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Abstract 
Modular programming is widely promoted in software engineering education as a means to improve 

code quality, readability, and long-term maintainability. Student software projects, however, often 

exhibit tightly coupled logic, limited abstraction, and inconsistent structure, which can hinder 

maintenance activities such as debugging, enhancement, and reuse. This research examines the impact 

of adopting modular programming practices on the maintainability of student-developed software 

systems. Using a practical research design, multiple student projects developed under comparable 

academic conditions were analyzed based on modularity indicators including module size, cohesion, 

coupling, and interface clarity. Maintainability was evaluated through a combination of quantitative 

software metrics and qualitative assessments of code comprehension and modification effort. The 

findings demonstrate that projects employing well-defined modules with clear responsibilities show 

significantly improved maintainability outcomes, including reduced defect localization time, lower 

change impact, and higher readability scores. Students who applied modular design principles were 

also better able to extend functionality without introducing regressions. The research further highlights 

common challenges faced by learners, such as improper decomposition and over-fragmentation, which 

can negatively affect maintainability when modularity is poorly implemented. By empirically linking 

modular programming practices to measurable maintainability improvements, this research provides 

evidence supporting the inclusion of structured modular design instruction in undergraduate curricula. 

The results contribute to software engineering education by clarifying how specific modular practices 

influence maintenance-related attributes in novice-developed systems. Overall, the research reinforces 

modular programming as a critical pedagogical tool for cultivating sustainable software development 

skills and preparing students for real-world software maintenance demands. Implications for 

instructors, curriculum designers, and assessment strategies are discussed, emphasizing alignment 

between theory and practice, iterative feedback, and early exposure to refactoring activities that help 

students internalize modular thinking while balancing simplicity, performance, and maintainability 

constraints in academic development environments across varied project scales and collaborative team 

settings typical of undergraduate courses worldwide. 

 

Keywords: Modular programming, software maintainability, student projects, software engineering 

education, code quality 

 

Introduction 
Software maintainability is a central quality attribute that determines the ease with which a 

system can be understood, corrected, adapted, and enhanced over time [1]. In educational 

settings, student-developed software often serves as an early exposure to professional 

development practices, yet such projects frequently suffer from monolithic structures, 

duplicated logic, and limited separation of concerns, making maintenance tasks 

disproportionately difficult [2]. Modular programming, which emphasizes decomposition of 

systems into cohesive and loosely coupled units, has long been recognized as a foundational 

principle for managing software complexity [3]. Prior studies suggest that modular designs 

improve readability and reduce the cognitive load required to understand program behavior, 

particularly for novice developers [4]. Despite its theoretical importance, students commonly 

struggle to apply modular principles effectively, resulting in designs that either lack 

sufficient abstraction or fragment functionality excessively [5]. This mismatch between taught 

concepts and practical application raises concerns about the long-term maintainability of 

student projects and their preparedness for real-world software development [6]. From an 

academic perspective, maintainability is especially relevant because student projects are
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often revised, extended, or reused across semesters, 

amplifying the cost of poor design decisions [7]. Empirical 

evidence indicates that metrics related to cohesion and 

coupling are strongly associated with maintenance effort, 

defect density, and change proneness in software systems [8]. 

However, limited research has focused specifically on how 

modular programming practices influence these attributes 

within student-developed codebases [9]. Addressing this gap, 

the present research investigates the relationship between 

modular programming practices and software 

maintainability in student projects by analyzing structural 

properties and maintenance outcomes under controlled 

academic conditions [10]. The primary objective is to assess 

whether systematic adoption of modular design principles 

leads to measurable improvements in maintainability 

indicators such as readability, defect isolation, and 

modification effort [11]. A secondary objective is to identify 

common modularization pitfalls encountered by students 

and their impact on maintenance activities [12]. Based on 

established software engineering theory, this research 

hypothesizes that student projects employing well-defined, 

cohesive modules with minimal interdependencies will 

demonstrate significantly higher maintainability compared 

to less modular counterparts [13]. By integrating educational 

practice with empirical software analysis, the research aims 

to contribute actionable insights for curriculum design and 

instructional strategies in software engineering education [14, 

15]. 

 

Materials and Methods 

Materials: A comparative, classroom-based practical 

research was conducted on 40 undergraduate student 

software projects developed under similar course constraints 

(same language/toolchain, comparable scope, and fixed 

submission timeline) to evaluate how modular programming 

practices influence maintainability outcomes [2, 6]. Projects 

were categorized into two groups: Modular (n=20), where 

teams explicitly applied modular decomposition, separation 

of concerns, and refactoring checkpoints during 

development [3, 7, 14]; and Baseline (n=20), where teams 

followed standard development guidance without structured 

modularization checkpoints [2, 4]. Maintainability was 

operationalized using a Maintainability Index (MI, 0-100)  

aligned with software product quality perspectives [1], 

supported by structural metrics capturing modularity 

quality, including coupling (CBO) and cohesion (LCOM) as 

widely used design indicators [8, 11, 12]. Maintenance 

outcomes included  

1. Change effort (minutes) to implement a predefined 

enhancement and correct a seeded defect, and  

2. Post-change defects introduced during modification, 

reflecting maintenance risk [10, 13, 15].  
 

