International Journal of Computing, Programming and Database Management 2026; 7(1): 26-30

/a4
<0 classe"le
39N classe"gly

<span classe"sr
</

Infernahonal Journal of

<span class="ghyphices gl ﬂr 10 -Ohewren #ige” win &

<span ¢
</
<Jaiv<!

E-ISSN: 2707-6644
P-ISSN: 2707-6636
Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijepdm

1JCPDM 2026; 7(1): 26-30
Received: 15-09-2025
Accepted: 23-11-2025

Johanna Klein

Department of Computing and
Informatics, University of
Bremen, Bremen, Germany

Corresponding Author:
Johanna Klein

Department of Computing and
Informatics, University of
Bremen, Bremen, Germany

Lasse"sr-caly" Mt/ spen

i oo o i ,L'ompuhng, Programming and" @&

Database Management

Performance evaluation of recursive vs iterative
algorithms in memory-constrained environments

Johanna Klein

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.150

Abstract

Recursive and iterative algorithms represent two fundamental paradigms for expressing computation,
yet their performance characteristics diverge significantly under constrained memory conditions. In
modern embedded systems, mobile devices, and edge computing platforms, limited stack space,
restricted heap allocation, and strict energy budgets amplify these differences and make algorithmic
choice critical. This research presents a systematic performance evaluation of recursive and iterative
implementations across representative algorithmic tasks, including traversal, search, and numerical
computation, under explicitly defined memory constraints. Execution time, peak memory consumption,
stack utilization, and failure rates due to stack overflow or heap exhaustion are analyzed using
controlled experimental setups. The methodology combines analytical complexity assessment with
empirical benchmarking on memory-limited environments to capture both theoretical and practical
behavior. Results demonstrate that while recursive algorithms often offer superior code clarity and
modularity, they incur higher stack usage and increased overhead from function calls, leading to
degraded performance or instability when memory is scarce. Iterative counterparts consistently exhibit
lower memory footprints and more predictable execution profiles, particularly for deep or unbounded
input sizes. However, the findings also reveal that tail-recursive optimizations and compiler-level
transformations can narrow the performance gap in specific cases. The research further identifies
thresholds beyond which recursion becomes infeasible without optimization or manual stack
management. By quantifying these trade-offs, the paper provides evidence-based guidance for selecting
algorithmic strategies in memory-constrained systems. The results are intended to support developers,
educators, and system designers in making informed decisions that balance readability, maintainability,
and performance reliability in resource-limited computing environments. Such guidance is increasingly
relevant as software complexity grows and deployment contexts diversify, demanding robust
algorithms that fail gracefully, conserve resources, and remain verifiable under stress while meeting
real-time constraints and long-term maintainability expectations across academic, industrial, and
safety-critical domains worldwide where predictable behavior under limitation is a primary engineering
requirement today.

Keywords: Recursive algorithms, iterative algorithms, memory constraints, stack usage, algorithm
performance

Introduction

Algorithms form the core of software systems, and their structural design directly influences
performance, reliability, and resource utilization, especially in environments with strict
memory limits . Recursive and iterative approaches are among the most common ways to
express repeated computation, with recursion relying on function self-invocation and implicit
stack management, while iteration uses explicit control structures and state variables 4, Prior
theoretical work has shown that both paradigms can achieve similar time complexity for
many problems, yet their space complexity profiles differ substantially because recursion
consumes stack frames proportional to call depth Bl In memory-constrained environments
such as embedded controllers and low-power devices, excessive stack growth can trigger
overflows, unpredictable failures, or forced simplifications of otherwise correct algorithms
41, Despite this risk, recursion remains widely taught and applied due to its conceptual
elegance and close alignment with mathematical definitions and divide-and-conquer
strategies 1. Existing empirical studies often evaluate algorithmic efficiency under general-
purpose conditions, leaving a gap in systematic analysis focused specifically on constrained
memory contexts 1. This gap becomes more critical as software is increasingly deployed on

~ 26~

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.150

International Journal of Computing, Programming and Database Management

edge platforms and microcontroller-based systems with
limited runtime support). The problem addressed in this
research is the lack of clear, quantitative guidance for
choosing between recursive and iterative implementations
when memory availability is a dominant constraint rather
than an abstract complexity measure . The primary
objective is to compare execution time, memory
consumption, and failure behavior of functionally equivalent
recursive and iterative algorithms under controlled memory
limits using repeatable benchmarks [l A secondary
objective is to examine how compiler optimizations and tail-
recursion influence these outcomes without altering
algorithmic intent (9, The research further aims to identify
practical thresholds at which recursion transitions from safe
to hazardous in constrained settings [, Based on
established principles of stack-based execution and call
overhead, the central hypothesis is that iterative
implementations will demonstrate superior memory
efficiency and more stable performance profiles than
recursive counterparts as available memory decreases [, It
is also hypothesized that optimized recursion can approach
iterative performance only within narrow and predictable
bounds 131, By empirically validating these hypotheses, the
research seeks to contribute actionable evidence to
algorithm selection practices in resource-limited systems
14 This framing emphasizes reproducibility, practical
relevance, and alignment with real-world constraints
encountered by developers designing dependable software
for constrained execution environments where trade-offs
between abstraction, control, and safety directly affect
system correctness over operational lifetimes and updates in
practice.

