
~ 6 ~

International Journal of Computing, Programming and Database Management 2026; 7(1): 06-10

E-ISSN: 2707-6644

P-ISSN: 2707-6636

Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijcpdm

IJCPDM 2026; 7(1): 06-10

Received: 16-08-2025

Accepted: 24-10-2025

Lucas Andrade

Department of Computer

Science, Polytechnic Institute

of Porto, Porto, Portugal

Sofia Martins

Department of Computer

Science, Polytechnic Institute

of Porto, Porto, Portugal

Miguel Ferreira

Department of Computer

Science, Polytechnic Institute

of Porto, Porto, Portugal

Corresponding Author:

Lucas Andrade

Department of Computer

Science, Polytechnic Institute

of Porto, Porto, Portugal

Design patterns for beginner-level mobile application

development: A practical research

Lucas Andrade, Sofia Martins and Miguel Ferreira

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.146

Abstract
Mobile application development has become a foundational skill for entry-level programmers as

smartphones dominate everyday digital interaction. However, beginners often struggle with structuring

applications that are maintainable, scalable, and easy to understand. Design patterns offer reusable

solutions to recurring software design problems and provide conceptual guidance that can reduce

complexity during early development stages. This research examines the practical relevance of

commonly used design patterns in beginner-level mobile application development environments.

Focusing on patterns such as Model-View-Controller, Singleton, Factory, Observer, and Adapter, the

research evaluates how these patterns influence code organization, learning outcomes, and

development efficiency for novice developers. A qualitative and exploratory approach is adopted,

combining small-scale prototype development, code structure analysis, and observation of

implementation challenges faced by beginners. The analysis highlights that structured use of design

patterns improves code readability, separation of concerns, and debugging efficiency when compared

with ad hoc coding practices. At the same time, the research observes that excessive abstraction or

premature application of complex patterns can increase cognitive load and hinder conceptual clarity for

novices. The findings suggest that selective and context-aware introduction of design patterns, aligned

with learning objectives, yields the greatest pedagogical benefit. The research concludes that beginner-

focused mobile development should emphasize a limited set of intuitive patterns supported by practical

examples rather than exhaustive pattern catalogues. By demonstrating how design patterns can be

adapted to beginner contexts, this research contributes practical insights for educators, curriculum

designers, and novice developers seeking to build robust mobile applications with sound architectural

foundations. These insights support more effective learning pathways, encourage disciplined

programming habits, help bridge the gap between theoretical software engineering principles and real-

world mobile application development practices, and provide guidance for instructors designing

beginner-friendly curricula within resource-constrained academic and training environments across

diverse institutions and evolving technological ecosystems worldwide today and tomorrow.

Keywords: Mobile application development, design patterns, beginner programmers, software

architecture, learning-oriented development, code maintainability

Introduction
Mobile applications have become integral to communication, commerce, education, and

public services, driving sustained demand for mobile development skills among novice

programmers [1]. Beginner-level developers, however, frequently encounter difficulties

related to application structure, code reuse, and long-term maintainability, particularly when

learning environments emphasize rapid feature implementation over sound architecture [2].

Design patterns, originally formalized to capture proven software design knowledge, provide

standardized solutions to recurring problems and promote principles such as separation of

concerns and modularity [3]. Within mobile development contexts, patterns like Model-View-

Controller and Observer have been widely adopted to manage user interfaces, data flow, and

event handling [4]. Despite their benefits, the introduction of design patterns at early learning

stages remains debated, as excessive abstraction may overwhelm beginners and obscure

fundamental programming concepts [5]. Many introductory mobile programming resources

focus on language syntax and platform-specific APIs, offering limited guidance on when and

how to apply design patterns appropriately [6]. As a result, novice developers often rely on ad

hoc design decisions that lead to tightly coupled code and increased debugging effort as

applications evolve [7]. Addressing this gap requires empirical

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.146

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 7 ~

examination of design pattern usage specifically within

beginner-level mobile application development settings [8].

The primary objective of this research is to evaluate the

practical impact of selected, commonly taught design

patterns on code organization, learning efficiency, and

development confidence among beginners [9]. By focusing

on a restricted set of patterns frequently encountered in

educational materials, the research seeks to identify patterns

that offer high instructional value without imposing

unnecessary cognitive burden [10]. A secondary objective is

to analyze typical challenges beginners face when

implementing these patterns in small mobile prototypes [11].

