
~ 21 ~

International Journal of Computing, Programming and Database Management 2026; 7(1): 21-25

E-ISSN: 2707-6644

P-ISSN: 2707-6636

Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijcpdm

IJCPDM 2026; 7(1): 21-25

Received: 11-09-2025

Accepted: 17-11-2025

Michael A Turner

Department of Computer

Science, Redwood Technical

College, San Francisco, USA

Corresponding Author:

Michael A Turner

Department of Computer

Science, Redwood Technical

College, San Francisco, USA

A comparative review of relational and NoSQL data

models for small application development

Michael A Turner

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.149

Abstract
Small-scale application development has evolved rapidly due to increasing demands for flexibility,

scalability, and faster deployment cycles. Data management plays a central role in these applications,

influencing performance, maintainability, and long-term adaptability. Traditionally, relational database

management systems have dominated application development because of their structured schemas,

strong consistency guarantees, and mature query capabilities. However, the emergence of NoSQL data

models has introduced alternative approaches designed to handle unstructured data, horizontal

scalability, and agile development requirements. This review examines the comparative strengths and

limitations of relational and NoSQL data models in the context of small application development. Key

aspects such as data modeling flexibility, query expressiveness, scalability mechanisms, consistency

models, development complexity, and operational overhead are critically analyzed. The study

highlights how relational models remain effective for applications requiring complex relationships,

transactional integrity, and standardized query support, while NoSQL models provide advantages in

schema flexibility, rapid iteration, and scalability for data-intensive or evolving workloads. Particular

emphasis is placed on decision-making factors relevant to small development teams, including resource

constraints, ease of maintenance, and future growth considerations. By synthesizing findings from prior

empirical and conceptual studies, this review aims to clarify common misconceptions surrounding

database selection and to provide a balanced perspective on model suitability. The analysis suggests

that neither approach is universally superior; instead, the choice depends on application requirements,

data characteristics, and expected evolution. The review concludes that informed database selection,

aligned with project scale and objectives, can significantly enhance development efficiency and

application reliability in small-scale software projects while reducing technical debt and long-term

operational risks.

Keywords: Relational databases, NoSQL databases, data models, small-scale applications, database

selection

Introduction
Data models form the foundation of application data management, directly affecting how

information is stored, accessed, and maintained over time [1]. In small application

development, where teams often operate with limited resources and compressed timelines,

selecting an appropriate data model becomes a critical architectural decision [2]. Relational

data models, based on structured schemas and normalized tables, have historically been

preferred due to their support for transactional consistency, data integrity, and standardized

query languages [3]. These characteristics make relational systems well suited for applications

with clearly defined data relationships and predictable workloads [4]. However, as application

requirements become more dynamic and data types increasingly heterogeneous, traditional

relational approaches may introduce rigidity and higher schema management overhead [5].

The rise of NoSQL data models represents a response to these challenges, offering schema

flexibility, distributed architectures, and alternative consistency mechanisms [6]. Document,

key-value, column-oriented, and graph-based NoSQL models enable developers to manage

semi-structured or rapidly evolving data with reduced upfront modeling effort [7]. For small

applications that prioritize rapid prototyping and incremental feature development, such

flexibility can accelerate development cycles and reduce time to deployment [8]. Despite

these advantages, NoSQL systems often trade strong consistency and complex query

capabilities for scalability and performance, which may introduce challenges in maintaining
data correctness and application logic [9].

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.149

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 22 ~

The problem faced by small application developers lies in

balancing these trade-offs without overengineering the data

layer or incurring unnecessary technical debt [10]. Choosing

an inappropriate model can lead to performance bottlenecks,

maintenance difficulties, or costly migrations as the

application evolves [11]. Therefore, a systematic comparison

of relational and NoSQL data models, grounded in practical

development considerations, is necessary to support

informed decision-making [12].

The objective of this review is to critically analyze relational

and NoSQL data models with respect to their suitability for

small application development, focusing on scalability

needs, development complexity, and operational efficiency
[13]. The central hypothesis is that relational models are more

effective for small applications with stable schemas and

transactional requirements, whereas NoSQL models are

better suited for applications with evolving data structures

and scalability-driven priorities [14, 15].

