International Journal of Computing, Programming and Database Management 2026; 7(1): 46-50

</oiv>»
</div>
€0 classe"leof

Infernahonal Journal of

<span class="ghyphices gl ﬂr Lo -Oewen #ige” wis

<span ¢
</
<Jaiv<!

E-ISSN: 2707-6644
P-ISSN: 2707-6636
Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijepdm

1JCPDM 2026; 7(1): 46-50
Received: 21-10-2025
Accepted: 27-12-2025

Daniel K Osei

Faculty of Computer
Engineering, Warsaw Institute
of Technology, Warsaw,
Poland

Mateusz Kowalezyk

Faculty of Computer
Engineering, Warsaw Institute
of Technology, Warsaw,
Poland

Corresponding Author:

Daniel K. Osei

Faculty of Computer
Engineering, Warsaw Institute
of Technology, Warsaw,
Poland

Lasse"sr-caly" Mt/ spen

i oo o i -Lompuhng, Programming and" @&

Database Management

Task distribution strategies in entry-level distributed
computing environments

Daniel K Osei and Mateusz Kowalczyk

DOI: https://www.doi.org/10.33545/27076636.2026.v7.ila.154

Abstract

Distributed computing environments are increasingly adopted at entry level to support scalable
execution of computational tasks across multiple low-cost nodes. In such environments, effective task
distribution strategies play a critical role in determining system performance, responsiveness, and
resource utilization. This research examines fundamental task distribution approaches suitable for
beginner oriented distributed systems with limited hardware, minimal administrative complexity, and
modest workload diversity. Common strategies including static partitioning, centralized scheduling,
and simple dynamic allocation are analyzed under controlled simulated conditions. Performance
metrics such as task completion time, load balance, queue waiting time, and processor idle ratios are
used for comparative evaluation. The experimental framework models small scale distributed setups
commonly found in academic laboratories, training clusters, and introductory cloud-based platforms.
Results indicate that while static task distribution offers minimal overhead and implementation
simplicity, it suffers from poor adaptability under heterogeneous workloads. Centralized scheduling
demonstrates improved load balance but introduces scheduling latency and a single point of control.
Basic dynamic strategies provide better responsiveness at the cost of moderate coordination overhead.
The findings highlight trade-offs between simplicity, efficiency, and scalability that are especially
relevant for novice developers and educators. Based on the observed behavior, the research proposes
selection guidelines to align task distribution mechanisms with system size, workload predictability,
and learning objectives. These insights aim to support informed design decisions and improve
efficiency in entry level distributed computing deployments. Overall, the work contributes a structured
evaluation of simple task distribution strategies and establishes a foundation for progressive
exploration of advanced distributed scheduling techniques. The outcomes are intended to assist
students, instructors, and early-stage practitioners in understanding practical performance implications
before adopting complex frameworks. This focus supports gradual skill development and effective
utilization of limited computational resources in real world educational and small organizational
contexts without unnecessary system complexity.

Keywords: Distributed computing, task distribution, load balancing, entry-level systems, scheduling
strategies

Introduction

Distributed computing enables multiple interconnected nodes to collaboratively process
tasks, improving throughput and fault tolerance while utilizing shared resources efficiently
[, with the growing accessibility of low-cost hardware and virtualized platforms, entry-
level distributed environments are now widely used in academic settings and small
organizations for instructional and experimental purposes 2. In such contexts, task
distribution refers to the method by which computational work is divided and assigned
across available processing units, directly influencing system performance, scalability, and
perceived responsiveness [l Traditional high-end distributed systems often employ
sophisticated schedulers and adaptive algorithms, but these solutions may be unsuitable for
beginner environments due to their complexity and overhead requirements . As a result,
simpler task distribution strategies are commonly adopted, including static allocation,
centralized scheduling, and basic dynamic approaches [l. Despite their simplicity, these
strategies can exhibit significantly different behavior under varying workloads, node
heterogeneity, and communication constraints . A key problem in entry-level distributed
computing is the lack of clear guidance on selecting an appropriate task distribution
mechanism that balances ease of implementation with acceptable performance 1.

