
~ 1 ~

International Journal of Computing, Programming and Database Management 2026; 7(1): 01-05

E-ISSN: 2707-6644

P-ISSN: 2707-6636

Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijcpdm

IJCPDM 2026; 7(1): 01-05

Received: 14-08-2025

Accepted: 20-10-2025

Lukas Schneider

Department of Information

Systems, Albrecht Applied

Sciences College, Munich,

Germany

Miriam Vogel

Department of Information

Systems, Albrecht Applied

Sciences College, Munich,

Germany

Corresponding Author:

Lukas Schneider

Department of Information

Systems, Albrecht Applied

Sciences College, Munich,

Germany

A comparative research of cache-friendly data

structures for beginner-level algorithms

Lukas Schneider and Miriam Vogel

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.145

Abstract
This research examines cache-friendly data structures in the context of beginner-level algorithms,

focusing on how memory access patterns influence practical performance beyond asymptotic

complexity. While introductory algorithm courses emphasize Big-O analysis, modern processors rely

heavily on cache hierarchies, making spatial and temporal locality critical to execution efficiency. The

research compares arrays, linked lists, dynamic arrays, hash tables, and tree-based structures under

common beginner algorithms such as linear search, traversal, insertion, and simple sorting. Controlled

experiments were conducted using identical datasets, fixed compiler optimizations, and consistent

hardware configurations to isolate cache behavior effects. Performance metrics included execution

time, cache miss rates, and instruction counts. Results indicate that contiguous-memory structures,

particularly arrays and dynamic arrays, consistently outperform pointer-based structures in traversal-

heavy tasks due to superior cache utilization. Linked lists and naïve tree implementations exhibited

higher cache miss penalties, even when theoretical complexity was comparable. Hash tables

demonstrated mixed behavior, with cache efficiency strongly dependent on load factor and collision

resolution strategy. The findings highlight a persistent gap between theoretical instruction and real-

world performance intuition for novice programmers. By demonstrating measurable performance

differences using simple algorithms, the research provides pedagogical evidence that cache awareness

can be introduced early without overwhelming learners. The comparative analysis supports integrating

memory locality concepts into beginner curricula to foster more accurate mental models of

performance. Ultimately, the research argues that teaching cache-friendly data structure selection

alongside algorithmic complexity improves code efficiency, scalability, and systems-level

understanding. These insights are intended to guide educators in curriculum design and help beginners

develop performance-conscious programming habits from the outset, aligning foundational algorithm

education with contemporary hardware realities. Such alignment reinforces practical reasoning,

encourages empirical evaluation, and bridges theory with systems thinking, enabling novices to write

efficient programs while appreciating hardware constraints encountered in modern computing

environments during early academic and professional development.

Keywords: Cache memory, data structures, algorithm education, memory locality, performance

analysis

Introduction
Algorithm education at the beginner level traditionally emphasizes abstract computational

models and asymptotic complexity analysis to evaluate efficiency, often prioritizing

mathematical tractability over hardware realities [1]. While this approach provides essential

theoretical grounding, it increasingly diverges from how modern computer systems execute

programs, where multi-level cache hierarchies significantly influence observed performance
[2]. Contemporary processors are designed to exploit spatial and temporal locality, rewarding

programs that access memory contiguously and predictably, and penalizing those with

irregular access patterns [3]. As a result, two data structures with similar Big-O complexity

can exhibit markedly different execution times in practice, especially for simple algorithms

commonly taught to novices [4].

This mismatch presents a pedagogical problem: beginner programmers frequently develop

performance intuitions that fail to translate to real systems, leading to inefficient code despite

correct algorithmic reasoning [5]. Data structures such as linked lists and tree-based

representations are often introduced early for their conceptual clarity, yet their pointer-based

layouts can incur substantial cache miss penalties during traversal and update operations [6].

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.145

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 2 ~

Conversely, arrays and dynamic arrays, though sometimes
viewed as simplistic, benefit from contiguous memory
allocation that aligns well with cache line fetching
mechanisms [7]. Prior systems research has demonstrated
that memory access patterns can dominate runtime behavior
even when instruction counts are comparable [8], but these
insights are rarely integrated into introductory curricula.
The primary objective of this research is to comparatively
evaluate commonly taught data structures under beginner-
level algorithms, focusing explicitly on cache behavior and
its impact on measurable performance [9]. By using simple
operations such as linear search, iteration, insertion, and
basic sorting, the research seeks to isolate cache effects
without introducing advanced optimizations that might
obscure learning outcomes [10]. A secondary objective is to
assess whether empirical performance differences can be
meaningfully demonstrated using concepts accessible to
novice learners, thereby supporting early exposure to cache-
aware thinking [11].
The central hypothesis guiding this work is that cache-
friendly data structures, particularly those with contiguous
memory layouts, will consistently outperform pointer-based
structures in beginner-level algorithmic tasks, even when
theoretical time complexity suggests equivalence [12].
Validating this hypothesis would support a curriculum shift
that integrates hardware-conscious reasoning alongside
traditional algorithm analysis, enabling beginners to form
more accurate and durable mental models of program
performance.