The central hypothesis guiding this work is that the selective

and context-aware application of simple design patterns

improves code readability, maintainability, and conceptual

understanding for novice mobile developers compared with

unstructured coding approaches [12]. It is further

hypothesized that aligning pattern instruction with concrete

examples and incremental complexity enhances learner

engagement and reduces design-related errors [13]. Through

this practical perspective, the research aims to inform

mobile programming pedagogy, curriculum design, and

beginner-focused development practices [14], while

contributing to broader discussions on effective software

engineering education [15, 16]. Such evidence-based insights

are increasingly important as mobile platforms diversify,

tooling evolves rapidly, and educational institutions seek

scalable methods for introducing architectural thinking

without compromising accessibility or learner motivation in

contemporary entry-level mobile development courses

worldwide today and training programs globally.

Materials and Methods

Materials: Beginner-level mobile development prototypes

were created to compare a pattern-guided approach against

an ad hoc approach, using a small set of widely taught

design patterns (e.g., MVC, Observer, Factory, Adapter,

Singleton) that are frequently recommended for improving

modularity and reuse in software projects [3, 10, 12]. The

development setting reflected typical introductory mobile

coursework, using standard platform guidance and common

learning resources for mobile programming and API usage

[4, 6]. To support code quality evaluation, maintainability and

refactoring-oriented checks were aligned with established

software engineering principles (modular decomposition,

readability, and change tolerance) [1, 2, 7, 15]. Beginner

difficulty considerations (cognitive load, tracing, and

conceptual barriers) were treated as key contextual factors

for how design patterns should be introduced and assessed

in learning environments [5, 9, 13].

Methods

A practical, exploratory comparative research was

conducted using two beginner cohorts (Pattern-guided vs Ad

hoc), each completing the same small mobile application

tasks under time-limited conditions representative of entry-

level training environments [8, 14]. Each participant

implemented a predefined feature set (UI screens, event-

driven interactions, and simple data handling) comparable to

typical beginner app assignments, with the Pattern-guided

group receiving pattern templates and minimal conceptual

scaffolding, while the Ad hoc group used only basic

platform documentation and standard tutorials [4, 6].

Outcomes included development time, defect count,

maintainability index, readability score, self-efficacy, and

pattern adoption count, selected to reflect maintainability,

comprehension, and novice learning performance in

programming tasks [5, 7, 9, 13]. Statistical analysis used

independent-samples t-tests for continuous outcomes (time,

maintainability, readability, self-efficacy) and Mann-

Whitney U for defect counts (non-normal), along with a

two-way ANOVA assessing group effects while accounting

for task complexity strata, consistent with evidence-based

evaluation in software engineering education studies [8, 14]. A

linear regression model was also fit to estimate the

association of instructional approach and pattern adoption

with development time while controlling for complexity [1,

2].

Results

Table 1: Descriptive statistics by instructional approach (mean±SD).

Group n Development time (h)
Defects

(count)
Maintainability Index Readability (1-10)

Self-efficacy

(1-7)

Patterns used

(count)

Pattern-

guided
20 6.11±0.77 3.55±1.85 72.05±6.91 7.58±0.78 5.36±0.85 2.90±1.17

Ad hoc 20 7.29±1.42 4.65±1.50 63.03±5.61 6.50±0.84 4.87±0.94 0.45±0.60

Interpretation

Across beginner prototypes, the Pattern-guided group

showed lower development time and fewer defects, with

notably higher maintainability and readability. This aligns

with the expected benefits of modular decomposition and

separation of concerns discussed in classic software

engineering work and design pattern literature [3, 15], and

with refactoring/maintainability arguments that structured

design reduces future change cost [7].

Table 2: Group comparisons (inferential statistics)

Outcome Pattern-guided mean Ad hoc mean Test p-value Effect (Cohen’s d)

Development time (h) 6.11 7.29 t = −3.28 0.0027 1.04

Maintainability Index 72.51 63.16 t = 4.75 0.00003 1.50

Readability (1-10) 7.58 6.50 t = 4.21 0.00015 1.33

Self-efficacy (1-7) 5.36 4.87 t = 1.70 0.098 0.54

Defects (count) 3.55 4.65 Mann-Whitney U = 116 0.0208 —

Interpretation: The Pattern-guided approach produced

significantly faster completion and substantially better

maintainability and readability, with large effect sizes.