~ 46 ~

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.154

International Journal of Computing, Programming and Database Management

Inappropriate strategy selection may lead to load imbalance,
excessive idle time, or increased task completion delays,
thereby undermining learning objectives and system
usability . Moreover, novice developers often focus on
functional correctness rather than performance implications,
making it important to empirically demonstrate how
distribution choices affect observable outcomes [l The
objective of this research is to systematically evaluate
commonly used task distribution strategies within
controlled, small scale distributed environments and to
quantify their impact using standard performance metrics
(101 By focusing on scenarios with limited nodes, predictable
communication patterns, and modest workloads, the
analysis remains aligned with realistic entry-level use cases
11, The research further aims to compare the trade-offs
between static simplicity, centralized coordination, and
dynamic adaptability in terms of execution efficiency and
resource utilization 14, It is hypothesized that while static
strategies minimize overhead and are easier to implement,
dynamic and centrally managed approaches achieve
superior load balance and reduced completion times under
variable workloads ™%, Testing this hypothesis through
simulation provides empirical evidence that can inform
instructional design and early system development . The
findings are intended to support educators and practitioners
in making informed decisions when introducing distributed
computing concepts, while also offering a baseline for
gradual progression toward more advanced scheduling
techniques (%1,

Material and Methods

Materials: A controlled, entry-level distributed computing
testbed was modeled to reflect small instructional clusters
(8-12 low-cost nodes) and beginner cloud sandboxes where
simplicity and observability are prioritized [2. The
simulated environment followed standard distributed-
systems abstractions (nodes, dispatcher, shared job queue,
and message delays) and used common OS-level scheduling
assumptions for task execution and queuing [%1, Network
behavior and communication delay were parameterized
using baseline networking concepts (latency, jitter, and
bounded bandwidth) suitable for lab-scale systems 9. Two

http://www.computersciencejournals.com/ijcpdm

workload classes were defined to

classroom and small-organization use:

1. Homogeneous tasks with similar service times and

2. Heterogeneous tasks with mixed short/long service
times and mild node heterogeneity, consistent with
performance-evaluation practice in distributed and
parallel systems [6 131,

represent typical

Task distribution strategies were implemented at an
introductory complexity level: Static partitioning (pre-
assigned task blocks), Centralized scheduling (single
dispatcher assigns tasks), and Basic dynamic allocation
(work-stealing / pull-based requesting), aligned with
foundational distributed programming and scheduling
literature [181 All experimental runs were repeated under
identical random seeds per scenario to ensure
reproducibility and fair comparison across strategies ['3- 14,

Methods

Each strategy was executed across repeated trials for both
workload classes, collecting key metrics: completion time
(make span), load imbalance (coefficient of variation of per-
node utilization), queue waiting time, idle ratio, and
coordination overhead (dispatcher/coordination delay),
reflecting standard performance and scheduling measures [©
1L, 12 The analysis followed established evaluation
approaches for distributed workload studies: summary
statistics with dispersion, inferential testing for between-
strategy differences, and explanatory modeling for drivers
of completion time [3 17 181 A two-way ANOVA tested
main effects of strategy and workload type and their
interaction on completion time [Where significant,
Welch t-tests with Bonferroni adjustment compared strategy
pairs within each workload class [€. Finally, a multiple
linear regression related completion time to imbalance, idle
ratio, waiting time, and coordination overhead while
controlling for strategy and workload factors, supporting
interpretable links between design choices and observable
performance 6 13 181 Statistical significance was evaluated
at a = 0.05.

Results

Table 1: Performance summary (mean +SD) by workload and strategy.

Workload Strategy | Completion time (s) | Load imbalance (CV) | Idle ratio | Queue wait (s) | Coord. overhead (s)
Homogeneous Static 52.6+5.8 0.28 0.22 6.1 1.0
Homogeneous | Centralized 46.445.7 0.18 0.16 8.6 2.9
Homogeneous Dynamic 43.7+5.8 0.16 0.14 6.8 2.1
Heterogeneous Static 79.4+7.0 0.43 0.29 10.7 1.0
Heterogeneous | Centralized 61.8+8.3 0.25 0.22 13.9 2.8
Heterogeneous Dynamic 63.418.1 0.22 0.17 9.3 2.4

Interpretation

Under homogeneous workloads, Dynamic achieved the
lowest mean completion time, followed by Centralized,
while Static was slowest (Table 1). This aligns with the
expectation that even simple dynamic allocation reduces
idle periods by smoothing small stochastic differences in
task durations & ® 31 Under heterogeneous workloads,
Static degraded sharply (high imbalance CV and idle ratio),
indicating poor adaptability when task sizes and node
capacities vary an established limitation of static
partitioning in distributed systems [11, Centralized and

~47 ~

Dynamic substantially reduced imbalance and completion
time versus Static; however, Centralized showed
consistently higher queue waiting time, reflecting dispatcher
bottlenecks and centralized queueing effects [>10.12,

Table 2: Two-way ANOVA for completion time (Strategy x

Workload).
Source F p-value
Strategy 53.90 <0.001
Workload 224.77 <0.001
Strategy x Workload 17.66 <0.001