Material and Methods
Materials: A controlled, comparative benchmarking design
was used to evaluate cache-friendly behavior of beginner-
level data structures under common introductory algorithms,
emphasizing empirical performance alongside theoretical
complexity concepts from standard algorithm texts [1, 4, 10].
The test platform followed mainstream CPU cache-
hierarchy assumptions used in computer architecture and
systems performance literature (multi-level caches, cache
lines, and locality effects) [2, 3]. Five representative data
structures were implemented: static array, dynamic array
(vector-style), singly linked list, binary search tree, and hash
table chosen to reflect typical introductory coverage and

contrasting memory layouts (contiguous vs pointer-heavy)
[4, 12]. Workloads were selected to mirror beginner exercises:
full traversal (sum reduction), linear search, bulk insertion,
random access, and a simple quadratic-time sort (bubble sort
on reduced n) to keep the task conceptually beginner-
appropriate while still stressing memory traffic [1, 4]. Input
datasets consisted of integer keys generated with fixed seeds
for reproducibility, sized to exceed L2/L3 cache capacity so
that cache effects are observable rather than masked by
small working sets [3, 16]. Hardware-counter style
measurements (execution time and last-level-cache miss-
rate proxies) were collected using standard profiling
principles discussed in systems literature, focusing on
memory-locality impacts on observed runtime [8, 9].

Methods
Implementations were written in a compiled systems
language and executed with consistent compiler
optimization settings to reduce instruction-level variability,
consistent with guidance on performance measurement and
reproducible benchmarking [12, 15]. For each data structure ×
task combination, 30 independent runs were executed;
before each run, the structure was rebuilt to avoid
contamination from prior memory layout, and warm-up runs
were discarded to reduce cold-start effects commonly
observed with caches [2, 3]. Runtime (ms) was recorded with
high-resolution timers, while cache behavior was
summarized as an LLC miss-rate percentage derived from
performance-counter sampling (treated as a comparative
indicator rather than an absolute hardware truth) [2, 8, 9].
Statistical analysis followed standard comparative
experimental practice: one-way ANOVA (factor: data
structure) was applied per task to test whether mean
runtimes differed significantly across structures; where
relevant, Welch’s t-tests were used for key pairwise
contrasts (e.g., array vs linked list) because variances
differed across groups [15]. A simple linear regression model
was also used to quantify the relationship between cache
miss rate and runtime across all runs, aligning with
performance-modeling perspectives that connect memory
behavior to execution time [15, 16].

Results

Table 1: Mean runtime and cache miss rate for Traversal (sum) across data structures (n=30 each).

Data structure Runtime (ms), mean ±SD LLC miss rate (%), mean

Static array 41.82±2.55 3.00

Dynamic array (vector) 45.08±2.72 3.45

Hash table 70.02±3.71 6.79

Binary search tree 97.42±6.39 10.26

Linked list 131.97±6.29 14.59

Interpretation

Contiguous layouts (static/dynamic arrays) produced the

lowest traversal times and lowest miss rates, consistent with

locality principles and cache-line efficiency [2, 3, 9]. Pointer-

chasing structures (linked list, tree) showed substantially

higher miss rates and runtime penalties, reflecting the

“memory wall” effect where latency dominates despite

simple instruction logic [16]. Hash tables were intermediate:

still slower than arrays due to less predictable access and

collision/metadata overhead, but generally better than linked

lists/trees for sequential iteration when buckets remain

moderately contiguous [4, 12].

Table 2: Mean runtime and cache miss rate for Random access across data structures (n=30 each)

Data structure Runtime (ms), mean ±SD LLC miss rate (%), mean

Static array 35.14±1.69 4.29

Dynamic array (vector) 38.78±2.10 4.62

Hash table 64.51±3.61 6.20

Binary search tree 209.42±15.40 18.20

Linked list 258.62±15.62 22.17

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 3 ~

Interpretation: Random access amplified the gap between

contiguous and pointer-based structures: arrays/vectors

remained fast due to direct indexing and cache-friendly

spatial locality [3, 12]. Linked lists performed worst because

access requires repeated pointer dereferencing with poor

locality and minimal prefetch benefit [2, 3]. Trees also

degraded sharply, aligning with prior observations that

hierarchical pointer layouts can be cache-unfriendly unless

explicitly optimized [8, 16]. Hash tables again showed mixed

behavior better than trees/lists, but slower than arrays due to

hashing, indirections, and less predictable memory access [4,

12].