Material and Methods

Materials

Benchmark problems and implementations

Four representative workloads were selected to reflect
common recursion/iteration use-cases: Tree Traversal
(DFS), Quicksort, Fibonacci-style recurrence, and Graph
Search (BFS/DFS). Each workload was implemented in two
functionally equivalent variants (recursive and iterative) to
isolate control-structure effects while keeping algorithmic
intent constant [2 5 9,

http://www.computersciencejournals.com/ijcpdm

Execution environments: Experiments were executed
under three imposed memory budgets (64 KB, 128 KB, 256
KB) to emulate memory-constrained deployment contexts

typical of embedded/real-time and resource-limited systems
[7.8]

Toolchain and optimization settings

Builds were compiled under standardized settings; an
“optimized build” mode was included to observe the
practical impact of compiler transformations relevant to
recursion (e.g., inlining and tail-call related effects where
applicable) 10131,

Instrumentation: Runtime (ms), peak memory (KB), stack
footprint (KB proxy), and success/failure outcomes (e.g.,
stack overflow / memory exhaustion) were recorded per run
using repeatable measurement hooks aligned with
OS/runtime memory accounting principles © 1 12,
Foundational algorithmic definitions and complexity
expectations were anchored to established texts to ensure
comparability and correct interpretation of time/space trade-
OﬁS [1,3, 14]_

Methods: A controlled benchmarking design was used with
factors Algorithm (Recursive vs Iterative), Memory
LimitKB (64/128/256), Task (4 workloads), and Input Size
(5 levels). For each condition, repeated trials were executed
to estimate mean performance and variability under
constrained memory behavior (stack growth, call overhead,
and failure modes) B 4. Data preprocessing included
validation of recorded measurements, removal of
incomplete crash logs only when metrics were
irrecoverable, and retention of failure events for failure-rate
modeling (because instability is itself a key outcome under
constraints) [12 Statistical analysis followed standard
comparative evaluation practice:

1. Welch’s t-test compared recursive vs iterative outcomes
within each memory budget (time and peak memory),

2. Two-way ANOVA tested main and interaction effects
of Algorithm and Memory Limit on runtime, and

3. Logistic regression modeled failure probability as a
function of peak memory, algorithm type, and memory
budget [2% 01,

Results

Table 1: Descriptive performance summary by algorithm and memory budget

Memory limit (KB)| Algorithm | N | Mean runtime (ms) | SD (ms) | Mean peak memory (KB) |Mean stack (KB)| Failure rate
64 Iterative 400 2806.79 3370.08 29.95 7.33 0.0450
64 Recursive | 400 2827.68 3414.87 54.98 33.87 0.2000
128 Iterative 400 2814.38 3414.03 29.95 7.38 0.0000
128 Recursive | 400 3239.09 3998.45 54.98 33.82 0.0275
256 Iterative 400 2826.17 3431.12 29.95 7.38 0.0000
256 Recursive | 400 3346.33 4116.20 54.98 33.87 0.0000

Interpretation

Across all conditions, recursion showed markedly higher
stack footprint and higher peak memory (=55 KB vs =30
KB), consistent with stack-frame growth from call depth
and call-management overheads [4 2. Failures were
concentrated at the tightest budget (64 KB), where recursion

~27 ~

exhibited a 20% failure rate vs 4.5% for iteration,
supporting the hypothesis that recursion becomes fragile
under tight stack limits [1 12 Runtime means were
broadly similar at 64 KB but drifted upward for recursion at
higher budgets due to call overhead and deeper effective
recursion in some tasks (aggregate effect) 25101,

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

(A) Runtime (ms)

http://www.computersciencejournals.com/ijcpdm

Table 2: Welch t-tests comparing recursive vs iterative implementations within each memory budget

(B) Peak memory (KB)

