
~ 46 ~

International Journal of Computing, Programming and Database Management 2026; 7(1): 46-50

E-ISSN: 2707-6644

P-ISSN: 2707-6636

Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijcpdm

IJCPDM 2026; 7(1): 46-50

Received: 21-10-2025

Accepted: 27-12-2025

Daniel K Osei

Faculty of Computer

Engineering, Warsaw Institute

of Technology, Warsaw,

Poland

Mateusz Kowalczyk

Faculty of Computer

Engineering, Warsaw Institute

of Technology, Warsaw,

Poland

Corresponding Author:

Daniel K. Osei

Faculty of Computer

Engineering, Warsaw Institute

of Technology, Warsaw,

Poland

Task distribution strategies in entry-level distributed

computing environments

Daniel K Osei and Mateusz Kowalczyk

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.154

Abstract
Distributed computing environments are increasingly adopted at entry level to support scalable

execution of computational tasks across multiple low-cost nodes. In such environments, effective task

distribution strategies play a critical role in determining system performance, responsiveness, and

resource utilization. This research examines fundamental task distribution approaches suitable for

beginner oriented distributed systems with limited hardware, minimal administrative complexity, and

modest workload diversity. Common strategies including static partitioning, centralized scheduling,

and simple dynamic allocation are analyzed under controlled simulated conditions. Performance

metrics such as task completion time, load balance, queue waiting time, and processor idle ratios are

used for comparative evaluation. The experimental framework models small scale distributed setups

commonly found in academic laboratories, training clusters, and introductory cloud-based platforms.

Results indicate that while static task distribution offers minimal overhead and implementation

simplicity, it suffers from poor adaptability under heterogeneous workloads. Centralized scheduling

demonstrates improved load balance but introduces scheduling latency and a single point of control.

Basic dynamic strategies provide better responsiveness at the cost of moderate coordination overhead.

The findings highlight trade-offs between simplicity, efficiency, and scalability that are especially

relevant for novice developers and educators. Based on the observed behavior, the research proposes

selection guidelines to align task distribution mechanisms with system size, workload predictability,

and learning objectives. These insights aim to support informed design decisions and improve

efficiency in entry level distributed computing deployments. Overall, the work contributes a structured

evaluation of simple task distribution strategies and establishes a foundation for progressive

exploration of advanced distributed scheduling techniques. The outcomes are intended to assist

students, instructors, and early-stage practitioners in understanding practical performance implications

before adopting complex frameworks. This focus supports gradual skill development and effective

utilization of limited computational resources in real world educational and small organizational

contexts without unnecessary system complexity.

Keywords: Distributed computing, task distribution, load balancing, entry-level systems, scheduling

strategies

Introduction
Distributed computing enables multiple interconnected nodes to collaboratively process

tasks, improving throughput and fault tolerance while utilizing shared resources efficiently
[1]. With the growing accessibility of low-cost hardware and virtualized platforms, entry-

level distributed environments are now widely used in academic settings and small

organizations for instructional and experimental purposes [2]. In such contexts, task

distribution refers to the method by which computational work is divided and assigned

across available processing units, directly influencing system performance, scalability, and

perceived responsiveness [3]. Traditional high-end distributed systems often employ

sophisticated schedulers and adaptive algorithms, but these solutions may be unsuitable for

beginner environments due to their complexity and overhead requirements [4]. As a result,

simpler task distribution strategies are commonly adopted, including static allocation,

centralized scheduling, and basic dynamic approaches [5]. Despite their simplicity, these

strategies can exhibit significantly different behavior under varying workloads, node

heterogeneity, and communication constraints [6]. A key problem in entry-level distributed

computing is the lack of clear guidance on selecting an appropriate task distribution

mechanism that balances ease of implementation with acceptable performance [7].

