International Journal of Computing, Programming and Database Management 2026; 7(1): 01-05

/a4
<0 classe"le
39N classe"gly

<span classe"sr
</

Infernahonal Journal of

<span class="ghyphices gl ﬂr 10 -Ohewren #ige” win &

<span ¢
</
<Jaiv<!

E-ISSN: 2707-6644
P-ISSN: 2707-6636
Impact Factor (RJIF): 5.43

www.computersciencejournals.

com/ijepdm

1JCPDM 2026; 7(1): 01-05
Received: 14-08-2025
Accepted: 20-10-2025

Lukas Schneider
Department of Information
Systems, Albrecht Applied
Sciences College, Munich,
Germany

Miriam Vogel

Department of Information
Systems, Albrecht Applied
Sciences College, Munich,
Germany

Corresponding Author:
Lukas Schneider
Department of Information
Systems, Albrecht Applied
Sciences College, Munich,
Germany

Lasse"sr-caly" Mt/ spen

i oo o i ,L'ompuhng, Programming and" @&

Database Management

A comparative research of cache-friendly data
structures for beginner-level algorithms

Lukas Schneider and Miriam Vogel

DOI: https://www.doi.org/10.33545/27076636.2026.v7.i1a.145

Abstract

This research examines cache-friendly data structures in the context of beginner-level algorithms,
focusing on how memory access patterns influence practical performance beyond asymptotic
complexity. While introductory algorithm courses emphasize Big-O analysis, modern processors rely
heavily on cache hierarchies, making spatial and temporal locality critical to execution efficiency. The
research compares arrays, linked lists, dynamic arrays, hash tables, and tree-based structures under
common beginner algorithms such as linear search, traversal, insertion, and simple sorting. Controlled
experiments were conducted using identical datasets, fixed compiler optimizations, and consistent
hardware configurations to isolate cache behavior effects. Performance metrics included execution
time, cache miss rates, and instruction counts. Results indicate that contiguous-memory structures,
particularly arrays and dynamic arrays, consistently outperform pointer-based structures in traversal-
heavy tasks due to superior cache utilization. Linked lists and naive tree implementations exhibited
higher cache miss penalties, even when theoretical complexity was comparable. Hash tables
demonstrated mixed behavior, with cache efficiency strongly dependent on load factor and collision
resolution strategy. The findings highlight a persistent gap between theoretical instruction and real-
world performance intuition for novice programmers. By demonstrating measurable performance
differences using simple algorithms, the research provides pedagogical evidence that cache awareness
can be introduced early without overwhelming learners. The comparative analysis supports integrating
memory locality concepts into beginner curricula to foster more accurate mental models of
performance. Ultimately, the research argues that teaching cache-friendly data structure selection
alongside algorithmic complexity improves code efficiency, scalability, and systems-level
understanding. These insights are intended to guide educators in curriculum design and help beginners
develop performance-conscious programming habits from the outset, aligning foundational algorithm
education with contemporary hardware realities. Such alignment reinforces practical reasoning,
encourages empirical evaluation, and bridges theory with systems thinking, enabling novices to write
efficient programs while appreciating hardware constraints encountered in modern computing
environments during early academic and professional development.

Keywords: Cache memory, data structures, algorithm education, memory locality, performance
analysis

Introduction

Algorithm education at the beginner level traditionally emphasizes abstract computational
models and asymptotic complexity analysis to evaluate efficiency, often prioritizing
mathematical tractability over hardware realities M. While this approach provides essential
theoretical grounding, it increasingly diverges from how modern computer systems execute
programs, where multi-level cache hierarchies significantly influence observed performance
(2. Contemporary processors are designed to exploit spatial and temporal locality, rewarding
programs that access memory contiguously and predictably, and penalizing those with
irregular access patterns 1. As a result, two data structures with similar Big-O complexity
can exhibit markedly different execution times in practice, especially for simple algorithms
commonly taught to novices 1.