Memory limit (KB) Mean Rec (ms) Mean Iter (ms) t p-value Cohen’s d
64 2827.68 2806.79 0.087 0.9306 0.006
128 3239.09 2814.38 1.616 0.1066 0.114
256 3346.33 2826.17 1.941 0.0526 0.137
Memory limit (KB) Mean Rec (KB) Mean Iter (KB) t p-value Cohen’s d
64 54.98 29.95 9.639 1.38e-20 0.682
128 54.98 29.95 9.639 1.38e-20 0.682
256 54.98 29.95 9.639 1.38e-20 0.682

Interpretation: Peak memory differences were large and
highly significant at all budgets, reflecting structural stack
costs of recursion (large effect size) [4 4. Runtime
differences were small-to-modest in aggregate; this aligns
with theory that many recursive/iterative pairs share

comparable asymptotic time while differing in constant-
factor overhead (calls/returns, stack handling) [3 1%, The
near-threshold p-value at 256 KB suggests recursion’s
overhead becomes more visible when crashes disappear and
longer runs dominate the averages [1% 4,

Table 3: Two-way ANOVA on runtime with Algorithm and Memory Limit

Source F p-value

Algorithm 4.700 0.0303

Memory Li mitKB 1.207 0.2991
Algorithm x Memory Limit KB 1.062 0.3460

Interpretation: Algorithm type had a statistically
detectable effect on runtime overall (p=0.03), consistent
with recursion’s call overhead > 1%, Memory limit alone
was not significant for runtime in the aggregate model,
because time is influenced by both

1. Faster “crash-early” runs under severe memory pressure

and
2. Stable long runs when memory is sufficient effects

well-known in constrained OS/runtime behavior * 1%
12]

The non-significant interaction indicates the mean runtime
gap did not change dramatically across the three budgets
when averaged over tasks/sizes %2,

Comprehensive interpretation and implications

Across all workloads and input sizes, the central trade-off is
predictability and survivability vs expressiveness. Recursion
incurs higher stack usage and higher peak memory, which
directly increases failure risk when memory budgets are
tight an expected outcome under stack-based execution
models and OS/kernel memory constraints ™ 1 12, |teration
maintained a low and stable memory footprint, yielding
near-zero failures at >128 KB, consistent with explicit state
management avoiding deep call stacks 2371,

While runtime differences were not uniformly large, the
ANOVA confirms a meaningful average overhead
attributable to algorithm form, consistent with

compiler/runtime costs of calls and frame management [1°
13]

50 A

B
o
1

Mean peak memory (KB)
N w
o [S]

10 A

B Recursive
[lterative

64 128 256
Memory limit (KB)

Fig 1: Mean peak memory by algorithm under memory limits

~ 28 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

http://www.computersciencejournals.com/ijcpdm

8000 1 —®— Recursive
Iterative

7000 -

6000 -
i
£ 5000
]
£
S 4000 -
~
c
S 3000 A
=

2000 A

1000 A

v
0 .
0 2000 4000 6000 8000 10000
Input size (units)
Fig 2: Runtime scaling at 64 KB memory limit (mean over tasks)
1.0
—&— Recursive
Iterative

0.8 A1
o 0.6
©
g
=
€ 0.4

0.2

0.0 : : — : . ; . :

75 100 125 150 175 200 225 250
Memory limit (KB)
Fig 3: Failure rate vs memory limit (mean over tasks and sizes)
Practically, these results support choosing iterative stack exhaustion, reinforcing concerns raised in operating

formulations for deep or unbounded input depth in
constrained systems, reserving recursion for cases with
provably shallow depth or where compiler optimization/tail

recursion is guaranteed and validated in the target toolchain
[10, 13, 14]

Discussion: The present research provides a focused
empirical comparison of recursive and iterative algorithms
under explicitly defined memory constraints, extending
classical algorithmic theory into practically relevant
deployment contexts. The results consistently demonstrate
that, although recursive and iterative implementations often
share comparable asymptotic time complexity, their real-
world behavior diverges substantially when memory
availability is restricted [2. The markedly higher peak
memory and stack usage observed for recursive
implementations ~ confirm long-standing theoretical
expectations regarding stack-frame allocation and call
overhead 3 4, These effects became especially pronounced
under the tightest memory budget, where recursion
exhibited significantly higher failure rates, primarily due to

system and real-time computing literature 7 11121,

Runtime comparisons revealed that performance differences
were modest at low memory budgets, largely because early
termination in failing recursive runs masked sustained
execution costs. However, as memory limits increased and
failures diminished, recursive implementations showed a
gradual but consistent increase in mean runtime relative to
their iterative counterparts. This pattern aligns with prior
findings that function call management, return handling, and
reduced instruction-level predictability introduce nontrivial
constant-factor overheads in recursive execution models
10 The ANOVA results further support the conclusion that
algorithmic structure itself has a statistically meaningful
influence on performance, independent of memory size,
even when interaction effects remain limited.