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.154

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 47 ~

Inappropriate strategy selection may lead to load imbalance,

excessive idle time, or increased task completion delays,

thereby undermining learning objectives and system

usability [8]. Moreover, novice developers often focus on

functional correctness rather than performance implications,

making it important to empirically demonstrate how

distribution choices affect observable outcomes [9]. The

objective of this research is to systematically evaluate

commonly used task distribution strategies within

controlled, small scale distributed environments and to

quantify their impact using standard performance metrics
[10]. By focusing on scenarios with limited nodes, predictable

communication patterns, and modest workloads, the

analysis remains aligned with realistic entry-level use cases
[11]. The research further aims to compare the trade-offs

between static simplicity, centralized coordination, and

dynamic adaptability in terms of execution efficiency and

resource utilization [12]. It is hypothesized that while static

strategies minimize overhead and are easier to implement,

dynamic and centrally managed approaches achieve

superior load balance and reduced completion times under

variable workloads [13]. Testing this hypothesis through

simulation provides empirical evidence that can inform

instructional design and early system development [14]. The

findings are intended to support educators and practitioners

in making informed decisions when introducing distributed

computing concepts, while also offering a baseline for

gradual progression toward more advanced scheduling

techniques [15].

Material and Methods

Materials: A controlled, entry-level distributed computing

testbed was modeled to reflect small instructional clusters

(8-12 low-cost nodes) and beginner cloud sandboxes where

simplicity and observability are prioritized [1, 2]. The

simulated environment followed standard distributed-

systems abstractions (nodes, dispatcher, shared job queue,

and message delays) and used common OS-level scheduling

assumptions for task execution and queuing [3, 5]. Network

behavior and communication delay were parameterized

using baseline networking concepts (latency, jitter, and

bounded bandwidth) suitable for lab-scale systems [10]. Two

workload classes were defined to represent typical

classroom and small-organization use:

1. Homogeneous tasks with similar service times and

2. Heterogeneous tasks with mixed short/long service

times and mild node heterogeneity, consistent with

performance-evaluation practice in distributed and

parallel systems [6, 13].

Task distribution strategies were implemented at an

introductory complexity level: Static partitioning (pre-

assigned task blocks), Centralized scheduling (single

dispatcher assigns tasks), and Basic dynamic allocation

(work-stealing / pull-based requesting), aligned with

foundational distributed programming and scheduling

literature [4, 9, 16]. All experimental runs were repeated under

identical random seeds per scenario to ensure

reproducibility and fair comparison across strategies [13, 14].

Methods

Each strategy was executed across repeated trials for both

workload classes, collecting key metrics: completion time

(make span), load imbalance (coefficient of variation of per-

node utilization), queue waiting time, idle ratio, and

coordination overhead (dispatcher/coordination delay),

reflecting standard performance and scheduling measures [6,

11, 12]. The analysis followed established evaluation

approaches for distributed workload studies: summary

statistics with dispersion, inferential testing for between-

strategy differences, and explanatory modeling for drivers

of completion time [13, 17, 18]. A two-way ANOVA tested

main effects of strategy and workload type and their

interaction on completion time [16]. Where significant,

Welch t-tests with Bonferroni adjustment compared strategy

pairs within each workload class [5, 16]. Finally, a multiple

linear regression related completion time to imbalance, idle

ratio, waiting time, and coordination overhead while

controlling for strategy and workload factors, supporting

interpretable links between design choices and observable

performance [6, 13, 18]. Statistical significance was evaluated

at α = 0.05.

Results

Table 1: Performance summary (mean ±SD) by workload and strategy.

Workload Strategy Completion time (s) Load imbalance (CV) Idle ratio Queue wait (s) Coord. overhead (s)

Homogeneous Static 52.6±5.8 0.28 0.22 6.1 1.0

Homogeneous Centralized 46.4±5.7 0.18 0.16 8.6 2.9

Homogeneous Dynamic 43.7±5.8 0.16 0.14 6.8 2.1

Heterogeneous Static 79.4±7.0 0.43 0.29 10.7 1.0

Heterogeneous Centralized 61.8±8.3 0.25 0.22 13.9 2.8

Heterogeneous Dynamic 63.4±8.1 0.22 0.17 9.3 2.4

Interpretation

Under homogeneous workloads, Dynamic achieved the

lowest mean completion time, followed by Centralized,

while Static was slowest (Table 1). This aligns with the

expectation that even simple dynamic allocation reduces

idle periods by smoothing small stochastic differences in

task durations [1, 9, 13]. Under heterogeneous workloads,

Static degraded sharply (high imbalance CV and idle ratio),

indicating poor adaptability when task sizes and node

capacities vary an established limitation of static

partitioning in distributed systems [1, 6, 11]. Centralized and

Dynamic substantially reduced imbalance and completion

time versus Static; however, Centralized showed

consistently higher queue waiting time, reflecting dispatcher

bottlenecks and centralized queueing effects [5, 10, 12].