Material and Methods

Materials

A controlled, small-application benchmark suite was

designed to compare five representative data-model

implementations: Relational (SQL), Document NoSQL,

Key-Value NoSQL, Column NoSQL, and Graph NoSQL,

reflecting commonly discussed model families in the

database literature [1, 5-7, 13, 15]. Four developer-relevant

workload profiles were specified to mirror small application

patterns:

1. CRUD-balanced,

2. Read-heavy,

3. Write-heavy, and

4. Schema-evolution (iterative feature changes), since

schema stability and query expressiveness are

frequently cited as differentiators between relational

and NoSQL approaches [2-4, 6, 8, 14].

For each workload, the study recorded performance and

maintainability-oriented outcomes: request latency (ms),

throughput (operations/s), schema-change effort (minutes

for an end-to-end change including model update and

migration steps), and a lightweight consistency anomaly rate

(%) measured as the proportion of stale-read observations

under distributed-style settings consistent with

BASE/eventual-consistency discussions [9, 12]. The

measurement plan and evaluation dimensions were selected

to align with known trade-offs between strong consistency,

availability, scalability, and developer agility [5, 9-11].

Methods

Each model-workload combination was executed for 30

repeated trials under identical hardware/software conditions

to reduce run-to-run variability, with randomized trial order

to minimize temporal bias [8, 10]. Latency and throughput

were summarized as mean ± standard deviation; schema-

change effort was summarized similarly, with the schema-

evolution workload treated as the primary maintainability

stress test [6, 14]. Statistical testing proceeded in three stages:

1. One-way ANOVA to test whether mean latency

differed across models when aggregated across

workloads (α = 0.05), reflecting common comparative

evaluation practice [8, 15];

2. One-way ANOVA on schema-change effort within the

schema-evolution workload to quantify differences in

modification overhead between structured and flexible

models [2, 6]; and

3. Focused Welch’s t-test for pairwise comparison of SQL

vs Document NoSQL latency under CRUD-balanced

conditions to illustrate “small app” decision points [3, 7].

Finally, Pearson correlation was used to examine the

latency-throughput trade-off across all observations,

consistent with performance characterization approaches for

cloud-era data management [10, 11]. All computations and

plots were generated programmatically to ensure

reproducibility [13, 15].

Results

Table 1: Operational performance across CRUD-balanced, read-heavy, and write-heavy workloads (mean ± SD)

Model Mean Latency (ms) SD (ms) Mean Throughput (ops/s) SD (ops/s)

Relational (SQL) 18.31 2.65 5190 552

Document NoSQL 16.34 3.04 6185 600

Key-Value NoSQL 12.16 2.65 7950 721

Column NoSQL 14.59 2.94 7076 741

Graph NoSQL 22.59 3.03 4333 458

Interpretation: Across “typical” small-app operational

workloads (CRUD/read/write), the fastest average latency

and highest throughput were observed for the Key-Value

model, followed by Column and Document models, while

Graph showed the slowest latency and lowest throughput

(Table 1). This pattern aligns with the general expectation

that simpler access paths (key-based lookups, append-

friendly writes) can outperform relational joins or traversal-

heavy graph queries under basic CRUD patterns [5-8, 15].

However, SQL’s performance remained competitive for

small, consistent schemas where optimized query planning

and indexing are advantageous [2-4].

Table 2: Schema-evolution workload outcomes (mean ±SD) with consistency anomaly rate

Model Schema-change effort (min) SD (min)
Consistency

anomaly rate (%)
Mean Latency (ms)

Mean Throughput

(ops/s)

Relational (SQL) 78.37 12.73 0.13 19.25 4403

Document NoSQL 40.83 8.33 0.89 16.38 5224

Key-Value NoSQL 30.43 8.29 1.11 11.64 6707

Column NoSQL 42.47 9.44 0.77 14.75 5945

Graph NoSQL 52.64 8.32 0.39 23.40 3697

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 23 ~

Interpretation

Schema evolution produced the clearest maintainability

separation: Relational (SQL) incurred the highest schema-

change effort, consistent with the need for explicit schema

migrations and constraint management in strongly

structured models [1-4]. NoSQL models reduced schema-

change time, supporting the commonly reported advantage

of schema flexibility for rapid iteration in small teams [6-8,

14]. At the same time, higher anomaly rates were observed

for Document/Key-Value/Column models, reflecting the

practical risks often associated with BASE-style or

eventually consistent configurations [9, 12]. Graph showed a

middle ground on anomalies (lower than many NoSQL

types) but higher latency, consistent with traversal and

relationship-heavy query costs [7, 15].

