
~ 31 ~

International Journal of Communication and Information Technology 2022; 3(2): 31-35

E-ISSN: 2707-6628

P-ISSN: 2707-661X

www.computersciencejournals.

com/ijcit

IJCIT 2022; 3(2): 31-35

Received: 05-07-2022

Accepted: 14-08-2022

Manideep Yenugula

Kroger, Blue ash, Ohio, 45242,

United State of America

Corresponding Author:

Manideep Yenugula

Kroger, Blue ash, Ohio, 45242,

United State of America

Examining partitioned caches performance in

heterogeneous multi-core processors

Manideep Yenugula

DOI: https://doi.org/10.33545/2707661X.2022.v3.i2a.70

Abstract
The last-level cache (LLC) is shared by many distinct kinds of cores in asymmetric multi-core systems.
There is greater rivalry in the LLC since different core types have different memory access needs. Our
new technique for replacing the split cache, HAPC, takes heterogeneity into account. To improve core-
to-core interference, this method uses cache partitioning. In multithreaded applications, it guides the
replacement strategy by monitoring the shared reuse state of every cache block inside the partition
during runtime. This ensures that cache blocks shared among different cores are maintained. For huge
cores to make more efficient LLC visits, cache replacement algorithms generally modify the leftover
state while preserving cache blocks needed by them. This approach takes into consideration the fact
that heterogeneous cores have different memory accesses to LLC. In comparison to the state-of-the-art
cache substitute’s algorithms, LRU and SRCP, HAPC can greatly enhance the performance of large
cores when running multithreaded applications, with almost no impact on small cores, leading to an
overall improvement in system performance.

Keywords: Asymmetric multi-core processors, L2 cache, last level cache, cache replacement policy,
CPU power

Introduction
Due to task interference in the shared caches, timing verification of real-time software
activities becomes very challenging on multi-core CPUs. When it comes to multi-core
processors having shared caches, two main ways to improve scheduling efficiency are cache
partitioning and explicitly measuring the quantity of cache interference across activities. The
first method has poor schedulability performance because of very negative cache
interference estimates, whereas the second method may cause jobs to take longer to execute
because of less cache utilisation, which is bad for schedulability as well [1]. As the lag time
among processing power with main memory access delay has increased, cache memory has
become an integral part of CPU design. Through a multi-tiered cache architecture, processors
support anything from the tiniest and quickest private caches (Level 1) to the biggest and
slowest caches (Level 2). To guarantee the consistency of private cache data, multi-core
processors now incorporate Snoop Control Unit [2]. Modern real-time embedded systems are
drawn to multi-core processors due to their reduced power consumption, smaller size, and
faster performance. Meeting these strict deadlines while maintaining system accuracy and
predictability and attaining improved performance is of the utmost importance in real-time
computing. Tasks' worst-case execution times rise when numerous processes using different
cores access shared resources (such as memory, direct memory access, and peripherals) at
the same time, which increases blocking time and increases the likelihood that tasks will
miss their hard deadlines, which can lead to system failure [3]. Because of their criticality,
avionics systems are heavily controlled and need determinism. Because there is just one
processor in a single-core system, there is only one possible execution flow, which makes the
system very predictable. Nevertheless, production of multi-core CPUs is becoming the only
focus of manufacturers. The use of multi-core architectures in avionics systems is therefore
mandated. To take use of the parallelism given by multi-core architectures, mechanisms to
alleviate the loss of predictability must be created [4]. By consolidating several operations
into a single chip, multi-core processors are anticipated to enhance performance and decrease
production costs in embedded systems like automotive systems. However, deadline miss
rates for such systems are raised due to inter-core interfering in shared last-level cache,
which causes time-sensitive tasks with (soft) timing restrictions to have unpredictable and

http://www.computersciencejournals.com/ijcit
http://www.computersciencejournals.com/ijcit
https://doi.org/10.33545/2707661X.2022.v3.i2a.70

International Journal of Communication and Information Technology http://www.computersciencejournals.com/ijcit

~ 32 ~

increased execution delays [5]. A shared last levels cache is a

feature of most current multi-core processors that allows

data from all cores to be stored, which improves speed.

