International Journal of Computing, Programming and Database Management 2026; 7(1): 06-10

</oiv>»
</div>
€0 classe"leof

Infernahonal Journal of

<span class="ghyphices gl ﬂr Lo -Oewen #ige” wis

<span ¢
</
<Jaiv<!

E-ISSN: 2707-6644
P-ISSN: 2707-6636
Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijepdm

1JCPDM 2026; 7(1): 06-10
Received: 16-08-2025
Accepted: 24-10-2025

Lucas Andrade

Department of Computer
Science, Polytechnic Institute
of Porto, Porto, Portugal

Sofia Martins

Department of Computer
Science, Polytechnic Institute
of Porto, Porto, Portugal

Miguel Ferreira

Department of Computer
Science, Polytechnic Institute
of Porto, Porto, Portugal

Corresponding Author:

Lucas Andrade

Department of Computer
Science, Polytechnic Institute
of Porto, Porto, Portugal

Lasse"sr-caly" Mt/ spen

i oo o i -Lompuhng, Programming and" @&

Database Management

Design patterns for beginner-level mobile application
development: A practical research

Lucas Andrade, Sofia Martins and Miguel Ferreira

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.146

Abstract

Mobile application development has become a foundational skill for entry-level programmers as
smartphones dominate everyday digital interaction. However, beginners often struggle with structuring
applications that are maintainable, scalable, and easy to understand. Design patterns offer reusable
solutions to recurring software design problems and provide conceptual guidance that can reduce
complexity during early development stages. This research examines the practical relevance of
commonly used design patterns in beginner-level mobile application development environments.
Focusing on patterns such as Model-View-Controller, Singleton, Factory, Observer, and Adapter, the
research evaluates how these patterns influence code organization, learning outcomes, and
development efficiency for novice developers. A qualitative and exploratory approach is adopted,
combining small-scale prototype development, code structure analysis, and observation of
implementation challenges faced by beginners. The analysis highlights that structured use of design
patterns improves code readability, separation of concerns, and debugging efficiency when compared
with ad hoc coding practices. At the same time, the research observes that excessive abstraction or
premature application of complex patterns can increase cognitive load and hinder conceptual clarity for
novices. The findings suggest that selective and context-aware introduction of design patterns, aligned
with learning objectives, yields the greatest pedagogical benefit. The research concludes that beginner-
focused mobile development should emphasize a limited set of intuitive patterns supported by practical
examples rather than exhaustive pattern catalogues. By demonstrating how design patterns can be
adapted to beginner contexts, this research contributes practical insights for educators, curriculum
designers, and novice developers seeking to build robust mobile applications with sound architectural
foundations. These insights support more effective learning pathways, encourage disciplined
programming habits, help bridge the gap between theoretical software engineering principles and real-
world mobile application development practices, and provide guidance for instructors designing
beginner-friendly curricula within resource-constrained academic and training environments across
diverse institutions and evolving technological ecosystems worldwide today and tomorrow.

Keywords: Mobile application development, design patterns, beginner programmers, software
architecture, learning-oriented development, code maintainability

Introduction

Mobile applications have become integral to communication, commerce, education, and
public services, driving sustained demand for mobile development skills among novice
programmers [Beginner-level developers, however, frequently encounter difficulties
related to application structure, code reuse, and long-term maintainability, particularly when
learning environments emphasize rapid feature implementation over sound architecture [,
Design patterns, originally formalized to capture proven software design knowledge, provide
standardized solutions to recurring problems and promote principles such as separation of
concerns and modularity 1. Within mobile development contexts, patterns like Model-View-
Controller and Observer have been widely adopted to manage user interfaces, data flow, and
event handling . Despite their benefits, the introduction of design patterns at early learning
stages remains debated, as excessive abstraction may overwhelm beginners and obscure
fundamental programming concepts 1. Many introductory mobile programming resources
focus on language syntax and platform-specific APIs, offering limited guidance on when and
how to apply design patterns appropriately €. As a result, novice developers often rely on ad
hoc design decisions that lead to tightly coupled code and increased debugging effort as
applications evolve 7). Addressing this gap requires empirical