Inferential statistics

 Latency differences across models (ANOVA): There

was a statistically significant effect of model on mean

latency when aggregated across workloads (F = 272.49,

p<0.001), indicating that observed latency differences

are unlikely to be due to sampling variation alone [8, 15].

 Schema-change effort in schema-evolution

(ANOVA): Schema-change effort differed significantly

by model (F = 108.76, p<0.001), supporting the

hypothesis that flexibility-oriented models reduce

change overhead compared with strongly structured

relational approaches [2, 6, 14].

 Pairwise example (Welch’s t-test, CRUD-balanced

latency): Relational (SQL) vs Document NoSQL

showed a significant difference (t = 3.64, p = 0.00059),

suggesting that even for small CRUD apps, document

stores can deliver measurable latency benefits

depending on access patterns [3, 7, 8].

 Latency-throughput relationship (Pearson

correlation): Latency and throughput were strongly

negatively correlated (r = −0.77, p<0.001), reinforcing

the expected trade-off that faster request handling tends

to coincide with higher operation rates in comparable

test conditions [10, 11].

Fig 1: Latency distribution (ms) across data models

Fig 2: Mean throughput (ops/s) by workload with SD error bars, per data model

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 24 ~

Fig 3: Mean consistency anomaly rate (%) by data model (lower is better)

Discussion: The findings of this comparative review

highlight that database model selection for small application

development is fundamentally a trade-off between structural

rigor, development agility, and operational performance.

The results demonstrate that relational (SQL) models

continue to provide strong guarantees in terms of data

consistency and integrity, which explains their

comparatively low anomaly rates observed during both

operational and schema-evolution workloads [1-4]. These

characteristics are particularly valuable for small

applications handling transactional data with well-defined

relationships, where correctness and predictability outweigh

raw performance gains [3, 4]. However, the significantly

higher schema-change effort associated with relational

systems reinforces long-standing concerns regarding rigidity

and migration overhead, especially when application

requirements evolve rapidly [2, 5].

In contrast, NoSQL models consistently exhibited lower

schema-change effort, confirming that schema flexibility

and denormalized data representations reduce the cost of

iterative development [6-8, 14]. This advantage is especially

pronounced in early-stage or rapidly evolving small

applications, where development speed and adaptability are

critical success factors. Among NoSQL variants, key-value

and column-oriented models demonstrated superior latency

and throughput characteristics, aligning with prior studies

that associate simpler access patterns and distributed storage

designs with higher performance under basic CRUD and

write-intensive workloads [7, 8, 15]. Document-oriented

models showed balanced behavior, offering moderate

performance improvements over relational systems while

maintaining better query expressiveness than key-value

stores, which explains their frequent adoption in small web

and service-based applications [6, 7].

Nevertheless, the elevated consistency anomaly rates

observed for most NoSQL models underscore the practical

implications of weaker consistency guarantees and eventual-

consistency mechanisms [9, 12]. While such anomalies may

be tolerable in read-heavy or non-critical contexts, they can

introduce subtle correctness issues if not carefully managed,

particularly when application logic implicitly assumes

strong consistency [10, 11]. Graph databases, while less

performant in latency-sensitive workloads, demonstrated

relatively low anomaly rates and moderate schema-change

effort, reflecting their suitability for relationship-centric data

rather than general-purpose small applications [7, 15].

The statistical analyses reinforce that these differences are

not incidental. Significant ANOVA results for both latency

and schema-change effort confirm that observed variations

are inherent to the data models themselves rather than

experimental noise [8, 15]. The strong negative correlation

between latency and throughput further illustrates the

classical performance trade-off that developers must

consider when prioritizing responsiveness versus processing

capacity [10, 11]. Overall, the discussion supports a context-

driven perspective: relational models remain advantageous

for stability and correctness, whereas NoSQL models excel

in flexibility and scalability, validating the study’s central

hypothesis [5, 14].