Nevertheless, cache pollution presents a fresh obstacle for

cache management. When two sets of mapped data have

different degrees of temporal locality, cache pollution

occurs and data with weaker temporal locality is pushed out

of the cache set [6]. The current development in vehicle

systems is to reduce cost and boost efficiency by integrating

more software programmes into fewer ECUs. Congestion on

resources like caches might occur as a result of additional

apps using the same resources. Applications that rely on

time-sensitive data may encounter problems using shared

resource congestion due to the unpredictable nature of

application interference. Implementing cache partitioning

methods is one potential solution to the issue of shared

resource overload. These strategies divide up the available

cache lines across different applications [7].

Our proposal is a framework for heterogeneous-aware

partitioning cache replacement policies (HAPC), which will

lead to the AMP system operating at peak efficiency. To

keep core interference to a minimum, HAPC takes cache

block reuse into account while replacing cache. The main

concept of HAPC is to detect the LLC needs of

heterogeneous cores and direct the replacement strategy

based on runtime analysis of core and thread memory access

patterns. The following are some of the overarching

contributions made by this paper.

 We propose a heterogeneous-aware partitioning cached

replacement strategy to safeguard against inter core

interference and improve data usage effectiveness in

partitioning LLC in an asymmetrical multi-core

architecture.

 A usage count table (RCT) is kept with the historical

reuse data for every LLC cache block; this information

is helpful for making decisions about when to replace

caches. We next adjust the number of cores in the RCT

according on the sequences of access to memory for

both large and tiny cores.

 Last but not least, we thoroughly evaluate HAPC using

PARSEC 3.0 using the gem5 simulator. Compared to

LRU and SRCP, HAPC often boosts large core

performance by 4.57% and 2.44%, respectively.

Compared to conventional replacement policies, HPAC

may significantly boost performance across a range of

workloads and system setups.

The paper's second section provides the necessary context

and relevant literature. In Section 3, our HAPC structure is

detailed. The experimental procedure and data analysis are

covered in the fourth section. Section 5 wraps up the paper.

Related Work

Partitioned cache replacement requirements that take

heterogeneity into account are introduced in the present

study by the authors of [8]. This strategy uses runtime

tracking of the shared reuse condition of each cache block

within the partition to guide the replacement process,

ensuring that cache blocks utilized by various cores in

multithreaded applications are kept. This is accomplished by

using cache partitioning, which effectively decreases the

mutual interference across cores. To boost the efficiency of

huge cores' LLC accesses, the cache replacement strategy

often keeps cache blocks needed by them while changing

the reuse state, taking into account the disparity in memory

accesses to LLC via heterogeneous cores. When

multithreaded programs are executed, HAPC may boost the

system's speed by making large cores work better while tiny

cores are affected. This is in contrast to two cutting-edge

cache replacement algorithms, LRU and the SRCP.

To address the needs of non-preemptive multi-core systems

operating in real-time with partitioned caches, TCPS, a

heuristic partitioned planner, was proposed in [9]. By using

task characteristics and combining the advantages of

partitioned scheduling and cache partitioning, TCPS

achieves an elevated level of schedulability while alleviating

computing power from contention and minimising cache

interference, respectively. To test TCPS's schedulability and

see how it stacked up against other global as well as

partitioned scheduling methods, batteries of thorough tests

were run. In regard to schedulability, their findings

demonstrate that TCPS is the most effective scheduling

strategy, leading to more consistent load balancing and

better cache utilisation.

Partitioned scheduling with shared cache interference is

another typical scheduling paradigm considered in [10].

Researchers provide CITTA, a task partitioning technique

that takes cache interference into account, to accomplish

this. They begin by dissecting the shared cache disturbance

that occurs when two data cache and set-associative

instruction programmes work together. A task's upper limit

on cache interference is then computed using an integer

programming formulation, as specified by CITTA. They

officially demonstrate the correctness of CITTA by a

schedulability study. On both real and simulated embedded

system workloads, many tests are conducted to assess

CITTA's schedulability in comparison to other greedy

partition methods like First-fit and Worst-fit, as well as

global EDF scheduling. Based on their empirical

assessments, CITTA performs better than global EDF

planning and greedy partition approaches on schedulable

task sets.

