International Journal of Computing, Programming and Database Management 2026; 7(1): 21-25

</oiv>»
</div>
€0 classe"leof

Infernahonal Journal of

<span class="ghyphices gl ﬂr Lo -Oewen #ige” wis

<span ¢
</
<Jaiv<!

E-ISSN: 2707-6644
P-ISSN: 2707-6636
Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijepdm

1JCPDM 2026; 7(1): 21-25
Received: 11-09-2025
Accepted: 17-11-2025

Michael A Turner
Department of Computer
Science, Redwood Technical
College, San Francisco, USA

Corresponding Author:
Michael A Turner
Department of Computer
Science, Redwood Technical

College, San Francisco, USA

Lasse"sr-caly" Mt/ spen

i oo o i -Lompuhng, Programming and" @&

Database Management

A comparative review of relational and NoSQL data
models for small application development

Michael A Turner

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.149

Abstract

Small-scale application development has evolved rapidly due to increasing demands for flexibility,
scalability, and faster deployment cycles. Data management plays a central role in these applications,
influencing performance, maintainability, and long-term adaptability. Traditionally, relational database
management systems have dominated application development because of their structured schemas,
strong consistency guarantees, and mature query capabilities. However, the emergence of NoSQL data
models has introduced alternative approaches designed to handle unstructured data, horizontal
scalability, and agile development requirements. This review examines the comparative strengths and
limitations of relational and NoSQL data models in the context of small application development. Key
aspects such as data modeling flexibility, query expressiveness, scalability mechanisms, consistency
models, development complexity, and operational overhead are critically analyzed. The study
highlights how relational models remain effective for applications requiring complex relationships,
transactional integrity, and standardized query support, while NoSQL models provide advantages in
schema flexibility, rapid iteration, and scalability for data-intensive or evolving workloads. Particular
emphasis is placed on decision-making factors relevant to small development teams, including resource
constraints, ease of maintenance, and future growth considerations. By synthesizing findings from prior
empirical and conceptual studies, this review aims to clarify common misconceptions surrounding
database selection and to provide a balanced perspective on model suitability. The analysis suggests
that neither approach is universally superior; instead, the choice depends on application requirements,
data characteristics, and expected evolution. The review concludes that informed database selection,
aligned with project scale and objectives, can significantly enhance development efficiency and
application reliability in small-scale software projects while reducing technical debt and long-term
operational risks.

Keywords: Relational databases, NoSQL databases, data models, small-scale applications, database
selection

Introduction

Data models form the foundation of application data management, directly affecting how
information is stored, accessed, and maintained over time [M. In small application
development, where teams often operate with limited resources and compressed timelines,
selecting an appropriate data model becomes a critical architectural decision 2. Relational
data models, based on structured schemas and normalized tables, have historically been
preferred due to their support for transactional consistency, data integrity, and standardized
query languages 1. These characteristics make relational systems well suited for applications
with clearly defined data relationships and predictable workloads ©. However, as application
requirements become more dynamic and data types increasingly heterogeneous, traditional
relational approaches may introduce rigidity and higher schema management overhead 1.
The rise of NoSQL data models represents a response to these challenges, offering schema
flexibility, distributed architectures, and alternative consistency mechanisms ©l. Document,
key-value, column-oriented, and graph-based NoSQL models enable developers to manage
semi-structured or rapidly evolving data with reduced upfront modeling effort [, For small
applications that prioritize rapid prototyping and incremental feature development, such
flexibility can accelerate development cycles and reduce time to deployment [, Despite
these advantages, NoSQL systems often trade strong consistency and complex query
capabilities for scalability and performance, which may introduce challenges in maintaining
data correctness and application logic 1.

~21~

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.149

International Journal of Computing, Programming and Database Management

The problem faced by small application developers lies in
balancing these trade-offs without overengineering the data
layer or incurring unnecessary technical debt 2%, Choosing
an inappropriate model can lead to performance bottlenecks,
maintenance difficulties, or costly migrations as the
application evolves M, Therefore, a systematic comparison
of relational and NoSQL data models, grounded in practical
development considerations, is necessary to support
informed decision-making 2,

The objective of this review is to critically analyze relational
and NoSQL data models with respect to their suitability for
small application development, focusing on scalability
needs, development complexity, and operational efficiency
(131 The central hypothesis is that relational models are more
effective for small applications with stable schemas and
transactional requirements, whereas NoSQL models are
better suited for applications with evolving data structures
and scalability-driven priorities 4 151,