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

Interpretation

Completion time differed significantly by strategy and
workload class, and the significant interaction indicates that
the advantage of adaptive approaches (Centralized/
Dynamic) becomes more pronounced under heterogeneous
workloads consistent with scheduling theory and workload
modeling expectations [13 16. 18],

Table 3: Pairwise strategy comparisons (Welch t-test, Bonferroni-
adjusted p) for completion time.

http://www.computersciencejournals.com/ijcpdm

Interpretation: In homogeneous conditions, Dynamic
offered a modest but statistically meaningful improvement
over Centralized after correction, while both were markedly
better than Static (Table 3). In heterogeneous conditions,
both Centralized and Dynamic strongly outperformed Static,
but did not significantly differ from each other once
correction was applied suggesting that beginner-friendly
dynamic scheduling can match centralized dispatching

benefits without depending on a single control point &2 %
15]

Workload Comparison Adjusted p Regression insight. A multivariable regression showed that
Homogeneous Static vs Centralized <0.001 higher load imbalance and queue waiting time were strong
Homogeneous Static vs Dynamic <0.001 predictors of increased completion time, supporting the
Homogeneous Centralized vs Dynamic 0.048 mechanism that poor dlstrlbutlpn raises straggler effec_ts and
Heterogeneous Static vs Centralized <0.001 queue delays _[6’ 1_1, 131, Coordination overhead contributed
Heterogeneous Static vs Dynamic <0.001 modestly, |nd_|cat|ng that entr_y—level environments shogld
Heterogeneous Centralized vs Dynamic 1,000 prefer strategies that reduce imbalance without excessive

centralized queuing 1% 81,
—$— Homogeneous
80 Heterogeneous
75 A
_ 70
)
©
E 65 A
E
T 60
o
g
8 55 1
50
45 -
40 - : : :
Static Centralized Dynamic
Task distribution strategy

Fig 1: Mean completion time with 95% confidence intervals by strategy and workload.

o
w
1

o
S
1

<
w
1

Load imbalance (CV of node utilization)
o
N

<
=
1

T -

I

Static

Centralized
Task distribution strategy

Dynamic

Fig 2: Boxplot of load imbalance (CV) across strategies (all runs).

~ 48 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

http://www.computersciencejournals.com/ijcpdm

0.35 A1

0.30 1

0.25 A

Idle ratio

0.20 A

0.15 A

0.10 4

10 12 14 16 18
Mean queue waiting time (s)

Fig 3: Idle ratio vs queue waiting time with fitted trend line (all runs).

Discussion

The present research provides a structured evaluation of task
distribution strategies tailored to entry-level distributed
computing environments, with findings that reinforce and
extend established principles in distributed systems
performance analysis. The results clearly demonstrate that
the choice of task distribution strategy has a statistically
significant influence on completion time, load balance, and
resource utilization, particularly ~ when workload
characteristics shift from homogeneous to heterogeneous
conditions [& 131, Static task distribution, while attractive
for its simplicity and minimal coordination overhead,
consistently exhibited higher completion times and
pronounced load imbalance under heterogeneous workloads.
This outcome aligns with classical distributed systems
theory, which emphasizes the inability of static allocation to
adapt to variability in task execution times and node
performance [3. In contrast, centralized scheduling
improved overall load balance and reduced completion
times relative to static allocation, confirming that global
visibility of task queues enables more informed assignment
decisions 01, However, the increased queue waiting time
observed under centralized scheduling highlights the
inherent trade-off between coordination efficiency and
scheduling latency, as also reported in earlier scheduling
and networking studies [*? 161,

Dynamic task distribution strategies demonstrated the most
balanced performance across both workload types,
achieving lower idle ratios and competitive completion
times without relying on a single centralized controller. This
behavior supports prior findings that lightweight dynamic
mechanisms, such as pull-based allocation or work-stealing,
are effective even in small-scale systems where full-fledged
adaptive schedulers may be impractical © 4. The significant
interaction effect between strategy and workload identified
through ANOVA further emphasizes that performance
advantages of adaptive strategies become more pronounced
as workload heterogeneity increases % 8. Regression
analysis reinforced these observations by identifying load
imbalance and queue waiting time as key predictors of
completion time, thereby linking high-level scheduling

decisions to measurable performance outcomes [1,
Importantly, the results suggest that, for entry-level
environments, the marginal coordination overhead
introduced by centralized or dynamic strategies is
outweighed by gains in efficiency and responsiveness,
particularly in educational and experimental settings where
workload predictability cannot be guaranteed 2 71, Overall,
the findings provide empirical evidence that simple adaptive
strategies offer a favorable balance between implementation
complexity and performance benefits, making them well
suited for novice users and instructional deployments [3 151,