~6~

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.146

International Journal of Computing, Programming and Database Management

examination of design pattern usage specifically within
beginner-level mobile application development settings .
The primary objective of this research is to evaluate the
practical impact of selected, commonly taught design
patterns on code organization, learning efficiency, and
development confidence among beginners €. By focusing
on a restricted set of patterns frequently encountered in
educational materials, the research seeks to identify patterns
that offer high instructional value without imposing
unnecessary cognitive burden 19, A secondary objective is
to analyze typical challenges beginners face when
implementing these patterns in small mobile prototypes [,
The central hypothesis guiding this work is that the selective
and context-aware application of simple design patterns
improves code readability, maintainability, and conceptual
understanding for novice mobile developers compared with
unstructured coding approaches ™. It is further
hypothesized that aligning pattern instruction with concrete
examples and incremental complexity enhances learner
engagement and reduces design-related errors 31, Through
this practical perspective, the research aims to inform
mobile programming pedagogy, curriculum design, and
beginner-focused development practices [, while
contributing to broader discussions on effective software
engineering education 5 161, Sych evidence-based insights
are increasingly important as mobile platforms diversify,
tooling evolves rapidly, and educational institutions seek
scalable methods for introducing architectural thinking
without compromising accessibility or learner motivation in
contemporary entry-level mobile development courses
worldwide today and training programs globally.

Materials and Methods

Materials: Beginner-level mobile development prototypes
were created to compare a pattern-guided approach against
an ad hoc approach, using a small set of widely taught
design patterns (e.g., MVC, Observer, Factory, Adapter,
Singleton) that are frequently recommended for improving
modularity and reuse in software projects [10 12 The
development setting reflected typical introductory mobile

http://www.computersciencejournals.com/ijcpdm

coursework, using standard platform guidance and common
learning resources for mobile programming and API usage
461, To support code quality evaluation, maintainability and
refactoring-oriented checks were aligned with established
software engineering principles (modular decomposition,
readability, and change tolerance) [2 7 151 Beginner
difficulty considerations (cognitive load, tracing, and
conceptual barriers) were treated as key contextual factors
for how design patterns should be introduced and assessed
in learning environments [9 131,

Methods

A practical, exploratory comparative research was
conducted using two beginner cohorts (Pattern-guided vs Ad
hoc), each completing the same small mobile application
tasks under time-limited conditions representative of entry-
level training environments & . Each participant
implemented a predefined feature set (Ul screens, event-
driven interactions, and simple data handling) comparable to
typical beginner app assignments, with the Pattern-guided
group receiving pattern templates and minimal conceptual
scaffolding, while the Ad hoc group used only basic
platform documentation and standard tutorials [°©l,
Outcomes included development time, defect count,
maintainability index, readability score, self-efficacy, and
pattern adoption count, selected to reflect maintainability,
comprehension, and novice learning performance in
programming tasks > 7 ¢ 13 Statistical analysis used
independent-samples t-tests for continuous outcomes (time,
maintainability, readability, self-efficacy) and Mann-
Whitney U for defect counts (non-normal), along with a
two-way ANOVA assessing group effects while accounting
for task complexity strata, consistent with evidence-based
evaluation in software engineering education studies [& 41, A
linear regression model was also fit to estimate the
association of instructional approach and pattern adoption

with development time while controlling for complexity *
2]

Results

Table 1: Descriptive statistics by instructional approach (mean+SD).

Group n | Development time (h) (Dczfjgg Maintainability Index Readability (1-10) Selfafl;;: acy Pat;tgglrjlztl;sed
F;?Jt;[g;ré' 20 6.11+0.77 3.55+1.85 72.05+6.91 7.58+0.78 5.36+0.85 2.90+1.17
Ad hoc |20 7.29+1.42 4.65+1.50 63.03+5.61 6.50+0.84 4.87+0.94 0.45+0.60

Interpretation

Across beginner prototypes, the Pattern-guided group
showed lower development time and fewer defects, with
notably higher maintainability and readability. This aligns
with the expected benefits of modular decomposition and

separation of concerns discussed in classic software
engineering work and design pattern literature & 1, and
with refactoring/maintainability arguments that structured
design reduces future change cost 1.