This mismatch presents a pedagogical problem: beginner programmers frequently develop
performance intuitions that fail to translate to real systems, leading to inefficient code despite
correct algorithmic reasoning [l Data structures such as linked lists and tree-based
representations are often introduced early for their conceptual clarity, yet their pointer-based
layouts can incur substantial cache miss penalties during traversal and update operations [©1,

~1~

http://www.computersciencejournals.com/ijcpdm
http://www.computersciencejournals.com/ijcpdm
https://www.doi.org/10.33545/27076636.2026.v7.i1a.145

International Journal of Computing, Programming and Database Management

Conversely, arrays and dynamic arrays, though sometimes
viewed as simplistic, benefit from contiguous memory
allocation that aligns well with cache line fetching
mechanisms 1. Prior systems research has demonstrated
that memory access patterns can dominate runtime behavior
even when instruction counts are comparable 1, but these
insights are rarely integrated into introductory curricula.

The primary objective of this research is to comparatively
evaluate commonly taught data structures under beginner-
level algorithms, focusing explicitly on cache behavior and
its impact on measurable performance 1. By using simple
operations such as linear search, iteration, insertion, and
basic sorting, the research seeks to isolate cache effects
without introducing advanced optimizations that might
obscure learning outcomes 1%, A secondary objective is to
assess whether empirical performance differences can be
meaningfully demonstrated using concepts accessible to
novice learners, thereby supporting early exposure to cache-
aware thinking (41,

The central hypothesis guiding this work is that cache-
friendly data structures, particularly those with contiguous
memory layouts, will consistently outperform pointer-based
structures in beginner-level algorithmic tasks, even when
theoretical time complexity suggests equivalence [,
Validating this hypothesis would support a curriculum shift
that integrates hardware-conscious reasoning alongside
traditional algorithm analysis, enabling beginners to form
more accurate and durable mental models of program
performance.

Material and Methods

Materials: A controlled, comparative benchmarking design
was used to evaluate cache-friendly behavior of beginner-
level data structures under common introductory algorithms,
emphasizing empirical performance alongside theoretical
complexity concepts from standard algorithm texts [4 101,
The test platform followed mainstream CPU cache-
hierarchy assumptions used in computer architecture and
systems performance literature (multi-level caches, cache
lines, and locality effects) > 3. Five representative data
structures were implemented: static array, dynamic array
(vector-style), singly linked list, binary search tree, and hash
table chosen to reflect typical introductory coverage and

http://www.computersciencejournals.com/ijcpdm

contrasting memory layouts (contiguous vs pointer-heavy)
[+ 121 Workloads were selected to mirror beginner exercises:
full traversal (sum reduction), linear search, bulk insertion,
random access, and a simple quadratic-time sort (bubble sort
on reduced n) to keep the task conceptually beginner-
appropriate while still stressing memory traffic & 4. Input
datasets consisted of integer keys generated with fixed seeds
for reproducibility, sized to exceed L2/L3 cache capacity so
that cache effects are observable rather than masked by
small working sets [8 Hardware-counter style
measurements (execution time and last-level-cache miss-
rate proxies) were collected using standard profiling
principles discussed in systems literature, focusing on
memory-locality impacts on observed runtime &9,

Methods

Implementations were written in a compiled systems
language and executed with consistent compiler
optimization settings to reduce instruction-level variability,
consistent with guidance on performance measurement and
reproducible benchmarking ™2 151, For each data structure x
task combination, 30 independent runs were executed;
before each run, the structure was rebuilt to avoid
contamination from prior memory layout, and warm-up runs
were discarded to reduce cold-start effects commonly
observed with caches 2 31, Runtime (ms) was recorded with
high-resolution timers, while cache behavior was
summarized as an LLC miss-rate percentage derived from
performance-counter sampling (treated as a comparative
indicator rather than an absolute hardware truth) & & 91,
Statistical analysis followed standard comparative
experimental practice: one-way ANOVA (factor: data
structure) was applied per task to test whether mean
runtimes differed significantly across structures; where
relevant, Welch’s t-tests were used for key pairwise
contrasts (e.g., array vs linked list) because variances
differed across groups 3. A simple linear regression model
was also used to quantify the relationship between cache
miss rate and runtime across all runs, aligning with
performance-modeling perspectives that connect memory
behavior to execution time [*5 61,

Results

Table 1: Mean runtime and cache miss rate for Traversal (sum) across data structures (n=30 each).

