
~ 1 ~ 

International Journal of Computing, Programming and Database Management 2026; 7(1): 01-05 
 

  
 

E-ISSN: 2707-6644 

P-ISSN: 2707-6636 

Impact Factor (RJIF): 5.43 

www.computersciencejournals.

com/ijcpdm 

IJCPDM 2026; 7(1): 01-05 

Received: 14-08-2025 

Accepted: 20-10-2025 
 

Lukas Schneider  

Department of Information 

Systems, Albrecht Applied 

Sciences College, Munich, 

Germany 

 

Miriam Vogel  

Department of Information 

Systems, Albrecht Applied 

Sciences College, Munich, 

Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Lukas Schneider  

Department of Information 

Systems, Albrecht Applied 

Sciences College, Munich, 

Germany 

 

A comparative research of cache-friendly data 

structures for beginner-level algorithms 

 
Lukas Schneider and Miriam Vogel 
 

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.145  

 
Abstract 
This research examines cache-friendly data structures in the context of beginner-level algorithms, 

focusing on how memory access patterns influence practical performance beyond asymptotic 

complexity. While introductory algorithm courses emphasize Big-O analysis, modern processors rely 

heavily on cache hierarchies, making spatial and temporal locality critical to execution efficiency. The 

research compares arrays, linked lists, dynamic arrays, hash tables, and tree-based structures under 

common beginner algorithms such as linear search, traversal, insertion, and simple sorting. Controlled 

experiments were conducted using identical datasets, fixed compiler optimizations, and consistent 

hardware configurations to isolate cache behavior effects. Performance metrics included execution 

time, cache miss rates, and instruction counts. Results indicate that contiguous-memory structures, 

particularly arrays and dynamic arrays, consistently outperform pointer-based structures in traversal-

heavy tasks due to superior cache utilization. Linked lists and naïve tree implementations exhibited 

higher cache miss penalties, even when theoretical complexity was comparable. Hash tables 

demonstrated mixed behavior, with cache efficiency strongly dependent on load factor and collision 

resolution strategy. The findings highlight a persistent gap between theoretical instruction and real-

world performance intuition for novice programmers. By demonstrating measurable performance 

differences using simple algorithms, the research provides pedagogical evidence that cache awareness 

can be introduced early without overwhelming learners. The comparative analysis supports integrating 

memory locality concepts into beginner curricula to foster more accurate mental models of 

performance. Ultimately, the research argues that teaching cache-friendly data structure selection 

alongside algorithmic complexity improves code efficiency, scalability, and systems-level 

understanding. These insights are intended to guide educators in curriculum design and help beginners 

develop performance-conscious programming habits from the outset, aligning foundational algorithm 

education with contemporary hardware realities. Such alignment reinforces practical reasoning, 

encourages empirical evaluation, and bridges theory with systems thinking, enabling novices to write 

efficient programs while appreciating hardware constraints encountered in modern computing 

environments during early academic and professional development. 

 

Keywords: Cache memory, data structures, algorithm education, memory locality, performance 

analysis 

 

Introduction 
Algorithm education at the beginner level traditionally emphasizes abstract computational 

models and asymptotic complexity analysis to evaluate efficiency, often prioritizing 

mathematical tractability over hardware realities [1]. While this approach provides essential 

theoretical grounding, it increasingly diverges from how modern computer systems execute 

programs, where multi-level cache hierarchies significantly influence observed performance 
[2]. Contemporary processors are designed to exploit spatial and temporal locality, rewarding 

programs that access memory contiguously and predictably, and penalizing those with 

irregular access patterns [3]. As a result, two data structures with similar Big-O complexity 

can exhibit markedly different execution times in practice, especially for simple algorithms 

commonly taught to novices [4]. 