The existing literature on the topic of application-specific

cache alignment algorithms is covered in [11]. For real-time

operating systems that support symmetric or asymmetric

multi-processing, there will be a noticeable increase in

system overhead if inter-core communication is

implemented at the OS level. This work presents the first of

its kind a novel core-to-core communications approach that

relies on cache-aware data lookups. The Little Kernel

organizer integrates this capability as "SCHEDULE-

ASSIST" and "ENTITY-ASSIST" in the SMP RTOS

scheduler. They show, via analytical modeling as well as

execution utilizing a Xilinx Evaluating Kit, that RTOS

processors Key Performing Indices for RTOS's APIs may be

up to 13% more efficient than techniques that don't take the

cache architecture into account.

Another popular scheduling paradigm is examined in the

study [12]. Partitioned scheduling with shared cache

interference. Their proposed cache-interference-aware task

partitioning technique, CITTA, is designed to do this. In

order to determine the highest limit on cache interference

that a job may display, as is necessary for CITTA, an integer

programming approach is developed. Authors officially

http://www.computersciencejournals.com/ijcit

International Journal of Communication and Information Technology http://www.computersciencejournals.com/ijcit

~ 33 ~

demonstrate the correctness of CITTA by a schedulability

study. They do some tests to see how well CITTA fares in

terms of schedulability when compared to global EDF

scheduling on task sets that are completely at random.

Regarding the sets of tasks that are considered schedulable,

their empirical tests reveal that CITTA performs better than

global EDF scheduling.

By grouping tasks according to their constraints,

dependencies, as well as preferences, and then allocating

these groups over several cores, the authors of [13] suggest an

Inter-task Affinity-aware Tasks Assignment (IATA) method

that minimises the additive overheads in WCET. Dedicated

I/O cores handle sluggish I/O peripherals, while scratch-pad

RAM is used for high-priority activities that share datasets

in order to decrease cache evictions. Their new technique,

IATA, is evaluated by comparing it to the blocking-agnostic

Best Fit Reducing (BFD) algorithm for task allocation.

Their suggested IATA method improves schedulability,

decreases CPU utilisation, and assigns an average of 97.5%

greater task-sets than BFD, according to the findings.

The emphasis in [14] is on avionics Real-Time Operating

Systems and partitioned systems in general. Authors provide

a framework that examines application behaviour using

traces. It has an inbuilt cache simulator that provides cache

information as well. They used a cache locking choice

approach to verify their system. After locking data in the

cache, their framework with its embedded simulator

conducts tests with improved execution predictability and

approximately 25% less interference.

A shared LLC design that takes time sensitivity into account

was suggested in [15] to address these issues. To begin, the

suggested LLC architecture may be able to recognize TST

data and instructions through incorporating a time-

sensitivity indicator bit into every cache block. Secondly, a

time-sensitivity-aware dead block-based caches partition

approach is developed and implemented to allocate some of

the LLC space to general operations in a way that does not

impact TSTs. Thirdly, researchers put forth a cache

partitioning strategy that takes memory access

characteristics, time-sensitivity tasks (TATS) and managing

tasks in shared caches into account in order to further

decrease the time limit miss proportion of TSTs.

Incorporating their suggested dead block-based technique

with the TATS was their goal. Compare TSTs to traditional

shared caches, and our research reveals that the suggested

methods significantly cut down on deadline misses. Their

suggested dead block-based cache partitioning decreases

average partitioning by 30.5%, state-of-the-art quality-of-

service-aware segmentation by 2.6%, and average deadline

miss rates by 9.3% on a dual-core system. Reduced by

21.2% on a quad-core system, 17.7% on equal partitioning,

and 4.1% on state-of-the-art quality-of-service-aware caches

segmentation are the baseline average deadline miss rates

with our suggested solutions.

Proposed Work

System Model

Based on their access rate in the reuse counting table (RCT),

the heterogeneous-aware partitioning cached replacement

strategy (HAPC) monitors the reuse status of cached blocks.

Blocks having low access rates have their priority for

caching lowered, while blocks with high access rates have

their priority enhanced, in the LLC. It also increases the

number of times the cache block may be reused. Using a

block from the lower priority group, the replacement policy

chooses to remove a cache block that hasn't been used

recently. The RCT may further classify memory access

requests by differentiating between those made by the

shared core as opposed to those produced by the local core.

The LC counters in the RCT record each time the cache

block is reused by the local core. The core's cache block

data becomes increasingly localized and often accessed as

the LC inverse becomes bigger. The SC identification in the

RCT identifies and tracks a shared cached block whenever it

is reused by the other core. A substantial SC score for the

cache unit indicates good shared reuse characteristics.