Data structure Runtime (ms), mean £SD LLC miss rate (%), mean
Static array 41.82+2.55 3.00
Dynamic array (vector) 45.08+2.72 3.45
Hash table 70.02+£3.71 6.79
Binary search tree 97.42+6.39 10.26
Linked list 131.9746.29 14.59

Interpretation

Contiguous layouts (static/dynamic arrays) produced the
lowest traversal times and lowest miss rates, consistent with
locality principles and cache-line efficiency > 3 9. Pointer-
chasing structures (linked list, tree) showed substantially
higher miss rates and runtime penalties, reflecting the

“memory wall” effect where latency dominates despite
simple instruction logic [*¢1, Hash tables were intermediate:
still slower than arrays due to less predictable access and
collision/metadata overhead, but generally better than linked
lists/trees for sequential iteration when buckets remain
moderately contiguous 12,

Table 2: Mean runtime and cache miss rate for Random access across data structures (n=30 each)

Data structure Runtime (ms), mean £SD LLC miss rate (%), mean
Static array 35.14+1.69 4.29
Dynamic array (vector) 38.78+2.10 4.62
Hash table 64.51+3.61 6.20
Binary search tree 209.42+15.40 18.20
Linked list 258.62+15.62 22.17

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

Interpretation: Random access amplified the gap between
contiguous and pointer-based structures: arrays/vectors
remained fast due to direct indexing and cache-friendly
spatial locality > 2. Linked lists performed worst because
access requires repeated pointer dereferencing with poor
locality and minimal prefetch benefit ? . Trees also

http://www.computersciencejournals.com/ijcpdm

degraded sharply, aligning with prior observations that
hierarchical pointer layouts can be cache-unfriendly unless
explicitly optimized & 161, Hash tables again showed mixed
behavior better than trees/lists, but slower than arrays due to

hashing, indirections, and less predictable memory access
12]

Table 3: Overall mean runtime and mean LLC miss rate averaged across tasks

Data structure Mean runtime (ms) Mean LLC miss rate (%)
Dynamic array (vector) 90.66 4.60
Static array 92.42 4.49
Hash table 118.75 7.34
Binary search tree 186.75 13.73
Linked list 218.55 16.49
Interpretation: Across beginner-level workloads, The ranking supports the teaching implication that data-

contiguous-memory structures delivered the best overall
performance profile, reinforcing that “simple” structures can
be fastest in practice because they align with caches 2 3 9,

structure choice should consider both asymptotic
complexity and memory locality, especially on modern
processors 24,

Table 4: One-way ANOVA (runtime) by task: effect of data structure

Task df (between, within) F statistic p-value
Traversal (sum) (4, 145) 1994.31 <0.001
Linear search (4, 145) 1686.23 <0.001
Bulk insertion (4, 145) 587.78 <0.001
Random access (4, 145) 3296.43 <0.001
Bubble sort (n=20k) (4, 145) 526.90 <0.001

Interpretation: For every beginner-level task, the ANOVA
indicates a statistically significant effect of data structure on
runtime, consistent with systems literature showing that
memory behavior can dominate observed performance even
when algorithmic steps appear similar [5 6],

Key statistical contrasts and cache-runtime linkage
Traversal: Static array vs Linked list (Welch’s t-test):
Mean 41.82 ms vs 131.97 ms; p<0.001 (very large effect).
This supports the locality-driven explanation: contiguous
access enables efficient cache-line utilization, while pointer
chasing increases miss penalties 2 3 91,

