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Abstract 
Due to the growing commercial exploitation of WiFi-based technologies in recent years and the lack of 

solutions for effective WiFi orchestration, spectrum utilization and user performance are often sub-

optimal. The integration of WiFi-based radio resource management (RRM) and radio environmental 

maps (REMs) may create a cost-effective Smart-WiFi solution that optimizes underlying spectrum 

utilisation and network performance. The REM enables effective use of radio environmental data such 

as device location, estimated channel models, real-time network interference levels, WiFi channel 

occupancies, and so on. In WiFi-related settings, this information may be used to make intelligent and 

optimum RRM decisions. This study provides a new REM-based RRM strategy for managing and 

optimizing commercial WiFi devices that makes use of the underlying radio environmental data. The 

research uses a commercially available platform to illustrate the suggested solution, which includes on-

the-fly radio environmental data gathering and optimal WiFi RRM allocation. In comparison to 

traditional WiFi networks, the simulation study findings reveal that the proposed Smart-WiFi leverages 

considerable performance advantages for large-scale situations. 
 

Keywords: Radio environmental maps (REMs) · Smart-WiFi · Prototype platform · Radio resource 

management (RRM) 

 

1. Introduction 
Because of its ubiquitous vision for any time and everywhere access, wireless devices, apps, 
and services are attracting greater attention. This raises major issues for spectrum 
management in wireless networks, necessitating the acquisition of more frequency resources 
and/or more efficient use of existing spectrum resources. Radio environment maps (REMs) 
have lately become one of the most extensively researched tools for realizing that aim. 
REMs are increasingly seen as databases or knowledge bases that store a range of radio 
environmental data [1, 4]. This data includes everything from raw spectrum/signal 
measurements taken by wireless devices to transmitter and receiver locations, propagation 
models, and various spatiotemporal statistics on spectrum usage. 
WiFi networking has made major inroads into the ICT business in recent years. In 
comparison to Ethernet and cellular-based systems combined, WiFi installations now 
transfer larger data volumes from and to consumers [5]. The huge WiFi exploitations are due 
to its communication in unlicensed bands, which also allows for the continual and quick 
invention of WiFi technology and services. However, due to uncoordinated operation and 
unmanaged inter-network interference between different WiFi installations, WiFi technology 
penetration results in overcrowding and congestion of the unlicensed bands. The use of 
optimum WiFi-based Radio Resource Management (RRM) or the provision of additional 
unlicensed bands for WiFi transmission are required to solve this issue. Because spectrum is 
a scarce resource, the latter is an infeasible and unsustainable approach. 
Each REM design's major goal is to accurately analyze the spectrum occupancy before 
identifying underused Spatio-temporal and spectrum regions as potential spectrum 
possibilities. In terms of spectrum opportunity identification, the research community has 
identified two viable strategies: sensing-based and database-based techniques. Database-
based approaches need terminals reporting their geolocation to a centralized server 
(database), which may then deliver the available spectrum information as a response. This is 
a network-centric strategy in which the centralized server does all REM and RRM-based 
computations, and the inferred information is transmitted to the network's various entities 
(such as secondary spectrum devices). Under various conditions, both REM construction 
strategies have distinct benefits and drawbacks. The sensing-based technique is more  
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versatile since it delivers real-time spectrum information 

even with low-cost market equipment (when properly 

calibrated), allowing for the monitoring of the radio 

environment's dynamism. Since most market-available 

wireless terminals can do spectrum sensing intrinsically, i.e. 

they give the ability to at least measure received signal 

strength (RSS) values, this is a realistic, readily adaptable, 

and scalable technique. In more static contexts, the 

database-based method might be employed (such as TV 

white spaces [4, 5]. Implementation Specifications 

Figures 1 and 2 show screenshots of the created Smart-WiFi 

prototype's REM functions, namely the RIFs and transmitter 

localization page and the propagation model estimate tab of 

the Web application, respectively. The black circles in Fig. 

1 denote the positions of the spectrum sensors (MCD 

devices), the heat map depicts the current level of the radio 

interference field at a specific channel (in this case, WiFi 

channel 1), and the marker "x" denotes the current and on-

the-fly localization of a transmitter operating on the 

underlying channel. Figure 2 depicts two graphs depicting 

propagation model estimates for a specific channel of 

interest, one current (left plot) and the other historical (right 

plot) (the right one). 

Figure 3 illustrates the WiFi monitoring and configuration 

tab, where a web user may choose a device and configure it 

as an AP or a station using the GUI. 
 