These findings support the idea that reusable design

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 8 ~

knowledge can help beginners avoid tightly coupled

structures that complicate tracing and debugging [5, 9, 13]. The

self-efficacy difference was positive but not statistically

significant, suggesting confidence may lag behind

measurable code-quality gains in early learning stages,

consistent with observed novice learning variability [9, 13].

Table 3: Two-way ANOVA on Maintainability Index (Group ×

Complexity)

Source F p-value

Group 18.30 0.000145

Complexity 0.82 0.450

Group × Complexity 0.76 0.476

Interpretation

Maintainability differences were primarily driven by

instructional approach, not by complexity strata. This

pattern is consistent with architectural guidance that

structured decomposition improves maintainability across

application sizes, even in small systems [1, 2, 15].

Table 4: Regression predicting development time (hours)

Predictor β p-value 95% CI

Pattern-guided (vs Ad hoc) −1.62 0.014 −2.89 to −0.34

Pattern count 0.16 0.480 −0.29 to 0.60

Complexity (Low) 0.40 0.407 −0.57 to 1.37

Complexity (Medium) 0.53 0.268 −0.43 to 1.49

Interpretation: After controlling for task complexity, being

in the Pattern-guided condition was associated with ~1.6

hours less development time, reinforcing that guided

architectural structure can reduce rework and debugging in

novice builds [3, 7, 12]. The non-significant pattern-count

coefficient suggests that how patterns are applied (fit-to-

context) may matter more than simply increasing the

number of patterns, aligning with concerns about premature

abstraction for beginners [5, 10].

Fig 1: Development time distribution by instructional approach

Fig 2: Maintainability Index (mean±95% CI) by instructional approach

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 9 ~

Fig 3: Relationship between number of patterns used and development time

Overall interpretation

Collectively, the results indicate that a beginner-appropriate,

selective design-pattern scaffold improves code structure

outcomes (maintainability/ readability) and reduces

development time and defects, consistent with canonical

pattern benefits [3, 12] and modular design principles [15]. At

the same time, the weak linkage between simply “more

patterns” and faster completion supports educational

cautions that patterns should be introduced progressively

with concrete examples and limited abstraction at early

stages [5, 9, 14].

Discussion

The findings of this practical research demonstrate that the

selective introduction of design patterns at the beginner

level of mobile application development yields measurable

benefits in code quality and development efficiency. The

significantly lower development time observed among

pattern-guided beginners supports long-standing software

engineering claims that structured design reduces rework,

debugging cycles, and architectural drift during

implementation [1, 2]. In particular, the marked improvement

in maintainability index aligns with classical principles of

modular decomposition and separation of concerns, which

are explicitly reinforced through patterns such as Model-

View-Controller and Observer [3, 15]. These results are

consistent with earlier work suggesting that even small

systems benefit from disciplined architectural thinking when

complexity begins to grow beyond trivial applications [7, 12].

The reduction in defect counts for the pattern-guided group

further suggests that design patterns provide cognitive

scaffolding that helps beginners reason about program

behavior and data flow more effectively, reducing logic and

integration errors [5, 9]. This is especially relevant in mobile

applications, where event-driven execution and UI-logic

coupling frequently confuse novice developers [4]. The

strong gains in readability scores indicate that patterns act

not only as implementation tools but also as communication

mechanisms, making code easier to trace and understand an

essential skill identified in multinational studies on novice

programming competence [13].

Interestingly, while self-efficacy scores improved for the

pattern-guided group, the difference was not statistically

significant, highlighting a well-documented phenomenon in

computing education where objective skill gains precede

subjective confidence [9]. This suggests that beginners may

require sustained exposure and reinforcement before

internalizing the value of structured design practices.

Regression results further reveal that simply increasing the

number of patterns applied does not automatically reduce

development time, reinforcing concerns raised in the

literature about premature abstraction and over engineering

in early learning contexts [5, 10]. Instead, the instructional

framing and contextual appropriateness of patterns appear to

be the primary drivers of benefit.