Table 2: Group comparisons (inferential statistics)

Outcome Pattern-guided mean Ad hoc mean Test p-value Effect (Cohen’s d)
Development time (h) 6.11 7.29 t=-3.28 0.0027 1.04
Maintainability Index 72.51 63.16 t=4.75 0.00003 1.50

Readability (1-10) 7.58 6.50 t=4.21 0.00015 1.33
Self-efficacy (1-7) 5.36 4.87 t=1.70 0.098 0.54
Defects (count) 3.55 4.65 Mann-Whitney U = 116 0.0208 —

Interpretation: The Pattern-guided approach produced
significantly faster completion and substantially better

~7~

maintainability and readability, with large effect sizes.
These findings support the idea that reusable design

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

knowledge can help beginners avoid tightly coupled
structures that complicate tracing and debugging > % %3, The
self-efficacy difference was positive but not statistically
significant, suggesting confidence may lag behind
measurable code-quality gains in early learning stages,
consistent with observed novice learning variability [31,

Table 3: Two-way ANOVA on Maintainability Index (Group x

Complexity)
Source F p-value
Group 18.30 0.000145
Complexity 0.82 0.450
Group x Complexity 0.76 0.476

Interpretation

Maintainability differences were primarily driven by
instructional approach, not by complexity strata. This
pattern is consistent with architectural guidance that

http://www.computersciencejournals.com/ijcpdm

structured decomposition improves maintainability across
application sizes, even in small systems [2 151,

Table 4: Regression predicting development time (hours)

Predictor B p-value 95% ClI
Pattern-guided (vs Ad hoc) | -1.62 | 0.014 | —2.89 to —0.34
Pattern count 0.16 0.480 —0.29 t0 0.60
Complexity (Low) 0.40 0.407 —0.571t01.37
Complexity (Medium) 0.53 | 0.268 | —0.43t01.49

Interpretation: After controlling for task complexity, being
in the Pattern-guided condition was associated with ~1.6
hours less development time, reinforcing that guided
architectural structure can reduce rework and debugging in
novice builds [7 2 The non-significant pattern-count
coefficient suggests that how patterns are applied (fit-to-
context) may matter more than simply increasing the
number of patterns, aligning with concerns about premature
abstraction for beginners 5 191,

Development time (hours)

Pattern-guided

Ad ‘hoc

Fig 1: Development time distribution by instructional approach

70 A

60 A

50 4

40 -

30 A

Maintainability Index

20 A

10 A

Ad hoc

Pattern-guided

Fig 2: Maintainability Index (mean+95% CI) by instructional approach

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

http://www.computersciencejournals.com/ijcpdm

[
o
9 -4
o
0
3 8-
=
@
E
57
£
a
o
]
2 6l
a
L]
5 ® °
®
0 1 2 3 4 5
Number of patterns used (count)

Fig 3: Relationship between number of patterns used and development time

Overall interpretation

Collectively, the results indicate that a beginner-appropriate,
selective design-pattern scaffold improves code structure
outcomes (maintainability/ readability) and reduces
development time and defects, consistent with canonical
pattern benefits 5 12 and modular design principles 5. At
the same time, the weak linkage between simply “more
patterns” and faster completion supports educational
cautions that patterns should be introduced progressively
with concrete examples and limited abstraction at early
stages [9 141,

Discussion

The findings of this practical research demonstrate that the
selective introduction of design patterns at the beginner
level of mobile application development yields measurable
benefits in code quality and development efficiency. The
significantly lower development time observed among
pattern-guided beginners supports long-standing software
engineering claims that structured design reduces rework,
debugging cycles, and architectural drift during
implementation 21, In particular, the marked improvement
in maintainability index aligns with classical principles of
modular decomposition and separation of concerns, which
are explicitly reinforced through patterns such as Model-
View-Controller and Observer [15 These results are
consistent with earlier work suggesting that even small
systems benefit from disciplined architectural thinking when
complexity begins to grow beyond trivial applications - 12,

The reduction in defect counts for the pattern-guided group
further suggests that design patterns provide cognitive
scaffolding that helps beginners reason about program
behavior and data flow more effectively, reducing logic and
integration errors [> 9. This is especially relevant in mobile
applications, where event-driven execution and Ul-logic
coupling frequently confuse novice developers . The
strong gains in readability scores indicate that patterns act
not only as implementation tools but also as communication
mechanisms, making code easier to trace and understand an
essential skill identified in multinational studies on novice
programming competence 231,

Interestingly, while self-efficacy scores improved for the
pattern-guided group, the difference was not statistically
significant, highlighting a well-documented phenomenon in
computing education where objective skill gains precede
subjective confidence . This suggests that beginners may
require sustained exposure and reinforcement before
internalizing the value of structured design practices.
Regression results further reveal that simply increasing the
number of patterns applied does not automatically reduce
development time, reinforcing concerns raised in the
literature about premature abstraction and over engineering
in early learning contexts [9. Instead, the instructional
framing and contextual appropriateness of patterns appear to
be the primary drivers of benefit.