An important observation is that increased memory
availability does not fully neutralize the disadvantages of
recursion. Even at higher memory budgets, recursive
algorithms retained higher peak memory footprints,
indicating that memory safety margins alone are insufficient
to guarantee robustness if recursion depth scales with input

~29 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

size [* 14 This finding underscores the importance of
algorithm design decisions in safety-critical or long-lived
systems, where unpredictable input growth may occur after
deployment. While compiler optimizations and tail-
recursion techniques can mitigate some overheads, their
benefits remain context-dependent and cannot be
universally assumed across platforms or toolchains [0 13,
Overall, the discussion highlights that algorithmic elegance
must be weighed against operational predictability and
resource determinism, particularly in constrained

environments where failures carry disproportionate costs ["
14]

Conclusion

This research systematically evaluated recursive and
iterative algorithms in memory-constrained environments
and demonstrated that algorithmic form plays a decisive role
in determining reliability, predictability, and resource
efficiency. The findings clearly indicate that iterative
implementations offer superior memory stability, lower
peak memory consumption, and significantly reduced
failure rates when operating under restricted memory
budgets. While recursion remains attractive for its
conceptual clarity and alignment with mathematical
formulations, its dependence on implicit stack growth
introduces structural vulnerabilities that become critical as
available memory decreases. From a practical standpoint,
developers targeting constrained systems should prioritize
iterative designs for algorithms with potentially deep or
data-dependent execution paths, especially in embedded,
real-time, or edge-computing contexts. Where recursion is
deemed necessary for maintainability or expressiveness,
strict safeguards should be applied, such as enforcing
bounded recursion depth, validating compiler support for
reliable tail-call optimization, and incorporating runtime
checks to prevent stack exhaustion. Additionally, iterative
refactoring of core routines can be selectively applied to
performance-critical sections while retaining recursive
abstractions at higher levels of the software architecture.
System designers should also account for memory
headroom not merely as a static allocation but as a dynamic
safety margin that accommodates worst-case execution
scenarios over the system’s operational lifetime. Educators
and curriculum designers may use these results to
emphasize practical trade-offs alongside theoretical
equivalence, helping learners understand why algorithmic
choices that appear interchangeable in textbooks may
diverge sharply in constrained deployments. Ultimately, the
research reinforces the principle that robust software design
in resource-limited environments requires balancing
readability, correctness, and abstraction against
determinism, memory safety, and long-term operational
resilience, ensuring that algorithmic choices remain valid
not only at design time but throughout deployment, scaling,
and maintenance phases.

References

1. Knuth DE. The Art of Computer Programming, Vol. 1:
Fundamental Algorithms. 3rd ed. Boston: Addison-
Wesley; 1997.

Cormen TH, Leiserson CE, Rivest RL, Stein C.
Introduction to Algorithms. 3rd ed. Cambridge (MA):
MIT Press; 2009.

~30~

10.

11.

12.

13.

14,

http://www.computersciencejournals.com/ijcpdm

Aho AV, Hopcroft JE, Ullman JD. Data Structures and
Algorithms. Reading (MA): Addison-Wesley; 1983.
Tanenbaum AS, Bos H. Modern Operating Systems.
4th ed. Boston: Pearson; 2015.

Sedgewick R, Wayne K. Algorithms. 4th ed. Boston:
Addison-Wesley; 2011.

McConnell S. Code Complete. 2nd ed. Redmond (WA):
Microsoft Press; 2004.

Buttazzo G. Hard Real-Time Computing Systems. 3rd
ed. New York: Springer; 2011.

Patterson DA, Hennessy JL. Computer Organization
and Design. 5th ed. San Francisco: Morgan Kaufmann;
2014.

Kleinberg J, Tardos E. Algorithm Design. Boston:
Pearson; 2006.

Muchnick SS. Advanced Compiler Design and
Implementation. San Francisco: Morgan Kaufmann;
1997.

Love R. Linux Kernel Development. 3rd ed. Upper
Saddle River (NJ): Addison-Wesley; 2010.

Silberschatz A, Galvin PB, Gagne G. Operating System
Concepts. 9th ed. Hoboken (NJ): Wiley; 2013.
Stroustrup B. The C++ Programming Language. 4th ed.
Boston: Addison-Wesley; 2013.

Hennessy JL, Patterson DA. Computer Architecture: A
Quantitative Approach. 5th ed. San Francisco: Morgan
Kaufmann; 2012.

http://www.computersciencejournals.com/ijcpdm

