International Journal of Computing, Programming and Database Management 2026; 7(1): 16-20

</oiv>»
</div>
€0 classe"leof

Infernahonal Journal of

<span class="ghyphices gl ﬂr Lo -Oewen #ige” wis

<span ¢
</
<Jaiv<!

E-ISSN: 2707-6644
P-ISSN: 2707-6636
Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijepdm

1JCPDM 2026; 7(1): 16-20
Received: 08-09-2025
Accepted: 14-11-2025

Lucas André Moreau
Department of Computer
Science, Ecole Polytechnique
de Montréal, Montréal, Canada

Corresponding Author:

Lucas André Moreau
Department of Computer
Science, Ecole Polytechnique
de Montréal, Montréal, Canada

Lasse"sr-caly" Mt/ spen

i oo o i -Lompuhng, Programming and" @&

Database Management

Impact of modular programming practices on
software maintainability in student projects

Lucas André Moreau

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.148

Abstract

Modular programming is widely promoted in software engineering education as a means to improve
code quality, readability, and long-term maintainability. Student software projects, however, often
exhibit tightly coupled logic, limited abstraction, and inconsistent structure, which can hinder
maintenance activities such as debugging, enhancement, and reuse. This research examines the impact
of adopting modular programming practices on the maintainability of student-developed software
systems. Using a practical research design, multiple student projects developed under comparable
academic conditions were analyzed based on modularity indicators including module size, cohesion,
coupling, and interface clarity. Maintainability was evaluated through a combination of quantitative
software metrics and qualitative assessments of code comprehension and modification effort. The
findings demonstrate that projects employing well-defined modules with clear responsibilities show
significantly improved maintainability outcomes, including reduced defect localization time, lower
change impact, and higher readability scores. Students who applied modular design principles were
also better able to extend functionality without introducing regressions. The research further highlights
common challenges faced by learners, such as improper decomposition and over-fragmentation, which
can negatively affect maintainability when modularity is poorly implemented. By empirically linking
modular programming practices to measurable maintainability improvements, this research provides
evidence supporting the inclusion of structured modular design instruction in undergraduate curricula.
The results contribute to software engineering education by clarifying how specific modular practices
influence maintenance-related attributes in novice-developed systems. Overall, the research reinforces
modular programming as a critical pedagogical tool for cultivating sustainable software development
skills and preparing students for real-world software maintenance demands. Implications for
instructors, curriculum designers, and assessment strategies are discussed, emphasizing alignment
between theory and practice, iterative feedback, and early exposure to refactoring activities that help
students internalize modular thinking while balancing simplicity, performance, and maintainability
constraints in academic development environments across varied project scales and collaborative team
settings typical of undergraduate courses worldwide.

Keywords: Modular programming, software maintainability, student projects, software engineering
education, code quality

Introduction

Software maintainability is a central quality attribute that determines the ease with which a
system can be understood, corrected, adapted, and enhanced over time ™. In educational
settings, student-developed software often serves as an early exposure to professional
development practices, yet such projects frequently suffer from monolithic structures,
duplicated logic, and limited separation of concerns, making maintenance tasks
disproportionately difficult . Modular programming, which emphasizes decomposition of
systems into cohesive and loosely coupled units, has long been recognized as a foundational
principle for managing software complexity . Prior studies suggest that modular designs
improve readability and reduce the cognitive load required to understand program behavior,
particularly for novice developers . Despite its theoretical importance, students commonly
struggle to apply modular principles effectively, resulting in designs that either lack
sufficient abstraction or fragment functionality excessively ®l. This mismatch between taught
concepts and practical application raises concerns about the long-term maintainability of
student projects and their preparedness for real-world software development 1. From an
academic perspective, maintainability is especially relevant because student projects are