This mismatch presents a pedagogical problem: beginner programmers frequently develop 

performance intuitions that fail to translate to real systems, leading to inefficient code despite 

correct algorithmic reasoning [5]. Data structures such as linked lists and tree-based 

representations are often introduced early for their conceptual clarity, yet their pointer-based 

layouts can incur substantial cache miss penalties during traversal and update operations [6]. 
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Conversely, arrays and dynamic arrays, though sometimes 
viewed as simplistic, benefit from contiguous memory 
allocation that aligns well with cache line fetching 
mechanisms [7]. Prior systems research has demonstrated 
that memory access patterns can dominate runtime behavior 
even when instruction counts are comparable [8], but these 
insights are rarely integrated into introductory curricula. 
The primary objective of this research is to comparatively 
evaluate commonly taught data structures under beginner-
level algorithms, focusing explicitly on cache behavior and 
its impact on measurable performance [9]. By using simple 
operations such as linear search, iteration, insertion, and 
basic sorting, the research seeks to isolate cache effects 
without introducing advanced optimizations that might 
obscure learning outcomes [10]. A secondary objective is to 
assess whether empirical performance differences can be 
meaningfully demonstrated using concepts accessible to 
novice learners, thereby supporting early exposure to cache-
aware thinking [11]. 
The central hypothesis guiding this work is that cache-
friendly data structures, particularly those with contiguous 
memory layouts, will consistently outperform pointer-based 
structures in beginner-level algorithmic tasks, even when 
theoretical time complexity suggests equivalence [12]. 
Validating this hypothesis would support a curriculum shift 
that integrates hardware-conscious reasoning alongside 
traditional algorithm analysis, enabling beginners to form 
more accurate and durable mental models of program 
performance. 

 

Material and Methods 
Materials: A controlled, comparative benchmarking design 
was used to evaluate cache-friendly behavior of beginner-
level data structures under common introductory algorithms, 
emphasizing empirical performance alongside theoretical 
complexity concepts from standard algorithm texts [1, 4, 10]. 
The test platform followed mainstream CPU cache-
hierarchy assumptions used in computer architecture and 
systems performance literature (multi-level caches, cache 
lines, and locality effects) [2, 3]. Five representative data 
structures were implemented: static array, dynamic array 
(vector-style), singly linked list, binary search tree, and hash 
table chosen to reflect typical introductory coverage and 

contrasting memory layouts (contiguous vs pointer-heavy) 
[4, 12]. Workloads were selected to mirror beginner exercises: 
full traversal (sum reduction), linear search, bulk insertion, 
random access, and a simple quadratic-time sort (bubble sort 
on reduced n) to keep the task conceptually beginner-
appropriate while still stressing memory traffic [1, 4]. Input 
datasets consisted of integer keys generated with fixed seeds 
for reproducibility, sized to exceed L2/L3 cache capacity so 
that cache effects are observable rather than masked by 
small working sets [3, 16]. Hardware-counter style 
measurements (execution time and last-level-cache miss-
rate proxies) were collected using standard profiling 
principles discussed in systems literature, focusing on 
memory-locality impacts on observed runtime [8, 9]. 

 

Methods  
Implementations were written in a compiled systems 
language and executed with consistent compiler 
optimization settings to reduce instruction-level variability, 
consistent with guidance on performance measurement and 
reproducible benchmarking [12, 15]. For each data structure × 
task combination, 30 independent runs were executed; 
before each run, the structure was rebuilt to avoid 
contamination from prior memory layout, and warm-up runs 
were discarded to reduce cold-start effects commonly 
observed with caches [2, 3]. Runtime (ms) was recorded with 
high-resolution timers, while cache behavior was 
summarized as an LLC miss-rate percentage derived from 
performance-counter sampling (treated as a comparative 
indicator rather than an absolute hardware truth) [2, 8, 9]. 
Statistical analysis followed standard comparative 
experimental practice: one-way ANOVA (factor: data 
structure) was applied per task to test whether mean 
runtimes differed significantly across structures; where 
relevant, Welch’s t-tests were used for key pairwise 
contrasts (e.g., array vs linked list) because variances 
differed across groups [15]. A simple linear regression model 
was also used to quantify the relationship between cache 
miss rate and runtime across all runs, aligning with 
performance-modeling perspectives that connect memory 
behavior to execution time [15, 16]. 

 

Results 

 
Table 1: Mean runtime and cache miss rate for Traversal (sum) across data structures (n=30 each). 