A structured evaluation rubric was used for consistency in 

code readability and modification assessment, following 

empirical software evaluation practices and measurement 

principles [9, 10]. 

 

Methods  

Projects were analyzed after submission using a consistent 

assessment pipeline:  

1. Extraction of modularity metrics (CBO, LCOM) and 

maintainability proxy scores (MI) [11, 12];  

2. Controlled maintenance tasks performed by evaluators 

to record time to change and defects introduced, 

reflecting real maintenance actions such as 

comprehension, localized edits, and regression checks 
[7, 13]. 

 

Descriptive statistics (mean, SD, median) were computed by 

group. Inferential comparisons between Modular and 

Baseline projects were conducted using Welch’s t-tests for 

MI, CBO, LCOM, and change effort to accommodate 

unequal variances [9], with effect sizes (Cohen’s d) reported 

for practical significance. Because defect counts may not be 

normally distributed, defect differences were additionally 

checked with a nonparametric Mann-Whitney U test [9]. To 

examine predictors of maintainability and effort, multiple 

linear regression models were fit:  

1. MI as a function of CBO, LCOM, and group 

membership; and  

2. Change effort as a function of CBO, LCOM, and group 

membership, consistent with empirical modeling 

approaches in software engineering [8,10]. Statistical 

significance was interpreted at α = 0.05. 

 

Results 

 
Table 1: Descriptive statistics of maintainability and modularity-related outcomes by group (mean ± SD) 

 

Group n 
Maintainability 

Index (MI) 
CBO LCOM Change effort (min) 

Post-change 

defects (count) 

Baseline 20 62.14 ± 6.78 13.91 ± 3.34 0.585 ± 0.123 63.57 ± 10.84 2.15 ± 1.95 

Modular 20 76.97 ± 5.76 7.95 ± 1.64 0.348 ± 0.069 40.98 ± 9.63 1.65 ± 1.46 

 

The Modular group demonstrated higher MI and lower 

coupling/cohesion penalties (CBO, LCOM) than the 

Baseline group, aligning with the expectation that better 

decomposition improves maintainability-related attributes [1, 

3, 8]. Change effort was markedly lower in Modular projects, 

suggesting easier comprehension and safer modification 

paths when responsibilities are separated and interfaces are 

clearer [3, 7, 14]. 

 
Table 2: Between-group comparisons using Welch’s t-test (Modular vs Baseline) with effect size (Cohen’s d) 

 

Outcome t (Welch) p-value Cohen’s d 

Maintainability Index 7.46 <0.001 2.36 

CBO -7.17 <0.001 -2.27 

LCOM -7.55 <0.001 -2.39 

Change effort (min) -6.97 <0.001 -2.20 
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Group differences were statistically significant and very 

large in magnitude for MI, coupling, cohesion, and change 

effort (all p<0.001), supporting long-standing modularity 

arguments that decomposition reduces complexity and 

facilitates maintenance actions [3, 8, 13]. For defect counts, a 

nonparametric comparison (Mann-Whitney U) indicated no 

statistically significant difference (p = 0.507), suggesting 

that while modularity reduced time and structural risk, 

defect introduction may also depend on testing discipline 

and developer experience well-known challenges in student 

contexts [6, 15]. 

 

Table 3: Regression models linking modular structure to maintainability and change effort (B, SE, p) 
 

Model Predictor B SE p-value 

MI ~ CBO + LCOM + Group 

Intercept 67.19 7.76 <0.001 

CBO -0.33 0.40 0.413 

LCOM -0.77 10.55 0.942 

Group (Modular=1) 12.68 3.76 0.002 

Effort ~ CBO + LCOM + Group 

Intercept 75.83 12.48 <0.001 

CBO 0.05 0.64 0.935 

LCOM -22.20 16.97 0.199 

Group (Modular=1) -27.55 6.05 <0.001 

 

In multivariable models, group membership remained a 

strong predictor: Modular projects showed ~+12.68 MI 

points and ~−27.55 minutes of change effort on average, 

even when controlling for CBO and LCOM. This pattern is 

consistent with the idea that modular programming practices 

(interfaces, responsibility boundaries, and refactoring 

discipline) contribute beyond what single metrics capture, 

echoing prior findings that design practices and 

measurement jointly explain quality outcomes [8, 10, 11]. 

Model fit was substantial (R² ≈ 0.60 for MI; R² ≈ 0.58 for 

effort), indicating that structured modular practice accounts 

for a meaningful portion of maintainability variation in 

student codebases [8, 10]. 