Overall, the discussion underscores that design patterns,

when introduced incrementally and grounded in concrete

mobile development tasks, can bridge the gap between

theoretical software engineering principles and beginner

practice. These outcomes align with broader educational

research advocating evidence-based approaches to

programming pedagogy that balance conceptual rigor with

cognitive accessibility [8, 14, 16].

Conclusion

This research demonstrates that beginner-level mobile

application development benefits substantially from a

carefully curated, context-aware use of design patterns,

particularly in terms of maintainability, readability, defect

reduction, and overall development efficiency. By

embedding architectural thinking early without

overwhelming novices with exhaustive pattern catalogues

learners can develop disciplined coding habits that scale

with application complexity and platform evolution. The

evidence suggests that educators and trainers should

prioritize a small subset of intuitive patterns, such as MVC

and Observer, introduced through hands-on prototypes

rather than abstract theory, thereby enabling learners to

experience tangible improvements in code organization and

debugging clarity. Practical integration of design patterns

into beginner curricula should emphasize pattern intent,

common pitfalls, and real mobile-specific use cases, rather

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 10 ~

than rigid adherence to formal definitions. Development

environments and instructional materials should include

lightweight templates and annotated examples that

demonstrate how patterns solve concrete problems, while

explicitly discouraging unnecessary abstraction. For

practitioners mentoring novice developers, code reviews can

be structured around pattern alignment and separation of

concerns, fostering architectural awareness alongside

functional correctness. From an institutional perspective,

aligning assessment rubrics with maintainability and

readability outcomes rather than solely feature completion

can reinforce the long-term value of structured design.

Ultimately, adopting these practices can help beginners

transition more smoothly from novice programmers to

competent mobile developers capable of producing

sustainable, extensible applications, thereby narrowing the

persistent gap between introductory programming education

and real-world software engineering demands within

modern mobile ecosystems.

References

1. Pressman RS, Maxim BR. Software Engineering: A

Practitioner’s Approach. 8th ed. New York: McGraw-

Hill; 2015. p. 1-45.

2. Sommerville I. Software Engineering. 10th ed. Boston:

Pearson; 2016. p. 73-118.

3. Gamma E, Helm R, Johnson R, Vlissides J. Design

Patterns: Elements of Reusable Object-Oriented

Software. Reading: Addison-Wesley; 1994. p. 1-35.

4. Apple Inc. iOS App Programming Guide. Cupertino:

Apple Developer Documentation; 2018. p. 120-165.

5. Robins A, Rountree J, Rountree N. Learning and

teaching programming: A review and discussion.

Comput Sci Educ. 2003;13(2):137-172.

6. Deitel P, Deitel H. Android How to Program. 3rd ed.

Boston: Pearson; 2017. p. 55-102.

7. Fowler M. Refactoring: Improving the Design of

Existing Code. 2nd ed. Boston: Addison-Wesley; 2018.

p. 3-40.

8. Kitchenham B, Charters S. Guidelines for performing

systematic literature reviews in software engineering.

Keele Univ Tech Rep. 2007; EBSE-2007-01:1-65.

9. Lahtinen E, Ala-Mutka K, Järvinen H-M. Research of

difficulties of novice programmers. SIGCSE Bull.

2005;37(3):14-18.

10. Shalloway A, Trott J. Design Patterns Explained. 2nd

ed. Boston: Addison-Wesley; 2004. p. 87-120.

11. McConnell S. Code Complete. 2nd ed. Redmond:

Microsoft Press; 2004. p. 301-350.

12. Beck K. Implementation Patterns. Boston: Addison-

Wesley; 2007. p. 15-60.

13. Lister R, et al. multi-national research of reading and

tracing skills in novice programmers. SIGCSE Bull.

2004;36(4):119-150.

14. Wu T, Gerlach J. Teaching mobile application

development with design patterns. J Comput Sci Educ.

2018;28(3):221-245.

15. Parnas DL. On the criteria to be used in decomposing

systems into modules. Commun ACM.

1972;15(12):1053-1058.

16. Brooks FP. The Mythical Man-Month. Anniversary ed.

Boston: Addison-Wesley; 1995. p. 13-42.

http://www.computersciencejournals.com/ijcpdm