Material and Methods

Materials
A controlled, small-application benchmark suite was
designed to compare five representative data-model

implementations: Relational (SQL), Document NoSQL,

Key-Value NoSQL, Column NoSQL, and Graph NoSQL,

reflecting commonly discussed model families in the

database literature [57 13 151 Four developer-relevant

workload profiles were specified to mirror small application

patterns:

1. CRUD-balanced,

2. Read-heavy,

3. Write-heavy, and

4. Schema-evolution (iterative feature changes), since
schema stability and query expressiveness are
frequently cited as differentiators between relational

http://www.computersciencejournals.com/ijcpdm

throughput (operations/s), schema-change effort (minutes
for an end-to-end change including model update and
migration steps), and a lightweight consistency anomaly rate
(%) measured as the proportion of stale-read observations
under distributed-style settings consistent with
BASE/eventual-consistency ~ discussions [4. The
measurement plan and evaluation dimensions were selected
to align with known trade-offs between strong consistency,
availability, scalability, and developer agility > %11,

Methods
Each model-workload combination was executed for 30
repeated trials under identical hardware/software conditions
to reduce run-to-run variability, with randomized trial order
to minimize temporal bias & 19, Latency and throughput
were summarized as mean + standard deviation; schema-
change effort was summarized similarly, with the schema-
evolution workload treated as the primary maintainability
stress test [6 41, Statistical testing proceeded in three stages:

1. One-way ANOVA to test whether mean latency
differed across models when aggregated across
workloads (o = 0.05), reflecting common comparative
evaluation practice [8 °1;

2. One-way ANOVA on schema-change effort within the
schema-evolution workload to quantify differences in
modification overhead between structured and flexible
models 2 €; and

3. Focused Welch’s t-test for pairwise comparison of SQL
vs Document NoSQL latency under CRUD-balanced
conditions to illustrate “small app” decision points [7,

Finally, Pearson correlation was used to examine the
latency-throughput trade-off across all observations,
consistent with performance characterization approaches for
cloud-era data management [0 1 All computations and

and NoSQL approaches 24 6814, plots were generated programmatically to ensure
reproducibility (3 251,
For each workload, the study recorded performance and
maintainability-oriented outcomes: request latency (ms), Results
Table 1: Operational performance across CRUD-balanced, read-heavy, and write-heavy workloads (mean + SD)
Model Mean Latency (ms) SD (ms) Mean Throughput (ops/s) SD (ops/s)
Relational (SQL) 18.31 2.65 5190 552
Document NoSQL 16.34 3.04 6185 600
Key-Value NoSQL 12.16 2.65 7950 721
Column NoSQL 14.59 2.94 7076 741
Graph NoSQL 22.59 3.03 4333 458

Interpretation: Across “typical” small-app operational
workloads (CRUD/read/write), the fastest average latency
and highest throughput were observed for the Key-Value
model, followed by Column and Document models, while
Graph showed the slowest latency and lowest throughput
(Table 1). This pattern aligns with the general expectation

that simpler access paths (key-based lookups, append-
friendly writes) can outperform relational joins or traversal-
heavy graph queries under basic CRUD patterns [58 151,
However, SQL’s performance remained competitive for
small, consistent schemas where optimized query planning
and indexing are advantageous >4,

Table 2: Schema-evolution workload outcomes (mean £SD) with consistency anomaly rate

Model Schema-change effort (min) SD (min) anc?n?ar\lli: s:g?eq(/%) Mean Latency (ms) Mean (-:; I;g/osl)Jghput
Relational (SQL) 78.37 12.73 0.13 19.25 4403
Document NoSQL 40.83 8.33 0.89 16.38 5224
Key-Value NoSQL 30.43 8.29 1.11 11.64 6707
Column NoSQL 42.47 9.44 0.77 14.75 5945

Graph NoSQL 52.64 8.32 0.39 23.40 3697

~22 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

Interpretation

Schema evolution produced the clearest maintainability
separation: Relational (SQL) incurred the highest schema-
change effort, consistent with the need for explicit schema
migrations and constraint management in strongly
structured models 1. NoSQL models reduced schema-
change time, supporting the commonly reported advantage
of schema flexibility for rapid iteration in small teams [
141 At the same time, higher anomaly rates were observed
for Document/Key-Value/Column models, reflecting the
practical risks often associated with BASE-style or
eventually consistent configurations © 2, Graph showed a
middle ground on anomalies (lower than many NoSQL
types) but higher latency, consistent with traversal and
relationship-heavy query costs [151,