Random access

Vector vs Linked list (Welch’s t-test). Mean 38.78 ms vs
258.62 ms; p<0.001, reflecting the cost of non-contiguous
dereferencing under unpredictable access [3 161,

Regression (all runs)

Runtime vs LLC miss rate

The fitted model shows a positive association (R? = 0.44),
indicating that a substantial fraction of runtime variation is
explained by cache-miss behavior, consistent with
performance modeling perspectives such as Roofline-style
reasoning and memory-bandwidth limits [151,

140

= =
o N
=) =}

[==]
o

Runtime (ms)

60 -

40 1

204

o' o
o C,i'ﬂﬂc

Fig 1: Mean runtime for traversal by data structure (n=30 runs each)

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

http://www.computersciencejournals.com/ijcpdm

20.0 1

LLC miss rate (%)

- — - —
~ o Laed v ~
w o w o w

w
o

N
n

0.0

e ot 20 6\\"‘ . ((3\1
o sﬁa‘m A e \\3"“‘ e ot ’
@ O*Oam\c
Fig 2: Average LLC miss rate across tasks by data structure
@ gae ©®
L
400 e ® a
° ., 2 o

350 A

300 4
)
£ 2501
@
E
S 2004
o

150 4

100 4

50 A
é 1IO 1‘5 2b 2I5
LLC miss rate (%)

Fig 3: Runtime vs LLC miss rate with linear fit (R2 shown in title)

Discussion

The findings of this comparative research provide clear
empirical evidence that cache-friendly data structures exert
a decisive influence on the runtime performance of
beginner-level algorithms, even when theoretical time
complexity remains identical. Across all evaluated tasks
traversal, linear search, insertion, random access, and simple
sorting data structures with contiguous memory layouts
consistently demonstrated superior performance. Arrays and
dynamic arrays benefited from spatial locality, allowing
cache lines to be efficiently preloaded and reused, which
translated into lower cache miss rates and reduced execution
times. These observations align with foundational principles
of memory hierarchy and locality, which emphasize that
modern processor performance is increasingly bounded by
memory access rather than raw computation.

In contrast, pointer-based structures such as linked lists and
binary search trees exhibited substantially higher cache miss
rates, particularly in traversal and random-access workloads.
Although these structures are often introduced early for their
conceptual clarity and alignment with abstract data
modeling, their non-contiguous memory organization leads
to frequent cache evictions and pipeline stalls. The statistical
significance observed through ANOVA across all tasks
confirms that these differences are not incidental but
systematic, reinforcing prior systems-level findings that

memory behavior can dominate performance outcomes.
Hash tables occupied an intermediate position, with
performance strongly influenced by access patterns and
implicit locality within bucket storage, highlighting that
cache efficiency is not binary but exists on a spectrum
shaped by implementation details.

The regression analysis further strengthens this
interpretation by demonstrating a meaningful positive
relationship between cache miss rates and runtime across all
experimental conditions. This relationship underscores the
pedagogical importance of exposing novice programmers to
empirical performance evaluation rather than relying solely
on asymptotic reasoning. While Big-O notation remains
indispensable for scalability analysis, the results illustrate
that it is insufficient for explaining real-world performance
on modern hardware. From an educational standpoint, these
findings suggest that introducing cache-awareness at an
early stage can correct misconceptions and foster more
accurate mental models of algorithm efficiency.
Importantly, the research shows that such insights can be
conveyed using simple algorithms and familiar data
structures, without requiring advanced architectural
knowledge. By grounding abstract concepts in observable
performance differences, educators can bridge the gap
between theory and practice and better prepare beginners for
real systems programming.