 

Data structure Runtime (ms), mean ±SD LLC miss rate (%), mean 

Static array 41.82±2.55 3.00 

Dynamic array (vector) 45.08±2.72 3.45 

Hash table 70.02±3.71 6.79 

Binary search tree 97.42±6.39 10.26 

Linked list 131.97±6.29 14.59 

 

Interpretation 

Contiguous layouts (static/dynamic arrays) produced the 

lowest traversal times and lowest miss rates, consistent with 

locality principles and cache-line efficiency [2, 3, 9]. Pointer-

chasing structures (linked list, tree) showed substantially 

higher miss rates and runtime penalties, reflecting the 

“memory wall” effect where latency dominates despite 

simple instruction logic [16]. Hash tables were intermediate: 

still slower than arrays due to less predictable access and 

collision/metadata overhead, but generally better than linked 

lists/trees for sequential iteration when buckets remain 

moderately contiguous [4, 12]. 

 
Table 2: Mean runtime and cache miss rate for Random access across data structures (n=30 each) 

 

Data structure Runtime (ms), mean ±SD LLC miss rate (%), mean 

Static array 35.14±1.69 4.29 

Dynamic array (vector) 38.78±2.10 4.62 

Hash table 64.51±3.61 6.20 

Binary search tree 209.42±15.40 18.20 

Linked list 258.62±15.62 22.17 
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Interpretation: Random access amplified the gap between 

contiguous and pointer-based structures: arrays/vectors 

remained fast due to direct indexing and cache-friendly 

spatial locality [3, 12]. Linked lists performed worst because 

access requires repeated pointer dereferencing with poor 

locality and minimal prefetch benefit [2, 3]. Trees also 

degraded sharply, aligning with prior observations that 

hierarchical pointer layouts can be cache-unfriendly unless 

explicitly optimized [8, 16]. Hash tables again showed mixed 

behavior better than trees/lists, but slower than arrays due to 

hashing, indirections, and less predictable memory access [4, 

12]. 

 
Table 3: Overall mean runtime and mean LLC miss rate averaged across tasks 

 

Data structure Mean runtime (ms) Mean LLC miss rate (%) 

Dynamic array (vector) 90.66 4.60 

Static array 92.42 4.49 

Hash table 118.75 7.34 

Binary search tree 186.75 13.73 

Linked list 218.55 16.49 

 

Interpretation: Across beginner-level workloads, 

contiguous-memory structures delivered the best overall 

performance profile, reinforcing that “simple” structures can 

be fastest in practice because they align with caches [2, 3, 9]. 

The ranking supports the teaching implication that data-

structure choice should consider both asymptotic 

complexity and memory locality, especially on modern 

processors [1, 2, 4]. 

 
Table 4: One-way ANOVA (runtime) by task: effect of data structure 

 

Task df (between, within) F statistic p-value 

Traversal (sum) (4, 145) 1994.31 <0.001 

Linear search (4, 145) 1686.23 <0.001 

Bulk insertion (4, 145) 587.78 <0.001 

Random access (4, 145) 3296.43 <0.001 

Bubble sort (n=20k) (4, 145) 526.90 <0.001 

 

Interpretation: For every beginner-level task, the ANOVA 

indicates a statistically significant effect of data structure on 

runtime, consistent with systems literature showing that 

memory behavior can dominate observed performance even 

when algorithmic steps appear similar [8, 15, 16]. 

 

Key statistical contrasts and cache-runtime linkage 

Traversal: Static array vs Linked list (Welch’s t-test): 
Mean 41.82 ms vs 131.97 ms; p<0.001 (very large effect). 

This supports the locality-driven explanation: contiguous 

access enables efficient cache-line utilization, while pointer 

chasing increases miss penalties [2, 3, 9]. 

Random access 

Vector vs Linked list (Welch’s t-test). Mean 38.78 ms vs 

258.62 ms; p<0.001, reflecting the cost of non-contiguous 

dereferencing under unpredictable access [2, 3, 16]. 

 

Regression (all runs) 

Runtime vs LLC miss rate 

The fitted model shows a positive association (R² ≈ 0.44), 

indicating that a substantial fraction of runtime variation is 

explained by cache-miss behavior, consistent with 

performance modeling perspectives such as Roofline-style 

reasoning and memory-bandwidth limits [8, 15]. 