~16 ~

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.148

International Journal of Computing, Programming and Database Manageme

often revised, extended, or reused across semesters,
amplifying the cost of poor design decisions 1. Empirical
evidence indicates that metrics related to cohesion and
coupling are strongly associated with maintenance effort,
defect density, and change proneness in software systems [,
However, limited research has focused specifically on how
modular programming practices influence these attributes
within student-developed codebases !. Addressing this gap,
the present research investigates the relationship between
modular ~ programming practices and software
maintainability in student projects by analyzing structural
properties and maintenance outcomes under controlled
academic conditions [°1. The primary objective is to assess
whether systematic adoption of modular design principles
leads to measurable improvements in maintainability
indicators such as readability, defect isolation, and
modification effort 1. A secondary objective is to identify
common modularization pitfalls encountered by students
and their impact on maintenance activities 2. Based on
established software engineering theory, this research
hypothesizes that student projects employing well-defined,
cohesive modules with minimal interdependencies will
demonstrate significantly higher maintainability compared
to less modular counterparts 31, By integrating educational
practice with empirical software analysis, the research aims
to contribute actionable insights for curriculum design and

instructional strategies in software engineering education 4
15]

Materials and Methods

Materials: A comparative, classroom-based practical
research was conducted on 40 undergraduate student
software projects developed under similar course constraints
(same language/toolchain, comparable scope, and fixed
submission timeline) to evaluate how modular programming
practices influence maintainability outcomes [1. Projects
were categorized into two groups: Modular (n=20), where
teams explicitly applied modular decomposition, separation
of concerns, and refactoring checkpoints during
development B 7 4. and Baseline (n=20), where teams
followed standard development guidance without structured
modularization checkpoints [4. Maintainability was
operationalized using a Maintainability Index (Ml, 0-100)

nt

http://www.computersciencejournals.com/ijcpdm

aligned with software product quality perspectives M,
supported by structural metrics capturing modularity
quality, including coupling (CBO) and cohesion (LCOM) as
widely used design indicators [& 1. 12 Maintenance
outcomes included

1. Change effort (minutes) to implement a predefined
enhancement and correct a seeded defect, and
2. Post-change defects introduced during modification,

reflecting maintenance risk [0 13151,

A structured evaluation rubric was used for consistency in
code readability and modification assessment, following
empirical software evaluation practices and measurement
principles [191,

Methods
Projects were analyzed after submission using a consistent
assessment pipeline:

1. Extraction of modularity metrics (CBO, LCOM) and
maintainability proxy scores (MI) 11 1,
2. Controlled maintenance tasks performed by evaluators

to record time to change and defects introduced,
reflecting real maintenance actions such as

comprehension, localized edits, and regression checks
[7,13]

Descriptive statistics (mean, SD, median) were computed by
group. Inferential comparisons between Modular and
Baseline projects were conducted using Welch’s t-tests for
MI, CBO, LCOM, and change effort to accommodate
unequal variances Pl with effect sizes (Cohen’s d) reported
for practical significance. Because defect counts may not be
normally distributed, defect differences were additionally
checked with a nonparametric Mann-Whitney U test [, To
examine predictors of maintainability and effort, multiple
linear regression models were fit:

1. MI as a function of CBO, LCOM, and group
membership; and

2. Change effort as a function of CBO, LCOM, and group
membership, consistent with empirical modeling
approaches in software engineering [8,10]. Statistical
significance was interpreted at o = 0.05.

Results

Table 1: Descriptive statistics of maintainability and modularity-related outcomes by group (mean + SD)

Maintainability . Post-change
Group n Index (M1) CBO LCOM Change effort (min) defects (count)
Baseline 20 62.14 £6.78 13.91+3.34 0.585+0.123 63.57 +10.84 2.15+1.95
Modular 20 76.97 £5.76 7.95+1.64 0.348 = 0.069 40.98 +£9.63 1.65+1.46

The Modular group demonstrated higher MI and lower
coupling/cohesion penalties (CBO, LCOM) than the
Baseline group, aligning with the expectation that better
decomposition improves maintainability-related attributes ™

381 Change effort was markedly lower in Modular projects,
suggesting easier comprehension and safer modification
paths when responsibilities are separated and interfaces are
clearer (7141,

Table 2: Between-group comparisons using Welch’s t-test (Modular vs Baseline) with effect size (Cohen’s d)

Outcome t (Welch) p-value Cohen’s d
Maintainability Index 7.46 <0.001 2.36
CBO -7.17 <0.001 -2.27
LCOM -7.55 <0.001 -2.39
Change effort (min) -6.97 <0.001 -2.20