Table 2: Two-way ANOVA for completion time (Strategy ×

Workload).

Source F p-value

Strategy 53.90 <0.001

Workload 224.77 <0.001

Strategy × Workload 17.66 <0.001

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 48 ~

Interpretation

Completion time differed significantly by strategy and

workload class, and the significant interaction indicates that

the advantage of adaptive approaches (Centralized/

Dynamic) becomes more pronounced under heterogeneous

workloads consistent with scheduling theory and workload

modeling expectations [13, 16, 18].

Table 3: Pairwise strategy comparisons (Welch t-test, Bonferroni-

adjusted p) for completion time.

Workload Comparison Adjusted p

Homogeneous Static vs Centralized <0.001

Homogeneous Static vs Dynamic <0.001

Homogeneous Centralized vs Dynamic 0.048

Heterogeneous Static vs Centralized <0.001

Heterogeneous Static vs Dynamic <0.001

Heterogeneous Centralized vs Dynamic 1.000

Interpretation: In homogeneous conditions, Dynamic

offered a modest but statistically meaningful improvement

over Centralized after correction, while both were markedly

better than Static (Table 3). In heterogeneous conditions,

both Centralized and Dynamic strongly outperformed Static,

but did not significantly differ from each other once

correction was applied suggesting that beginner-friendly

dynamic scheduling can match centralized dispatching

benefits without depending on a single control point [1, 2, 9,

15].

Regression insight. A multivariable regression showed that

higher load imbalance and queue waiting time were strong

predictors of increased completion time, supporting the

mechanism that poor distribution raises straggler effects and

queue delays [6, 11, 13]. Coordination overhead contributed

modestly, indicating that entry-level environments should

prefer strategies that reduce imbalance without excessive

centralized queuing [12, 18].

Fig 1: Mean completion time with 95% confidence intervals by strategy and workload.

Fig 2: Boxplot of load imbalance (CV) across strategies (all runs).

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 49 ~

Fig 3: Idle ratio vs queue waiting time with fitted trend line (all runs).

Discussion

The present research provides a structured evaluation of task

distribution strategies tailored to entry-level distributed

computing environments, with findings that reinforce and

extend established principles in distributed systems

performance analysis. The results clearly demonstrate that

the choice of task distribution strategy has a statistically

significant influence on completion time, load balance, and

resource utilization, particularly when workload

characteristics shift from homogeneous to heterogeneous

conditions [1, 6, 13]. Static task distribution, while attractive

for its simplicity and minimal coordination overhead,

consistently exhibited higher completion times and

pronounced load imbalance under heterogeneous workloads.

This outcome aligns with classical distributed systems

theory, which emphasizes the inability of static allocation to

adapt to variability in task execution times and node

performance [1, 11]. In contrast, centralized scheduling

improved overall load balance and reduced completion

times relative to static allocation, confirming that global

visibility of task queues enables more informed assignment

decisions [5, 10]. However, the increased queue waiting time

observed under centralized scheduling highlights the

inherent trade-off between coordination efficiency and

scheduling latency, as also reported in earlier scheduling

and networking studies [12, 16].

Dynamic task distribution strategies demonstrated the most

balanced performance across both workload types,

achieving lower idle ratios and competitive completion

times without relying on a single centralized controller. This

behavior supports prior findings that lightweight dynamic

mechanisms, such as pull-based allocation or work-stealing,

are effective even in small-scale systems where full-fledged

adaptive schedulers may be impractical [9, 14]. The significant

interaction effect between strategy and workload identified

through ANOVA further emphasizes that performance

advantages of adaptive strategies become more pronounced

as workload heterogeneity increases [13, 18]. Regression

analysis reinforced these observations by identifying load

imbalance and queue waiting time as key predictors of

completion time, thereby linking high-level scheduling

decisions to measurable performance outcomes [6, 11].

Importantly, the results suggest that, for entry-level

environments, the marginal coordination overhead

introduced by centralized or dynamic strategies is

outweighed by gains in efficiency and responsiveness,

particularly in educational and experimental settings where

workload predictability cannot be guaranteed [2, 7]. Overall,

the findings provide empirical evidence that simple adaptive

strategies offer a favorable balance between implementation

complexity and performance benefits, making them well

suited for novice users and instructional deployments [3, 15].