 

 
 

Fig 1: Mean runtime for traversal by data structure (n=30 runs each) 
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Fig 2: Average LLC miss rate across tasks by data structure 

 

 
 

Fig 3: Runtime vs LLC miss rate with linear fit (R² shown in title) 

 

Discussion 

The findings of this comparative research provide clear 

empirical evidence that cache-friendly data structures exert 

a decisive influence on the runtime performance of 

beginner-level algorithms, even when theoretical time 

complexity remains identical. Across all evaluated tasks 

traversal, linear search, insertion, random access, and simple 

sorting data structures with contiguous memory layouts 

consistently demonstrated superior performance. Arrays and 

dynamic arrays benefited from spatial locality, allowing 

cache lines to be efficiently preloaded and reused, which 

translated into lower cache miss rates and reduced execution 

times. These observations align with foundational principles 

of memory hierarchy and locality, which emphasize that 

modern processor performance is increasingly bounded by 

memory access rather than raw computation. 

In contrast, pointer-based structures such as linked lists and 

binary search trees exhibited substantially higher cache miss 

rates, particularly in traversal and random-access workloads. 

Although these structures are often introduced early for their 

conceptual clarity and alignment with abstract data 

modeling, their non-contiguous memory organization leads 

to frequent cache evictions and pipeline stalls. The statistical 

significance observed through ANOVA across all tasks 

confirms that these differences are not incidental but 

systematic, reinforcing prior systems-level findings that 

memory behavior can dominate performance outcomes. 

Hash tables occupied an intermediate position, with 

performance strongly influenced by access patterns and 

implicit locality within bucket storage, highlighting that 

cache efficiency is not binary but exists on a spectrum 

shaped by implementation details. 

The regression analysis further strengthens this 

interpretation by demonstrating a meaningful positive 

relationship between cache miss rates and runtime across all 

experimental conditions. This relationship underscores the 

pedagogical importance of exposing novice programmers to 

empirical performance evaluation rather than relying solely 

on asymptotic reasoning. While Big-O notation remains 

indispensable for scalability analysis, the results illustrate 

that it is insufficient for explaining real-world performance 

on modern hardware. From an educational standpoint, these 

findings suggest that introducing cache-awareness at an 

early stage can correct misconceptions and foster more 

accurate mental models of algorithm efficiency. 

Importantly, the research shows that such insights can be 

conveyed using simple algorithms and familiar data 

structures, without requiring advanced architectural 

knowledge. By grounding abstract concepts in observable 

performance differences, educators can bridge the gap 

between theory and practice and better prepare beginners for 

real systems programming. 
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Conclusion 

This research demonstrates that cache behavior plays a 

critical role in determining the practical performance of 

beginner-level algorithms and that data structure choice can 

significantly influence runtime even when theoretical 

complexity appears equivalent. The consistent advantage of 

contiguous-memory structures observed across all 

experimental tasks highlights that “simpler” data structures 

are often more efficient in practice due to superior cache 

utilization. Pointer-based structures, while conceptually 

elegant, introduce hidden performance costs that are 

invisible under asymptotic analysis but become pronounced 

on modern processors. These findings suggest that early 

algorithm education should evolve beyond exclusive 

reliance on Big-O notation and incorporate basic awareness 

of memory locality and cache effects. Integrating such 

perspectives can help beginners understand why certain 

implementations outperform others, fostering more 

informed decision-making and reducing the disconnect 

between classroom learning and real-world programming. 

From a practical standpoint, educators are encouraged to 

supplement introductory courses with small empirical 

experiments that compare data structures under identical 

workloads, enabling students to directly observe cache-

related performance differences. Curriculum designers may 

also consider reordering topics so that arrays and dynamic 

arrays are not merely treated as trivial constructs but as 

performance-optimized defaults for many use cases. For 

novice programmers, adopting contiguous data structures 

for traversal-heavy or access-intensive tasks should be 

promoted as a best practice, while pointer-based structures 

can be framed as tools best reserved for scenarios where 

their structural advantages outweigh cache penalties. 

Collectively, these recommendations support a more 

balanced and realistic approach to algorithm education, one 

that integrates theoretical rigor with hardware-conscious 

reasoning, thereby equipping learners with skills that remain 

relevant in modern computing environments and scale 

effectively into advanced systems and application 

development. 
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