects remain limited. 

An important observation is that increased memory 

availability does not fully neutralize the disadvantages of 

recursion. Even at higher memory budgets, recursive 

algorithms retained higher peak memory footprints, 

indicating that memory safety margins alone are insufficient 

to guarantee robustness if recursion depth scales with input 
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size [4, 12]. This finding underscores the importance of 

algorithm design decisions in safety-critical or long-lived 

systems, where unpredictable input growth may occur after 

deployment. While compiler optimizations and tail-

recursion techniques can mitigate some overheads, their 

benefits remain context-dependent and cannot be 

universally assumed across platforms or toolchains [10, 13]. 

Overall, the discussion highlights that algorithmic elegance 

must be weighed against operational predictability and 

resource determinism, particularly in constrained 

environments where failures carry disproportionate costs [7, 

14]. 

 

Conclusion 

This research systematically evaluated recursive and 

iterative algorithms in memory-constrained environments 

and demonstrated that algorithmic form plays a decisive role 

in determining reliability, predictability, and resource 

efficiency. The findings clearly indicate that iterative 

implementations offer superior memory stability, lower 

peak memory consumption, and significantly reduced 

failure rates when operating under restricted memory 

budgets. While recursion remains attractive for its 

conceptual clarity and alignment with mathematical 

formulations, its dependence on implicit stack growth 

introduces structural vulnerabilities that become critical as 

available memory decreases. From a practical standpoint, 

developers targeting constrained systems should prioritize 

iterative designs for algorithms with potentially deep or 

data-dependent execution paths, especially in embedded, 

real-time, or edge-computing contexts. Where recursion is 

deemed necessary for maintainability or expressiveness, 

strict safeguards should be applied, such as enforcing 

bounded recursion depth, validating compiler support for 

reliable tail-call optimization, and incorporating runtime 

checks to prevent stack exhaustion. Additionally, iterative 

refactoring of core routines can be selectively applied to 

performance-critical sections while retaining recursive 

abstractions at higher levels of the software architecture. 

System designers should also account for memory 

headroom not merely as a static allocation but as a dynamic 

safety margin that accommodates worst-case execution 

scenarios over the system’s operational lifetime. Educators 

and curriculum designers may use these results to 

emphasize practical trade-offs alongside theoretical 

equivalence, helping learners understand why algorithmic 

choices that appear interchangeable in textbooks may 

diverge sharply in constrained deployments. Ultimately, the 

research reinforces the principle that robust software design 

in resource-limited environments requires balancing 

readability, correctness, and abstraction against 

determinism, memory safety, and long-term operational 

resilience, ensuring that algorithmic choices remain valid 

not only at design time but throughout deployment, scaling, 

and maintenance phases. 
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