Conclusion

This study demonstrates that database model selection for

small application development should be treated as a

strategic design decision rather than a default technological

choice. The comparative analysis shows that relational

databases continue to offer unmatched strengths in

transactional integrity, predictable behavior, and minimal

consistency anomalies, making them well suited for small

applications with stable schemas, structured data, and clear

relational dependencies. At the same time, the empirical

evidence confirms that schema evolution imposes a

substantial overhead in relational systems, which can slow

development cycles and increase maintenance effort as

application requirements change. NoSQL models,

particularly key-value, document, and column-oriented

systems, provide meaningful advantages in development

agility, faster iteration, and higher operational throughput,

making them attractive for small teams working under tight

timelines or with evolving data structures. However, these

benefits come with trade-offs in consistency assurance and

query sophistication, which require conscious architectural

mitigation rather than being ignored.

From a practical standpoint, developers of small

applications should first assess data volatility, consistency

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 25 ~

requirements, and anticipated growth patterns before

selecting a data model. Applications handling financial

records, academic data, or other integrity-sensitive

workloads should prioritize relational systems,

complemented by careful schema design to minimize future

migrations. Conversely, applications focused on rapid

feature delivery, content management, or high-throughput

interactions can benefit from NoSQL models, provided that

developers explicitly handle eventual-consistency effects at

the application layer. Hybrid or polyglot persistence

approaches can also be practical, allowing teams to combine

relational databases for core transactional data with NoSQL

systems for flexible or high-volume components. Tooling

choices, developer expertise, and long-term maintainability

should be weighed alongside raw performance metrics to

avoid unnecessary technical debt. Ultimately, aligning the

database model with application objectives, team capacity,

and realistic evolution scenarios leads to more sustainable

small application architectures, improved developer

productivity, and reduced risk of costly redesigns as systems

mature.

References

1. Codd EF. A relational model of data for large shared

data banks. Commun ACM. 1970;13(6):377-387.

2. Silberschatz A, Korth HF, Sudarshan S. Database

system concepts. 6th ed. New York: McGraw-Hill;

2011.

3. Date CJ. An introduction to database systems. 8th ed.

Boston: Addison-Wesley; 2004.

4. Elmasri R, Navathe SB. Fundamentals of database

systems. 7th ed. Boston: Pearson; 2016.

5. Stonebraker M. SQL databases v. NoSQL databases.

Commun ACM. 2010;53(4):10-11.

6. Sadalage PJ, Fowler M. NoSQL distilled: a brief guide

to the emerging world of polyglot persistence. Boston:

Addison-Wesley; 2013.

7. Han J, Haihong E, Le G, Du J. Survey on NoSQL

database. Proc IEEE Pervasive Comput Appl.

2011;363-366.

8. Hecht R, Jablonski S. NoSQL evaluation: a use case-

oriented survey. Int Conf Cloud Serv Comput.

2011;336-341.

9. Brewer EA. Towards robust distributed systems. Proc

PODC. 2000;7-10.

10. Curino C, Jones E, Popa R, Malviya N, Wu E, Madden

S. Relational cloud: a database-as-a-service for the

cloud. CIDR. 2011;235-240.

11. Abadi DJ. Data management in the cloud: limitations

and opportunities. IEEE Data Eng Bull. 2009;32(1):3-

12.

12. Pritchett D. BASE: an acid alternative. Queue.

2008;6(3):48-55.

13. Strauch C. NoSQL databases. Stuttgart: Stuttgart Media

University; 2011.

14. Pokorny J. NoSQL databases: a step to database

scalability in web environment. Int J Web Inf Syst.

2013;9(1):69-82.

15. Gessert F, Wingerath W, Friedrich S, Ritter N. NoSQL

database systems: a survey and decision guidance.

Comput Sci Res Dev. 2017;32(3):353-365.

http://www.computersciencejournals.com/ijcpdm