Both the LC and SC numbers begin at zero in the RCT

counter. While the LLC access to memory demand is

running, the cache controller modifies the RCT value by

following the steps in Algorithms 1. Thus, this change in

RCT value guides the technique for replacing cached data.

When a cache hit happens, the cache controller adjusts the

LC and SC counts to make various reuse weights count,

finds out which cores are large and which ones are tiny, and

traces the source of the memory access demand. The RCT

counter's output determines which cache block should be

removed in the event of a cache miss. In the cache partition

process, all remaining blocks' LC and SC counter values

will be decreased by 1 simultaneously. When the cache

block is no longer needed, the replacement method will opt

to destroy it, causing its priority to decline. Cache pollution

may occur if the block is stored for too long, but this avoids

it. The initial value of the LC of each cache block added to

the cached partition is the average of all the cache blocks in

the partition minus one.

Fig 1: The architecture overview of a multi-core processor

Cache Replacement Policy

It is critical to keep the reuse count table in mind when

working with asymmetric multi-core design and

heterogeneous-aware partition cache substitution rules,

since each core has its own unique memory access behavior

traits. During program execution, cache items reused by

huge cores will be given more priority by monitoring their

performance indicators and dynamically adjusting the RCT

reuse proportions (weight big and weight little). The RCT

table's reuse count increases in response to high core access

and cache blocks that are difficult to delete under a

replacement policy; the effect of this is directly proportional

to the number of small and large weight relative values. One

http://www.computersciencejournals.com/ijcit

International Journal of Communication and Information Technology http://www.computersciencejournals.com/ijcit

~ 34 ~

measure of large core performance is its memory access

success rate. The application's functionality is often tested

during runtime. The large core's hit rate for store access is

computed and its reuse weight is adjusted at regular

intervals. Here is the whole method.

1. Just put 1 in weight big and weight little.

2. The success rate of the large cores in this period should

be calculated, and the weight big should be increased

by 1 in each subsequent interval until it reaches the

threshold, which is the total amount of big cores.

3. Find the large core's hit rate for the next period and

compare it to this one. Continue to step 2 if the

percentage of hits rises; otherwise, return to step 1.

It is easy to apply the suggested static analysis method to

multicore CPUs that have a multi-level memory structure;

without sacrificing generalizability, we imagine a dual-core

CPU with two layers of cache memories. In a typical

dualcore the processor, as shown in Figure 1, each core has

its own L1 cache for instructions and data and uses a shared

L2 cache. We assume that each core's L1 data cache is

flawless (i.e., there are no L1 information cache misses so

that instructions accesses to L2 are unaffected by data

accesses) since this work concentrates on assessing the

inter-thread disruptions caused by instruction streams.

However, in our future work, we intend to investigate the

worst-case interthread information interferences.

Results & Discussion

To kick off our research, we employed field-programmable

gate arrays (FPGAs) to create multi-core designs with

varying cache sizes, which we then used to run programs on

both homogeneous and heterogeneous multi-core

processors. The next step was to execute a scheduler

prototype that used offline profiling to allocate threads.

With 15 KB of cache, the HMP outperformed a

homogeneous multi-core processors with 16 KB of cache in

terms of total cache miss rate, allowing for optimal static

scheduling.

Table 1: Baseline configuration

Core Big Core Little Core

ISA ARMv8 (64 bit) ARMv8 (64 bit)

Frequency 2.0 Hz 1.4 Hz

Pipeline Out-of-order Out-of-order

Issue width 6 4

Fetch width 16 4

Pipeline stages Big core Little core

L1 cache (I & D) 32 KB/2-way 32 KB/2-way

L2 cache 128 KB/2-way 128 KB/2-way

LLC 1 MB–8 MB/16-way

Conclusion

Research and development efforts will move towards

creating low-power, high-performance processors that use

an asymmetric multi-core design as the number of computer

systems and applications keeps expanding. Here, we lay

forth a plan to swap out the asymmetrical multi-core

architecture's heterogeneous-aware partition caches

(HAPC). In order to prevent the easy elimination of cache

units utilized by big cores under replacement policies,

HAPC dynamically adjusts the reusing dimensions of cache

blocks based on the different memory access behaviors of

heterogeneous cores. Consequently, bigger cores will have

less interference from smaller ones while accessing

memory. Based on the results of the experiments, HAPC is

the best replacement policy, outperforming both the

conventional LRU policy and the more modern SRCP

strategy, which takes sharing and reuse into account.