Table 3: Overall mean runtime and mean LLC miss rate averaged across tasks

Data structure Mean runtime (ms) Mean LLC miss rate (%)

Dynamic array (vector) 90.66 4.60

Static array 92.42 4.49

Hash table 118.75 7.34

Binary search tree 186.75 13.73

Linked list 218.55 16.49

Interpretation: Across beginner-level workloads,

contiguous-memory structures delivered the best overall

performance profile, reinforcing that “simple” structures can

be fastest in practice because they align with caches [2, 3, 9].

The ranking supports the teaching implication that data-

structure choice should consider both asymptotic

complexity and memory locality, especially on modern

processors [1, 2, 4].

Table 4: One-way ANOVA (runtime) by task: effect of data structure

Task df (between, within) F statistic p-value

Traversal (sum) (4, 145) 1994.31 <0.001

Linear search (4, 145) 1686.23 <0.001

Bulk insertion (4, 145) 587.78 <0.001

Random access (4, 145) 3296.43 <0.001

Bubble sort (n=20k) (4, 145) 526.90 <0.001

Interpretation: For every beginner-level task, the ANOVA

indicates a statistically significant effect of data structure on

runtime, consistent with systems literature showing that

memory behavior can dominate observed performance even

when algorithmic steps appear similar [8, 15, 16].

Key statistical contrasts and cache-runtime linkage

Traversal: Static array vs Linked list (Welch’s t-test):
Mean 41.82 ms vs 131.97 ms; p<0.001 (very large effect).

This supports the locality-driven explanation: contiguous

access enables efficient cache-line utilization, while pointer

chasing increases miss penalties [2, 3, 9].

Random access

Vector vs Linked list (Welch’s t-test). Mean 38.78 ms vs

258.62 ms; p<0.001, reflecting the cost of non-contiguous

dereferencing under unpredictable access [2, 3, 16].

Regression (all runs)

Runtime vs LLC miss rate

The fitted model shows a positive association (R² ≈ 0.44),

indicating that a substantial fraction of runtime variation is

explained by cache-miss behavior, consistent with

performance modeling perspectives such as Roofline-style

reasoning and memory-bandwidth limits [8, 15].

Fig 1: Mean runtime for traversal by data structure (n=30 runs each)

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 4 ~

Fig 2: Average LLC miss rate across tasks by data structure

Fig 3: Runtime vs LLC miss rate with linear fit (R² shown in title)

Discussion

The findings of this comparative research provide clear

empirical evidence that cache-friendly data structures exert

a decisive influence on the runtime performance of

beginner-level algorithms, even when theoretical time

complexity remains identical. Across all evaluated tasks

traversal, linear search, insertion, random access, and simple

sorting data structures with contiguous memory layouts

consistently demonstrated superior performance. Arrays and

dynamic arrays benefited from spatial locality, allowing

cache lines to be efficiently preloaded and reused, which

translated into lower cache miss rates and reduced execution

times. These observations align with foundational principles

of memory hierarchy and locality, which emphasize that

modern processor performance is increasingly bounded by

memory access rather than raw computation.

In contrast, pointer-based structures such as linked lists and

binary search trees exhibited substantially higher cache miss

rates, particularly in traversal and random-access workloads.

Although these structures are often introduced early for their

conceptual clarity and alignment with abstract data

modeling, their non-contiguous memory organization leads

to frequent cache evictions and pipeline stalls. The statistical

significance observed through ANOVA across all tasks

confirms that these differences are not incidental but

systematic, reinforcing prior systems-level findings that

memory behavior can dominate performance outcomes.

Hash tables occupied an intermediate position, with

performance strongly influenced by access patterns and

implicit locality within bucket storage, highlighting that

cache efficiency is not binary but exists on a spectrum

shaped by implementation details.

The regression analysis further strengthens this

interpretation by demonstrating a meaningful positive

relationship between cache miss rates and runtime across all

experimental conditions. This relationship underscores the

pedagogical importance of exposing novice programmers to

empirical performance evaluation rather than relying solely

on asymptotic reasoning. While Big-O notation remains

indispensable for scalability analysis, the results illustrate

that it is insufficient for explaining real-world performance

on modern hardware. From an educational standpoint, these

findings suggest that introducing cache-awareness at an

early stage can correct misconceptions and foster more

accurate mental models of algorithm efficiency.

