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Abstract 
Artificial Neural Network (ANN) is the branch of Artificial Intelligence (AI) that is inspired by the 

architecture of the human brain. A type of recurrent ANN known as Restricted Boltzmann Machines 

(RBMs) are probabilistic graphical models that can be interpreted two-layered network of stochastic 

units with undirected connections between pairs of units in the two layers. RBMs are used specifically 

as a generative model. The result obtained from Neural Network Model shows 0.000373 errors with 88 

steps. Prediction using neural network shows 0.9928202080, 0.3335543925 and 0.9775153014 while 

Converting probabilities into binary classes setting threshold level 0.5 result shows that the predicted 

results are 1, 0, and 1. 
 

Keywords: Artificial intelligence, restricted Boltzmann machines, model, probability, neural networks, 

contrastive divergence learning 

 

Introduction 
Restricted Boltzmann Machines is the neural network that belongs to the energy-based 
model. It is a probabilistic, unsupervised, generative deep machine learning algorithm. 
During the past decade, the restricted Boltzmann machine (RBM) has received much 
attention as building blocks for deep belief networks (Hinton and Salakhutdinov, 2006; 
Bengio, 2009) [7, 19]. The variants and extensions of the RBM have been applied in a wide 
range of pattern recognition problems, such as handwriting recognition (Hinton and 
Salakhutdinov, 2006) [7], document processing (Dahl et al., 2012; Srivastava et al., 2013) [14, 

15], and collaborative filtering (Salakhutdinov et al., 2007) [5]. Despite great successes, there 
still lacks an efficient algorithm for training RBMs. The existing algorithms aim to maximize 
the log-likelihood function of the RBM using a gradient-based method, while the true 
gradient of the log-likelihood function is intractable. Hinton et al. (2006) [7] proposed the so-
called Contrastive Divergence (CD) algorithm to train RBMs, where the log-likelihood 
gradient is approximated based on a short run of Markov chain Monte Carlo (MCMC). Due 
to the approximation errors, CD does not necessarily converge to the maximum likelihood 
estimate (MLE) of the parameters as noted by Carreiera-Perpi˜nán and Hinton (2005) [8] and 
Bengio and Delalleau (2009) [19]. Fischer and Igel (2010) [1] observed that the approximation 
errors can even lead to a distortion of the learning process; that is, after some iterations the 
likelihood can start to diverge in the sense that the model systematically get worse if the run 
of MCMC is not long enough. To address the issue of convergence, some variants of CD 
have been proposed with a general strategy to obtain better approximation of the log-
likelihood gradient by sampling from a Markov chain with a greater mixing rate. These 
variants include persistent CD (Tieleman, 2009) [11], fast persistent CD (Tieleman and 
Hinton, 2009) [11], tempered transitions (Salakhutdinov, 2009) [16], and parallel tempering 
(Desjardins et al., 2010; Cho et al., 2010) [10, 13]. The majority of these variants, as noted by 
Schulz et al. (2010) [17], include a number of hyper parameters in addition to the more 
popular heuristics of weight-decay, momentum, and learning rate schedules. However, 
because exact evaluation of the log-likelihood function is impractical for even a middle-sized 
RBM, it is unclear how to set the hyper parameters and which heuristic to select. 

 

Methodology 

Restricted Boltzmann Machine: A very useful tool for deep learning applications is the 

restricted Boltzmann machine (RBM), which is a two-layer (or two-group) Boltzmann 

machine with  visible units  
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 and  hidden units 

 where both  and  are binary states. 

The visible unit i has a bias  and the hidden unit  has a 

bias  while the weight connecting them is denoted by . 

The restriction is that their neuron units connecting visible 

and hidden units form a biparte graph (see Figure 1.3 

below), while no connection with the same group (visible or 

hidden) is allowed. 

Using the notations and configuration given by Hinton 

(2010) [18], a RBM can be represented by a pair  

where  and . 

The energy of the system can be calculated by 

 

 (1) 

 

 
 

Fig 3: Restricted Boltzmann machine with visible and hidden 

units. 
 

The probability of a network associated with every possible 

pair of a visible vector  and a hidden vector  is assumed 

to obey the Boltzmann distribution 

 

 (2) 

 

where  is a normalization constant, also called partition 

function, which is essentially the summation over all 

possible configurations. That is, 

 

. (3) 

 

The marginal probability of a network associated with v can 

be calculated by sum over all possible hidden vectors in 

Equ. (40), so we have 

 

 (4)  

 

The essential idea of using RBM for training over a set of 

data (such as images) is to adjust the weights and bias 

values so that a training image can maximize its associated 

network probability (thus minimizing its corresponding 

energy). For a training set, the maximization of the joint 

probability  is equivalent to the maximization of the 

expected log probability log . Since 

 

  (5) 

 

we can calculate the adjustments in weights by using the 

stochastic gradient method 

  

 (6) 

 

Where  means the expectation over the associated 

distributions. It is worth pointing out that the stochastic 

gradient ascent (in contrast to the SGD) is used. The 

individual activation probabilities for visible and hidden 

units are Sigmoid function . That is,  

 

 (7) 

 

And  

 

 (8) 

 

The RBMs form the essential part of deep belief networks 

with stacked RBM layers. There are many good software 

packages for ANNs, and there are dozens of good books 

fully dedicated to theory and implementations. We used r 

programming for the data analysis below. 

 

Data Analysis and Result 

 
Technical Knowledge 

Score 

Communication skills 

score 

Student 

place 

20 90 Placed 

10 20 Not Place 

30 40 Not Place 

20 50 Not Place 

80 50 Place 

30 80 Place 

Sources: Data camp 
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Conclusion 

The RBMs form the essential part of deep belief networks 

with stacked RBM layers. There are many good software 

packages for ANNs, and there are dozens of good books 

fully dedicated to theory and implementations. Therefore, 

we will not provide any code here. Neural Network Model 

shows 0.000373 errors with 88 steps. Prediction using 

neural network shows 0.9928202080, 0.3335543925 and 

0.9775153014 while Converting probabilities into binary 

classes setting threshold level 0.5 result shows that the 

predicted results are 1, 0, and 1. 
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