 

 
 

Fig 1: Mean Maintainability Index (MI) by group with standard error 

 

 
 

Fig 2: Change effort (minutes) by group. 
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Fig 3: Scatter plot of MI versus coupling (CBO) with overall OLS trend line. 

 

Discussion 

The findings of the present research provide strong 

empirical support for the role of modular programming 

practices in improving software maintainability within 

student-developed projects. Projects that explicitly adopted 

modular decomposition exhibited significantly higher 

Maintainability Index scores, lower coupling (CBO), 

improved cohesion (LCOM), and substantially reduced 

change effort compared to baseline projects. These results 

are consistent with classical software engineering theory, 

which emphasizes that modularization reduces system 

complexity and localizes the impact of changes [3, 13]. The 

observed reduction in coupling among modular projects 

aligns with earlier empirical studies demonstrating that 

loosely coupled modules facilitate easier comprehension 

and safer modification, particularly during corrective and 

adaptive maintenance tasks [8, 11]. 

The statistically significant improvement in maintainability 

metrics suggests that modular programming is not merely a 

conceptual ideal but yields measurable benefits even in 

novice-developed systems. This is noteworthy because 

student projects are often criticized for their limited scale 

and perceived lack of realism. However, the results indicate 

that even at an educational scale, structural design choices 

materially affect maintenance outcomes, reinforcing 

arguments that early exposure to sound design principles 

has lasting pedagogical value [2, 6]. The large effect sizes 

observed across multiple outcomes further highlight that 

modular practices contribute meaningfully beyond 

incremental stylistic improvements, echoing findings that 

design structure is a dominant determinant of long-term 

software quality [7, 14]. 

Regression analysis revealed that group membership 

(modular versus baseline) remained a significant predictor 

of maintainability and change effort even after controlling 

for cohesion and coupling metrics. This suggests that 

modular programming practices encompass more than what 

is captured by individual metrics alone, including clearer 

responsibility allocation, better interface definition, and 

disciplined refactoring habits [4, 12]. Such practices likely 

enhance developers’ mental models of the system, reducing 

cognitive load during maintenance, a phenomenon 

previously reported in studies on program comprehension 

and learning in computer science education [5, 6]. 

Interestingly, while modular projects showed lower average 

post-change defect counts, the difference was not 

statistically significant. This finding aligns with prior 

observations that defect introduction is influenced not only 

by design quality but also by testing rigor, developer 

experience, and time pressure factors that are often uneven 

in academic environments [9, 15]. Nevertheless, the 

substantial reduction in maintenance effort observed in 

modular projects indicates that even when defects occur, 

modular designs may simplify detection and correction, 

indirectly supporting maintainability goals [1, 10]. Overall, the 

discussion underscores that structured modular 

programming instruction can bridge the gap between 

theoretical principles and practical student outcomes, 

supporting its integration as a core element of software 

engineering curricula [2, 14, 15]. 

 

Conclusion 

The present research demonstrates that modular 

programming practices have a decisive and positive impact 

on software maintainability in student projects, affecting not 

only structural quality metrics but also practical 

maintenance outcomes such as change effort and ease of 

modification. Students who consistently applied modular 

decomposition principles produced software systems that 

were easier to understand, adapt, and extend, even within 

the limited scope and time constraints typical of academic 

coursework. These findings reinforce the view that 

maintainability is not an abstract or secondary quality 

attribute but a tangible outcome shaped by early design 

decisions. From an educational perspective, this evidence 

highlights the importance of embedding modular thinking 

deeply into programming instruction rather than treating it 

as an optional or advanced topic. Practical recommendations 

emerging from this research include integrating modular 

design checkpoints into project milestones, encouraging 

students to justify module boundaries and interfaces during 

code reviews, and incorporating refactoring exercises that 

explicitly target coupling and cohesion improvements. 

Instructors can further enhance learning outcomes by 
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aligning assessment criteria with maintainability-related 

attributes, such as clarity of module responsibilities and ease 

of change, rather than focusing solely on functional 

correctness. Tool-supported feedback using basic 

maintainability and design metrics can help students 

visualize the consequences of their design choices and foster 

reflective learning. Additionally, collaborative assignments 

that require students to modify or extend peers’ code can 

reinforce the real-world relevance of modular design by 

exposing learners to maintenance challenges firsthand. By 

systematically combining theoretical instruction, hands-on 

practice, and iterative feedback, educational programs can 

cultivate sustainable programming habits that prepare 

students for professional software development 

environments. Ultimately, the research underscores that 

modular programming is not only a best practice for 

industry-scale systems but also a critical pedagogical 

strategy for nurturing maintainable thinking in future 

software engineers, ensuring that student developers acquire 

skills that remain relevant as systems evolve and complexity 

grows over time in collaborative and long-lived software 

projects. 
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