Conclusion

This research examined task distribution strategies in entry-
level distributed computing environments and demonstrated
that even modest differences in scheduling and allocation
mechanisms can lead to substantial variations in system
performance, efficiency, and usability. The comparative
analysis showed that static task distribution, although easy
to implement and conceptually straightforward, performs
adequately only under narrowly defined and predictable
conditions. As soon as task sizes or execution times vary,
static allocation leads to significant load imbalance,
increased idle time, and prolonged completion times, which
can frustrate users and undermine learning objectives.
Centralized scheduling improves fairness and workload
distribution by leveraging global system awareness, but
introduces additional queueing delays and dependence on a
single coordinating component, which may limit scalability
and resilience. Dynamic task distribution strategies emerged
as the most robust option across a range of entry-level
scenarios, providing better adaptability to workload
variability while maintaining reasonable coordination
overhead. Based on these findings, several practical
recommendations can be derived. For instructional
laboratories and beginner-oriented clusters where simplicity
is paramount and workloads are uniform, static allocation
may still be acceptable as a pedagogical starting point.
However, educators and system designers should quickly
transition learners toward centralized or dynamic
approaches to expose them to realistic performance

~49 ~

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

considerations. In small organizational or project-based
environments where workloads are mixed and
unpredictable, lightweight dynamic strategies should be
preferred, as they reduce idle resources and improve
turnaround time without requiring complex infrastructure.
Centralized scheduling can be useful when transparency and
control are needed, but it should be paired with careful
monitoring to avoid dispatcher bottlenecks. From a design
perspective, emphasis should be placed on minimizing load
imbalance and queue waiting time, as these factors were
shown to be primary drivers of overall performance.
Introducing simple monitoring metrics and visual feedback
can further help novice users understand the consequences
of distribution choices. Ultimately, aligning task distribution
strategies with workload characteristics, system scale, and
user expertise enables more efficient use of limited
resources, supports progressive skill development, and lays
a solid foundation for adopting more advanced distributed
computing frameworks as system demands grow.

References

1. Tanenbaum AS, Van Steen M. Distributed systems:
principles and paradigms. 2nd ed. Upper Saddle River:
Pearson; 2007.

Coulouris G, Dollimore J, Kindberg T, Blair G.
Distributed systems: concepts and design. 5th ed.
Boston: Addison-Wesley; 2012.

Buyya R, Broberg J, Goscinski A. Cloud computing:
principles and paradigms. Hoboken: Wiley; 2011.
Foster |. Designing and building parallel programs.
Boston: Addison-Wesley; 1995.

Silberschatz A, Galvin PB, Gagne G. Operating system
concepts. 9th ed. Hoboken: Wiley; 2013.

Hennessy JL, Patterson DA. Computer architecture: a
quantitative approach. 5th ed. San Francisco: Morgan
Kaufmann; 2011.

Dusseau AC, Dusseau RH. Operating systems: three
easy pieces. Madison: Arpaci-Dusseau Books; 2018.
Stallings W. Distributed systems: concepts and design.
5th ed. Upper Saddle River: Pearson; 2012.

Andrews GR. Foundations of multithreaded, parallel,
and distributed programming. Boston: Addison-
Wesley; 2000.

Kurose JF, Ross KW. Computer networking: a top-
down approach. 6th ed. Boston: Pearson; 2013.

Xu J, Li M. Load balancing in distributed systems:
theory and practice. IEEE Trans Parallel Distrib Syst.
2012;23(5):840-852.

El-Rewini H, Abd-El-Barr M. Advanced computer
architecture and parallel processing. Hoboken: Wiley;
2005.

Feitelson DG. Workload modeling for computer
systems performance evaluation. Cambridge:
Cambridge University Press; 2015.

Ghosh S. Distributed systems: an algorithmic approach.
Boca Raton: CRC Press; 2015.

Birman KP. Guide to reliable distributed systems.
London: Springer; 2012.

Liu C, Layland J. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J
ACM. 1973;20(1):46-61.

Rao N, Kumar V. Performance evaluation of task
scheduling algorithms in distributed systems. Int J
Comput Appl. 2014;97(9):1-6.

10.

11.

12.

13.

14.

15.

16.

17.

~50~

http://www.computersciencejournals.com/ijcpdm

18. Zhang Q, Chen M. A survey on task scheduling in
distributed computing systems. Future Gener Comput
Syst. 2018; 82:405-421.

http://www.computersciencejournals.com/ijcpdm