~17 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

Group differences were statistically significant and very
large in magnitude for MI, coupling, cohesion, and change
effort (all p<0.001), supporting long-standing modularity
arguments that decomposition reduces complexity and
facilitates maintenance actions [& 131, For defect counts, a
nonparametric comparison (Mann-Whitney U) indicated no

http://www.computersciencejournals.com/ijcpdm

statistically significant difference (p = 0.507), suggesting
that while modularity reduced time and structural risk,
defect introduction may also depend on testing discipline
and developer experience well-known challenges in student
contexts 6 151,

Table 3: Regression models linking modular structure to maintainability and change effort (B, SE, p)

Model Predictor B SE p-value
Intercept 67.19 7.76 <0.001
CBO -0.33 0.40 0.413
M1~ CBO + LCOM + Group LCOM 0.77 1055 0.942
Group (Modular=1) 12.68 3.76 0.002
Intercept 75.83 12.48 <0.001
Effot - CBO + LCOM + Group oo 22201607 | 0105
Group (Modular=1) -27.55 6.05 <0.001

In multivariable models, group membership remained a
strong predictor: Modular projects showed ~+12.68 MI
points and ~—27.55 minutes of change effort on average,
even when controlling for CBO and LCOM. This pattern is
consistent with the idea that modular programming practices
(interfaces, responsibility boundaries, and refactoring
discipline) contribute beyond what single metrics capture,

echoing prior findings that design practices and
measurement jointly explain quality outcomes [10 11,
Model fit was substantial (R? = 0.60 for MI; R? = 0.58 for
effort), indicating that structured modular practice accounts
for a meaningful portion of maintainability variation in
student codebases [8 191,

80 4

70 A

60 1

50 A

40 A

30 4

Maintainability Index (0-100)

20 A

10 A

0 -

Baseline

Modular

Fig 1: Mean Maintainability Index (MI) by group with standard error

80 -

70 A

60 -

50 A

Change effort (minutes)

40 A

301 _J_

Modular

T
Baseline

Fig 2: Change effort (minutes) by group.

~18 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

http://www.computersciencejournals.com/ijcpdm

85 4

80 4

75 4

70 4

65 1

Maintainability Index (0-100)

60 A

55 1

50 1

® Modular
Baseline
= QLS fit (overall)

4 6 8 10

Coupling Between Objects (CBO)

12 14 16 18

Fig 3: Scatter plot of MI versus coupling (CBO) with overall OLS trend line.

Discussion

The findings of the present research provide strong
empirical support for the role of modular programming
practices in improving software maintainability within
student-developed projects. Projects that explicitly adopted
modular decomposition exhibited significantly higher
Maintainability Index scores, lower coupling (CBO),
improved cohesion (LCOM), and substantially reduced
change effort compared to baseline projects. These results
are consistent with classical software engineering theory,
which emphasizes that modularization reduces system
complexity and localizes the impact of changes & 31, The
observed reduction in coupling among modular projects
aligns with earlier empirical studies demonstrating that
loosely coupled modules facilitate easier comprehension
and safer modification, particularly during corrective and
adaptive maintenance tasks (& 11,

The statistically significant improvement in maintainability
metrics suggests that modular programming is not merely a
conceptual ideal but yields measurable benefits even in
novice-developed systems. This is noteworthy because
student projects are often criticized for their limited scale
and perceived lack of realism. However, the results indicate
that even at an educational scale, structural design choices
materially affect maintenance outcomes, reinforcing
arguments that early exposure to sound design principles
has lasting pedagogical value 2 €. The large effect sizes
observed across multiple outcomes further highlight that
modular practices contribute meaningfully beyond
incremental stylistic improvements, echoing findings that
design structure is a dominant determinant of long-term
software quality [-14,

Regression analysis revealed that group membership
(modular versus baseline) remained a significant predictor
of maintainability and change effort even after controlling
for cohesion and coupling metrics. This suggests that
modular programming practices encompass more than what
is captured by individual metrics alone, including clearer
responsibility allocation, better interface definition, and
disciplined refactoring habits ™ 2. Such practices likely
enhance developers’ mental models of the system, reducing
cognitive load during maintenance, a phenomenon

previously reported in studies on program comprehension
and learning in computer science education [,
Interestingly, while modular projects showed lower average
post-change defect counts, the difference was not
statistically significant. This finding aligns with prior
observations that defect introduction is influenced not only
by design quality but also by testing rigor, developer
experience, and time pressure factors that are often uneven
in academic environments [1% Nevertheless, the
substantial reduction in maintenance effort observed in
modular projects indicates that even when defects occur,
modular designs may simplify detection and correction,
indirectly supporting maintainability goals [+ 1%, Overall, the
discussion underscores that structured modular
programming instruction can bridge the gap between
theoretical principles and practical student outcomes,
supporting its integration as a core element of software
engineering curricula 2 4191,