Overall, the discussion underscores that design patterns,
when introduced incrementally and grounded in concrete
mobile development tasks, can bridge the gap between
theoretical software engineering principles and beginner
practice. These outcomes align with broader educational
research advocating evidence-based approaches to
programming pedagogy that balance conceptual rigor with
cognitive accessibility [& 14 161,

Conclusion

This research demonstrates that beginner-level mobile
application development benefits substantially from a
carefully curated, context-aware use of design patterns,
particularly in terms of maintainability, readability, defect
reduction, and overall development efficiency. By
embedding architectural thinking early without
overwhelming novices with exhaustive pattern catalogues
learners can develop disciplined coding habits that scale
with application complexity and platform evolution. The
evidence suggests that educators and trainers should
prioritize a small subset of intuitive patterns, such as MVC
and Observer, introduced through hands-on prototypes
rather than abstract theory, thereby enabling learners to
experience tangible improvements in code organization and
debugging clarity. Practical integration of design patterns
into beginner curricula should emphasize pattern intent,
common pitfalls, and real mobile-specific use cases, rather

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

than rigid adherence to formal definitions. Development
environments and instructional materials should include
lightweight templates and annotated examples that
demonstrate how patterns solve concrete problems, while
explicitly discouraging unnecessary abstraction. For
practitioners mentoring novice developers, code reviews can
be structured around pattern alignment and separation of
concerns, fostering architectural awareness alongside
functional correctness. From an institutional perspective,
aligning assessment rubrics with maintainability and
readability outcomes rather than solely feature completion
can reinforce the long-term value of structured design.
Ultimately, adopting these practices can help beginners
transition more smoothly from novice programmers to
competent mobile developers capable of producing
sustainable, extensible applications, thereby narrowing the
persistent gap between introductory programming education
and real-world software engineering demands within
modern mobile ecosystems.

References

1. Pressman RS, Maxim BR. Software Engineering: A
Practitioner’s Approach. 8th ed. New York: McGraw-
Hill; 2015. p. 1-45.

2. Sommerville I. Software Engineering. 10th ed. Boston:
Pearson; 2016. p. 73-118.

3. Gamma E, Helm R, Johnson R, Vlissides J. Design
Patterns: Elements of Reusable Object-Oriented
Software. Reading: Addison-Wesley; 1994. p. 1-35.

4. Apple Inc. i0OS App Programming Guide. Cupertino:
Apple Developer Documentation; 2018. p. 120-165.

5. Robins A, Rountree J, Rountree N. Learning and
teaching programming: A review and discussion.
Comput Sci Educ. 2003;13(2):137-172.

6. Deitel P, Deitel H. Android How to Program. 3rd ed.
Boston: Pearson; 2017. p. 55-102.

7. Fowler M. Refactoring: Improving the Design of
Existing Code. 2nd ed. Boston: Addison-Wesley; 2018.
p. 3-40.

8. Kitchenham B, Charters S. Guidelines for performing
systematic literature reviews in software engineering.
Keele Univ Tech Rep. 2007; EBSE-2007-01:1-65.

9. Lahtinen E, Ala-Mutka K, Jarvinen H-M. Research of
difficulties of novice programmers. SIGCSE Bull.
2005;37(3):14-18.

10. Shalloway A, Trott J. Design Patterns Explained. 2nd
ed. Boston: Addison-Wesley; 2004. p. 87-120.

11. McConnell S. Code Complete. 2nd ed. Redmond:
Microsoft Press; 2004. p. 301-350.

12. Beck K. Implementation Patterns. Boston: Addison-
Wesley; 2007. p. 15-60.

13. Lister R, et al. multi-national research of reading and
tracing skills in novice programmers. SIGCSE Bull.
2004;36(4):119-150.

14. Wu T, Gerlach J. Teaching mobile application
development with design patterns. J Comput Sci Educ.
2018;28(3):221-245.

15. Parnas DL. On the criteria to be used in decomposing
systems into modules. Commun ACM.
1972;15(12):1053-1058.

16. Brooks FP. The Mythical Man-Month. Anniversary ed.
Boston: Addison-Wesley; 1995. p. 13-42.

~10 ~

http://www.computersciencejournals.com/ijcpdm