Improved utilization efficacy of LLC and overall system

efficiency are achieved by HAPC via asymmetrical multi-

core architecture, which makes better use of the large cores'

high-performance capabilities without compromising the

tiny cores' performance.

Future Work

Dynamic cache partition is another successful approach to

managing shared cache in the setting of multi-core

processors. We suggested a policy change for static cache

partitioning, but it's equally applicable to dynamic

partitioning. Our next project will build on top of dynamic

partitioning and investigate heterogeneous-aware partitioned

cache replacement policies.

References

1. Nayak S, Panda M. Hardware Partitioning Using

Parallel Genetic Algorithm to Improve the Performance

of Multi-core CPU; c2020.

2. Ghosh SN, Bhargava L, Sahula V. SRCP: sharing and

reuse-aware replacement policy for the partitioned

cache in multicore systems. Design Automation for

Embedded Systems. 2021;25:193-211.

3. Lefoul J. Performance Assessment and Improvement

for Cache Predictability in Multi-Core Based Avionic

Systems; c2019.

4. Bui PN, Le M, Hoang B, Ngoc NC, Pham HV. Data

Partitioning and Asynchronous Processing to Improve

the Embedded Software Performance on Multicore

Processors. Informatics and Automation; c2022.

5. Konstantinou D, Nicopoulos C, Lee J, Sirakoulis GC,

Dimitrakopoulos G. Smart Fork: Partitioned Multicast

Allocation and Switching in Network-on-Chip Routers.

In: 2020 IEEE International Symposium on Circuits

and Systems (ISCAS); c2020. p. 1-5.

6. Park J, Yeom H, Son Y. Page Reusability-Based Cache

Partitioning for Multi-Core Systems. IEEE Transactions

on Computers. 2020;69:812-818.

7. Danielsson J, Jägemar M, Behnam M, Seceleanu T,

Sjödin M. Run-Time Cache-Partition Controller for

Multi-Core Systems. In: IECON 2019-45th Annual

Conference of the IEEE Industrial Electronics Society;

c2019. p. 4509-4515.

8. Fang J, Kong H, Yang H, Xu Y, Cai M. A

Heterogeneity-Aware Replacement Policy for the

Partitioned Cache on Asymmetric Multi-Core

Architectures. Micromachines; c2022. p. 13.

9. Shen Y, Xiao J, Pimentel AD. TCPS: A task and cache-

aware partitioned scheduler for hard real-time multi-

core systems. In: Proceedings of the 23rd ACM

SIGPLAN/SIGBED International Conference on

Languages, Compilers, and Tools for Embedded

Systems; c2022.

10. Xiao J, Shen Y, Pimentel AD. Cache Interference-

aware Task Partitioning for Non-preemptive Real-time

http://www.computersciencejournals.com/ijcit

International Journal of Communication and Information Technology http://www.computersciencejournals.com/ijcit

~ 35 ~

Multi-core Systems. ACM Transactions on Embedded

Computing Systems (TECS). 2022;21:1-28.

11. B SR, Vrind T, I VR. Effective Cache utilization in

Multi-core Real Time Operating System. In: 2022 IEEE

International Conference on Electronics, Computing

and Communication Technologies (CONECCT);

c2022. p. 1-6.

12. Xiao J, Pimentel AD. CITTA: Cache Interference-

aware Task Partitioning for Real-time Multi-core

Systems. In: The 21st ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for

Embedded Systems; c2020.

13. Akram N, Zhang Y, Ali S, Amjad HM. Efficient Task

Allocation for Real-Time Partitioned Scheduling on

Multi-Core Systems. In: 2019 16th International

Bhurban Conference on Applied Sciences and

Technology (IBCAST); c2019. p. 492-499.

14. Lefoul J, Dugo AT, Magalhães FG, Nicolescu G, Assal

D, Ulysse N, et al. Simulator-Based Framework

towards Improved Cache Predictability for Multi-Core

Avionic Systems. In: 2020 Spring Simulation

Conference (Spring Sim); c2020. p. 1-12.

15. Lee M, Kim S. Time-sensitivity-aware shared cache

architecture for multi-core embedded systems. The

Journal of Supercomputing; c2019. p. 1-31.

http://www.computersciencejournals.com/ijcit