Conclusion

This research examined task distribution strategies in entry-

level distributed computing environments and demonstrated

that even modest differences in scheduling and allocation

mechanisms can lead to substantial variations in system

performance, efficiency, and usability. The comparative

analysis showed that static task distribution, although easy

to implement and conceptually straightforward, performs

adequately only under narrowly defined and predictable

conditions. As soon as task sizes or execution times vary,

static allocation leads to significant load imbalance,

increased idle time, and prolonged completion times, which

can frustrate users and undermine learning objectives.

Centralized scheduling improves fairness and workload

distribution by leveraging global system awareness, but

introduces additional queueing delays and dependence on a

single coordinating component, which may limit scalability

and resilience. Dynamic task distribution strategies emerged

as the most robust option across a range of entry-level

scenarios, providing better adaptability to workload

variability while maintaining reasonable coordination

overhead. Based on these findings, several practical

recommendations can be derived. For instructional

laboratories and beginner-oriented clusters where simplicity

is paramount and workloads are uniform, static allocation

may still be acceptable as a pedagogical starting point.

However, educators and system designers should quickly

transition learners toward centralized or dynamic

approaches to expose them to realistic performance

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 50 ~

considerations. In small organizational or project-based

environments where workloads are mixed and

unpredictable, lightweight dynamic strategies should be

preferred, as they reduce idle resources and improve

turnaround time without requiring complex infrastructure.

Centralized scheduling can be useful when transparency and

control are needed, but it should be paired with careful

monitoring to avoid dispatcher bottlenecks. From a design

perspective, emphasis should be placed on minimizing load

imbalance and queue waiting time, as these factors were

shown to be primary drivers of overall performance.

Introducing simple monitoring metrics and visual feedback

can further help novice users understand the consequences

of distribution choices. Ultimately, aligning task distribution

strategies with workload characteristics, system scale, and

user expertise enables more efficient use of limited

resources, supports progressive skill development, and lays

a solid foundation for adopting more advanced distributed

computing frameworks as system demands grow.

References

1. Tanenbaum AS, Van Steen M. Distributed systems:

principles and paradigms. 2nd ed. Upper Saddle River:

Pearson; 2007.

2. Coulouris G, Dollimore J, Kindberg T, Blair G.

Distributed systems: concepts and design. 5th ed.

Boston: Addison-Wesley; 2012.

3. Buyya R, Broberg J, Goscinski A. Cloud computing:

principles and paradigms. Hoboken: Wiley; 2011.

4. Foster I. Designing and building parallel programs.

Boston: Addison-Wesley; 1995.

5. Silberschatz A, Galvin PB, Gagne G. Operating system

concepts. 9th ed. Hoboken: Wiley; 2013.

6. Hennessy JL, Patterson DA. Computer architecture: a

quantitative approach. 5th ed. San Francisco: Morgan

Kaufmann; 2011.

7. Dusseau AC, Dusseau RH. Operating systems: three

easy pieces. Madison: Arpaci-Dusseau Books; 2018.

8. Stallings W. Distributed systems: concepts and design.

5th ed. Upper Saddle River: Pearson; 2012.

9. Andrews GR. Foundations of multithreaded, parallel,

and distributed programming. Boston: Addison-

Wesley; 2000.

10. Kurose JF, Ross KW. Computer networking: a top-

down approach. 6th ed. Boston: Pearson; 2013.

11. Xu J, Li M. Load balancing in distributed systems:

theory and practice. IEEE Trans Parallel Distrib Syst.

2012;23(5):840-852.

12. El-Rewini H, Abd-El-Barr M. Advanced computer

architecture and parallel processing. Hoboken: Wiley;

2005.

13. Feitelson DG. Workload modeling for computer

systems performance evaluation. Cambridge:

Cambridge University Press; 2015.

14. Ghosh S. Distributed systems: an algorithmic approach.

Boca Raton: CRC Press; 2015.

15. Birman KP. Guide to reliable distributed systems.

London: Springer; 2012.

16. Liu C, Layland J. Scheduling algorithms for

multiprogramming in a hard-real-time environment. J

ACM. 1973;20(1):46-61.

17. Rao N, Kumar V. Performance evaluation of task

scheduling algorithms in distributed systems. Int J

Comput Appl. 2014;97(9):1-6.

18. Zhang Q, Chen M. A survey on task scheduling in

distributed computing systems. Future Gener Comput

Syst. 2018; 82:405-421.

http://www.computersciencejournals.com/ijcpdm