Conclusion

The present research demonstrates that modular
programming practices have a decisive and positive impact
on software maintainability in student projects, affecting not
only structural quality metrics but also practical
maintenance outcomes such as change effort and ease of
modification. Students who consistently applied modular
decomposition principles produced software systems that
were easier to understand, adapt, and extend, even within
the limited scope and time constraints typical of academic
coursework. These findings reinforce the view that
maintainability is not an abstract or secondary quality
attribute but a tangible outcome shaped by early design
decisions. From an educational perspective, this evidence
highlights the importance of embedding modular thinking
deeply into programming instruction rather than treating it
as an optional or advanced topic. Practical recommendations
emerging from this research include integrating modular
design checkpoints into project milestones, encouraging
students to justify module boundaries and interfaces during
code reviews, and incorporating refactoring exercises that
explicitly target coupling and cohesion improvements.
Instructors can further enhance learning outcomes by

~19 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

aligning assessment criteria with maintainability-related
attributes, such as clarity of module responsibilities and ease
of change, rather than focusing solely on functional
correctness. Tool-supported feedback using basic
maintainability and design metrics can help students
visualize the consequences of their design choices and foster
reflective learning. Additionally, collaborative assignments
that require students to modify or extend peers’ code can
reinforce the real-world relevance of modular design by
exposing learners to maintenance challenges firsthand. By
systematically combining theoretical instruction, hands-on
practice, and iterative feedback, educational programs can
cultivate sustainable programming habits that prepare
students for professional software development
environments. Ultimately, the research underscores that
modular programming is not only a best practice for
industry-scale systems but also a critical pedagogical
strategy for nurturing maintainable thinking in future
software engineers, ensuring that student developers acquire
skills that remain relevant as systems evolve and complexity
grows over time in collaborative and long-lived software
projects.

References

1. ISO/IEC. Software engineering Product quality.
ISO/IEC 25010. Geneva: 1SO; 2011.

2. Sommerville I. Software Engineering. 10th ed. Boston:
Pearson; 2016.

3. Parnas DL. On the criteria to be used in decomposing
systems into modules. Commun ACM.
1972;15(12):1053-1058.

4. McConnell S. Code Complete. 2nd ed. Redmond:
Microsoft Press; 2004.

5. Bennedsen J, Caspersen ME. Failure rates in
introductory programming. ACM SIGCSE Bull.
2007;39(2):32-36.

6. Robins A, Rountree J, Rountree N. Learning and
teaching programming. Comput Sci Educ.
2003;13(2):137-172.

7. Fowler M. Refactoring: Improving the Design of
Existing Code. Boston: Addison-Wesley; 1999.

8. Briand LC, Wist J, Daly JW, Porter DV. Exploring the
relationships between design measures and software
quality. J Syst Softw. 2000;51(3):245-273.

9. Kitchenham B, Pfleeger SL. Principles of survey
research. Softw Eng Notes. 2002;27(5):24-36.

10. Basili VR, Caldiera G, Rombach HD. The goal
question metric approach. Encycl Softw Eng. 1994;
2:528-532.

11. Chidamber SR, Kemerer CF. A metrics suite for object-
oriented design. IEEE Trans Softw Eng.
1994;20(6):476-493.

12. Meyer B. Object-Oriented Software Construction. 2nd
ed. Upper Saddle River: Prentice Hall; 1997.

13. Pressman RS, Maxim BR. Software Engineering: A
Practitioner’s Approach. 8th ed. New York: McGraw-
Hill; 2015.

14. Larman C. Applying UML and Patterns. 3rd ed. Upper
Saddle River: Prentice Hall; 2005.

15. Brooks FP. No Silver Bullet Essence and accidents of
software engineering. Computer. 1987;20(4):10-19.

~20~

http://www.computersciencejournals.com/ijcpdm