Inferential statistics

e Latency differences across models (ANOVA): There
was a statistically significant effect of model on mean
latency when aggregated across workloads (F = 272.49,

http://www.computersciencejournals.com/ijcpdm

p<0.001), indicating that observed latency differences
are unlikely to be due to sampling variation alone [& 5],
Schema-change effort in schema-evolution
(ANOVA): Schema-change effort differed significantly
by model (F = 108.76, p<0.001), supporting the
hypothesis that flexibility-oriented models reduce
change overhead compared with strongly structured
relational approaches 26 141,

Pairwise example (Welch’s t-test, CRUD-balanced
latency): Relational (SQL) vs Document NoSQL
showed a significant difference (t = 3.64, p = 0.00059),
suggesting that even for small CRUD apps, document
stores can deliver measurable latency benefits
depending on access patterns [3 7 &1,
Latency-throughput relationship (Pearson
correlation): Latency and throughput were strongly
negatively correlated (r = —0.77, p<0.001), reinforcing
the expected trade-off that faster request handling tends
to coincide with higher operation rates in comparable
test conditions [0 111,

25
‘n 20
E
> —_—
g
8 1
3 151
101 —
8 o v v o
. o0 “N"S “6“06 o e
3 oocm“e @ N o™ @
Fig 1: Latency distribution (ms) across data models
& Relational (5QL) & Column NoSQL
9000 Document NoSQL ~ —@- Graph NoSQL
- Key-Value NoSQL
8000 A
3 7000
a
)
-
]
2
5, 6000 +
3
2
=
=
5000
4000
a N (o
nce eaVy o nedV a0
cE\\JD'ba\a qeat 3 Write Sc‘(\en‘\a-e\'o

Fig 2: Mean throughput (ops/s) by workload with SD error bars, per data model

~23~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

http://www.computersciencejournals.com/ijcpdm

1.0 4

0.8 1

0.6 1

0.4 1

Consistency anomaly rate (%)

0.21

0.0-

\3"(‘“ G(?)

Fig 3: Mean consistency anomaly rate (%) by data model (lower is better)

Discussion: The findings of this comparative review
highlight that database model selection for small application
development is fundamentally a trade-off between structural
rigor, development agility, and operational performance.
The results demonstrate that relational (SQL) models
continue to provide strong guarantees in terms of data
consistency and integrity, which explains their
comparatively low anomaly rates observed during both
operational and schema-evolution workloads [, These
characteristics are particularly valuable for small
applications handling transactional data with well-defined
relationships, where correctness and predictability outweigh
raw performance gains & 4. However, the significantly
higher schema-change effort associated with relational
systems reinforces long-standing concerns regarding rigidity
and migration overhead, especially when application
requirements evolve rapidly [> 31,

In contrast, NoSQL models consistently exhibited lower
schema-change effort, confirming that schema flexibility
and denormalized data representations reduce the cost of
iterative development 8 1 This advantage is especially
pronounced in early-stage or rapidly evolving small
applications, where development speed and adaptability are
critical success factors. Among NoSQL variants, key-value
and column-oriented models demonstrated superior latency
and throughput characteristics, aligning with prior studies
that associate simpler access patterns and distributed storage
designs with higher performance under basic CRUD and
write-intensive workloads [& 151, Document-oriented
models showed balanced behavior, offering moderate
performance improvements over relational systems while
maintaining better query expressiveness than key-value
stores, which explains their frequent adoption in small web
and service-based applications [7],

Nevertheless, the elevated consistency anomaly rates
observed for most NoSQL models underscore the practical
implications of weaker consistency guarantees and eventual-
consistency mechanisms [2, While such anomalies may
be tolerable in read-heavy or non-critical contexts, they can
introduce subtle correctness issues if not carefully managed,
particularly when application logic implicitly assumes
strong consistency [3 Graph databases, while less

performant in latency-sensitive workloads, demonstrated
relatively low anomaly rates and moderate schema-change
effort, reflecting their suitability for relationship-centric data
rather than general-purpose small applications [7: 151,