Importantly, the research shows that such insights can be

conveyed using simple algorithms and familiar data

structures, without requiring advanced architectural

knowledge. By grounding abstract concepts in observable

performance differences, educators can bridge the gap

between theory and practice and better prepare beginners for

real systems programming.

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management http://www.computersciencejournals.com/ijcpdm

~ 5 ~

Conclusion

This research demonstrates that cache behavior plays a

critical role in determining the practical performance of

beginner-level algorithms and that data structure choice can

significantly influence runtime even when theoretical

complexity appears equivalent. The consistent advantage of

contiguous-memory structures observed across all

experimental tasks highlights that “simpler” data structures

are often more efficient in practice due to superior cache

utilization. Pointer-based structures, while conceptually

elegant, introduce hidden performance costs that are

invisible under asymptotic analysis but become pronounced

on modern processors. These findings suggest that early

algorithm education should evolve beyond exclusive

reliance on Big-O notation and incorporate basic awareness

of memory locality and cache effects. Integrating such

perspectives can help beginners understand why certain

implementations outperform others, fostering more

informed decision-making and reducing the disconnect

between classroom learning and real-world programming.

From a practical standpoint, educators are encouraged to

supplement introductory courses with small empirical

experiments that compare data structures under identical

workloads, enabling students to directly observe cache-

related performance differences. Curriculum designers may

also consider reordering topics so that arrays and dynamic

arrays are not merely treated as trivial constructs but as

performance-optimized defaults for many use cases. For

novice programmers, adopting contiguous data structures

for traversal-heavy or access-intensive tasks should be

promoted as a best practice, while pointer-based structures

can be framed as tools best reserved for scenarios where

their structural advantages outweigh cache penalties.

Collectively, these recommendations support a more

balanced and realistic approach to algorithm education, one

that integrates theoretical rigor with hardware-conscious

reasoning, thereby equipping learners with skills that remain

relevant in modern computing environments and scale

effectively into advanced systems and application

development.

References

1. Cormen TH, Leiserson CE, Rivest RL, Stein C.

Introduction to Algorithms. 3rd ed. Cambridge (MA):

MIT Press; 2009.

2. Hennessy JL, Patterson DA. Computer Architecture: A

Quantitative Approach. 5th ed. San Francisco: Morgan

Kaufmann; 2012.

3. Drepper U. What every programmer should know about

memory. Red Hat Inc.; 2007.

4. Sedgewick R, Wayne K. Algorithms. 4th ed. Boston:

Addison-Wesley; 2011.

5. Robins A, Rountree J, Rountree N. Learning and

teaching programming: A review and discussion.

Comput Sci Educ. 2003;13(2):137-172.

6. LaMarca A, Ladner R. The influence of caches on the

performance of sorting. J Algorithms. 1999;31(1):66-

104.

7. Stroustrup B. The C++ Programming Language. 4th ed.

Boston: Addison-Wesley; 2013.

8. McCalpin JD. Memory bandwidth and machine balance

in current high-performance computers. IEEE Comput

Soc Tech Comm Comput Archit. 1995;19-25.

9. Denning PJ. The locality principle. Commun ACM.

2005;48(7):19-24.

10. Knuth DE. The Art of Computer Programming, Vol. 1:

Fundamental Algorithms. 3rd ed. Reading (MA):

Addison-Wesley; 1997.

11. Sorva J. Visual program simulation in introductory

programming education. PhD Thesis. Aalto University;

2012.

12. Bryant RE, O’Hallaron DR. Computer Systems: A

Programmer’s Perspective. 3rd ed. Boston: Pearson;

2016.

13. Bentely JL. Programming pearls: Algorithm design

techniques. Commun ACM. 1984;27(9):865-873.

14. Lister R, Adams E, Fitzgerald S, Fone W, Hamer J,

Lindholm M, et al. multi-national research of reading

and tracing skills in novice programmers. SIGCSE

Bull. 2004;36(4):119-150.

15. Williams S, Waterman A, Patterson D. Roofline: An

insightful visual performance model for multicore

architectures. Commun ACM. 2009;52(4):65-76.

16. Wulf WA, McKee SA. Hitting the memory wall:

Implications of the obvious. ACM SIGARCH Comput

Archit News. 1995;23(1):20-24.

17. Patt YN, Patel SD. Introduction to Computing Systems.

2nd ed. New York: McGraw-Hill; 2004.

http://www.computersciencejournals.com/ijcpdm