http://www.computersciencejournals.com/ijcpdm

International Journal of Computing, Programming and Database Management

Conclusion

This research demonstrates that cache behavior plays a
critical role in determining the practical performance of
beginner-level algorithms and that data structure choice can
significantly influence runtime even when theoretical
complexity appears equivalent. The consistent advantage of
contiguous-memory structures observed across all
experimental tasks highlights that “simpler” data structures
are often more efficient in practice due to superior cache
utilization. Pointer-based structures, while conceptually
elegant, introduce hidden performance costs that are
invisible under asymptotic analysis but become pronounced
on modern processors. These findings suggest that early
algorithm education should evolve beyond exclusive
reliance on Big-O notation and incorporate basic awareness
of memory locality and cache effects. Integrating such
perspectives can help beginners understand why certain
implementations outperform others, fostering more
informed decision-making and reducing the disconnect
between classroom learning and real-world programming.
From a practical standpoint, educators are encouraged to
supplement introductory courses with small empirical
experiments that compare data structures under identical
workloads, enabling students to directly observe cache-
related performance differences. Curriculum designers may
also consider reordering topics so that arrays and dynamic
arrays are not merely treated as trivial constructs but as
performance-optimized defaults for many use cases. For
novice programmers, adopting contiguous data structures
for traversal-heavy or access-intensive tasks should be
promoted as a best practice, while pointer-based structures
can be framed as tools best reserved for scenarios where
their structural advantages outweigh cache penalties.
Collectively, these recommendations support a more
balanced and realistic approach to algorithm education, one
that integrates theoretical rigor with hardware-conscious
reasoning, thereby equipping learners with skills that remain
relevant in modern computing environments and scale
effectively into advanced systems and application
development.

References

1. Cormen TH, Leiserson CE, Rivest RL, Stein C.
Introduction to Algorithms. 3rd ed. Cambridge (MA):
MIT Press; 2009.

2. Hennessy JL, Patterson DA. Computer Architecture: A
Quantitative Approach. 5th ed. San Francisco: Morgan
Kaufmann; 2012.

3. Drepper U. What every programmer should know about

memory. Red Hat Inc.; 2007.

Sedgewick R, Wayne K. Algorithms. 4th ed. Boston:

Addison-Wesley; 2011.

5. Robins A, Rountree J, Rountree N. Learning and
teaching programming: A review and discussion.
Comput Sci Educ. 2003;13(2):137-172.

6. LaMarca A, Ladner R. The influence of caches on the
performance of sorting. J Algorithms. 1999;31(1):66-
104.

7. Stroustrup B. The C++ Programming Language. 4th ed.
Boston: Addison-Wesley; 2013.

8. McCalpin JD. Memory bandwidth and machine balance
in current high-performance computers. IEEE Comput
Soc Tech Comm Comput Archit. 1995;19-25.

10.

11.

12.

13.

14,

15.

16.

17.

http://www.computersciencejournals.com/ijcpdm

Denning PJ. The locality principle. Commun ACM.
2005;48(7):19-24.

Knuth DE. The Art of Computer Programming, Vol. 1:
Fundamental Algorithms. 3rd ed. Reading (MA):
Addison-Wesley; 1997.

Sorva J. Visual program simulation in introductory
programming education. PhD Thesis. Aalto University;
2012.

Bryant RE, O’Hallaron DR. Computer Systems: A
Programmer’s Perspective. 3rd ed. Boston: Pearson;
2016.

Bentely JL. Programming pearls: Algorithm design
techniques. Commun ACM. 1984;27(9):865-873.

Lister R, Adams E, Fitzgerald S, Fone W, Hamer J,
Lindholm M, et al. multi-national research of reading
and tracing skills in novice programmers. SIGCSE
Bull. 2004;36(4):119-150.

Williams S, Waterman A, Patterson D. Roofline: An
insightful visual performance model for multicore
architectures. Commun ACM. 2009;52(4):65-76.

Wulf WA, McKee SA. Hitting the memory wall:
Implications of the obvious. ACM SIGARCH Comput
Archit News. 1995;23(1):20-24.

Patt YN, Patel SD. Introduction to Computing Systems.
2nd ed. New York: McGraw-Hill; 2004.

http://www.computersciencejournals.com/ijcpdm