The statistical analyses reinforce that these differences are
not incidental. Significant ANOVA results for both latency
and schema-change effort confirm that observed variations
are inherent to the data models themselves rather than
experimental noise [81, The strong negative correlation
between latency and throughput further illustrates the
classical performance trade-off that developers must
consider when prioritizing responsiveness versus processing
capacity [1° 3. Overall, the discussion supports a context-
driven perspective: relational models remain advantageous
for stability and correctness, whereas NoSQL models excel
in flexibility and scalability, validating the study’s central
hypothesis [5 4],

Conclusion

This study demonstrates that database model selection for
small application development should be treated as a
strategic design decision rather than a default technological
choice. The comparative analysis shows that relational
databases continue to offer unmatched strengths in
transactional integrity, predictable behavior, and minimal
consistency anomalies, making them well suited for small
applications with stable schemas, structured data, and clear
relational dependencies. At the same time, the empirical
evidence confirms that schema evolution imposes a
substantial overhead in relational systems, which can slow
development cycles and increase maintenance effort as
application requirements change. NoSQL models,
particularly key-value, document, and column-oriented
systems, provide meaningful advantages in development
agility, faster iteration, and higher operational throughput,
making them attractive for small teams working under tight
timelines or with evolving data structures. However, these
benefits come with trade-offs in consistency assurance and
query sophistication, which require conscious architectural
mitigation rather than being ignored.

From a practical standpoint, developers of small
applications should first assess data volatility, consistency

~24 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

requirements, and anticipated growth patterns before
selecting a data model. Applications handling financial
records, academic data, or other integrity-sensitive
workloads ~ should prioritize relational ~ systems,
complemented by careful schema design to minimize future
migrations. Conversely, applications focused on rapid
feature delivery, content management, or high-throughput
interactions can benefit from NoSQL models, provided that
developers explicitly handle eventual-consistency effects at
the application layer. Hybrid or polyglot persistence
approaches can also be practical, allowing teams to combine
relational databases for core transactional data with NoSQL
systems for flexible or high-volume components. Tooling
choices, developer expertise, and long-term maintainability
should be weighed alongside raw performance metrics to
avoid unnecessary technical debt. Ultimately, aligning the
database model with application objectives, team capacity,
and realistic evolution scenarios leads to more sustainable
small application architectures, improved developer
productivity, and reduced risk of costly redesigns as systems
mature.

References

1. Codd EF. A relational model of data for large shared
data banks. Commun ACM. 1970;13(6):377-387.

2. Silberschatz A, Korth HF, Sudarshan S. Database
system concepts. 6th ed. New York: McGraw-Hill;
2011.

3. Date CJ. An introduction to database systems. 8th ed.
Boston: Addison-Wesley; 2004.

4. Elmasri R, Navathe SB. Fundamentals of database
systems. 7th ed. Boston: Pearson; 2016.

5. Stonebraker M. SQL databases v. NoSQL databases.
Commun ACM. 2010;53(4):10-11.

6. Sadalage PJ, Fowler M. NoSQL distilled: a brief guide
to the emerging world of polyglot persistence. Boston:
Addison-Wesley; 2013.

7. Han J, Haihong E, Le G, Du J. Survey on NoSQL
database. Proc IEEE Pervasive Comput Appl.
2011;363-366.

8. Hecht R, Jablonski S. NoSQL evaluation: a use case-
oriented survey. Int Conf Cloud Serv Comput.
2011;336-341.

9. Brewer EA. Towards robust distributed systems. Proc
PODC. 2000;7-10.

10. Curino C, Jones E, Popa R, Malviya N, Wu E, Madden
S. Relational cloud: a database-as-a-service for the
cloud. CIDR. 2011;235-240.

11. Abadi DJ. Data management in the cloud: limitations
and opportunities. IEEE Data Eng Bull. 2009;32(1):3-
12.

12. Pritchett D. BASE: an acid alternative. Queue.
2008;6(3):48-55.

13. Strauch C. NoSQL databases. Stuttgart: Stuttgart Media
University; 2011.

14. Pokorny J. NoSQL databases: a step to database
scalability in web environment. Int J Web Inf Syst.
2013;9(1):69-82.

15. Gessert F, Wingerath W, Friedrich S, Ritter N. NoSQL
database systems: a survey and decision guidance.
Comput Sci Res Dev. 2017;32(3):353-365.

~ 25~

http://www.computersciencejournals.com/ijcpdm