 
 

Fig 1: RIFs and transmitter localization tab of the web application 

 

 
 

Fig 2: Propagation model estimation tab of the web application 
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Fig 3: WiFi monitoring and configuration tab of the web application 

 

1. REM-Based SmartWiFi Radio Resource Management 

As previously elaborated, WiFi can significantly benefit 

from a REM-based RRM, because of the lack of solutions 

capable to orchestrate an efficient deployment and operation 

of the WiFi networks. The section introduces a novel RRM 

algorithm that utilizes the REM based features and is 

particularly designed for optimal WiFi performance. 

 

2. Materials and Method 

2.1 RRM algorithm 

The presented RRM algorithm strives to maximize the 

aggregate WiFi throughput based on estimation and 

calculation of the Signal to Interference plus Noise Ratio 

(SINR). This process is performed by allocating to every 

active WiFi network (i.e. WiFi-AP), the optimal physical 

layer parameters: 
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where SINRi represents the SINR in the ith WiFi network, Pi 

represents the transmit power of the ith AP, fc represents the 

allocated channel’s central frequency, W represents the 

allocated WiFi channel bandwidth (either 40 or 20 MHz), 

and N represents the number of active WiFi networks. 

Specifically, the bandwidth allocation feature is only 

available when controlling IEEE 802.11n, and/or IEEE 

802.11ac networks, as the only standards capable of 

bandwidth aggregation. When managing the IEEE 802.11b 

and IEEE 802.11g networks, the bandwidth will be fixed to 

20 MHz. To achieve the optimal resource allocation, based 

on the optimization process in Eq. (1), the proposed RRM 

exploits one of the possible two resource allocation 

strategies. 

Strategy 1 The RRM allocates the active WiFi APs, to 

separate and non-overlapping channels. As a result of the 

induced channel i.e. frequency orthogonality, each WiFi AP 

can exploit the highest transmit power. This strategy has 

lower computational complexity, compared to Strategy 2. 

However, it can be utilized only in scenarios where there is 

either only a small number of active WiFi APs or/and 

notable spectrum under-utilization. 

Strategy 2 In scenarios where the spectrum utilization is 

high and it changes frequently and/or in scenarios with a 

high number of active WiFi APs, Strategy 1 is not able to 

leverage the optimal solution from Eq. (1), as a result of the 

lack of free WiFi channels. Consequently, the REM-based 

RRM allocates the active WiFi networks to overlapping 

channels. This interference can be alleviated by utilizing a 

power optimization algorithm capable of leveraging the 

highest aggregate throughput [2, 6]. 
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where M denotes the number of WiFi APs that are 

overlapping, gi denotes the channel gain 

between the ith AP and WiFi station, P denotes the 

transmission power of the ith WiFi AP. The parameter gi;j 

represents the channel gain between the jth WiFi AP and the 

ith WiFi station and Pj represents the transmission power of 

the jth WiFi AP. For optimal decision making, the presented 

RRM requires a priori all channel gains i.e. gi gi;j. In 

practical deployments, it is very demanding to estimate the 

channel gains. However, for the Smart- 

The relevant radio environmental information may be 

retrieved from the REM backend using the channel estimate 

capability in the WiFi scenario. 

The REM backend monitors and provides available WiFi 

channels using models that reflect past channel occupancy 

and collaborative spectrum sensing for both Strategy 1 and 

2. Before making a resource allocation decision, the RRM 

consults the REM backend for a list of free WiFi channels 

that have been underutilized for a certain period. Consider a 

situation in which a group of Smart-WiFi APs use the same 

WiFi channel, with uncontrolled irregular broadcasts. The 

duration of the timeframe may have a big influence on the 

system's overall performance. For example, extremely small 

timespans may cause the ping-pong effect to reappear, but 

very lengthy timespans might mark an unused channel as 
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unavailable, lowering overall system efficiency. 

 

2.2 PHY Layer Reconfiguration Algorithm 

Concerning two separate triggering use scenarios, the RRM 

conducts resource allocation as well as physical layer 

configuration/reconfiguration. In the first use scenario, the 

triggering occurs when a certain WiFi AP becomes 

operational. In the second use scenario, the triggering occurs 

when the communication performance of some of the active 

WiFi APs deteriorates. By setting thresholds for a collection 

of communication-related measures, it is possible to detect 

deterioration in communication performance (like delay, 

jitter, throughput, FER, etc.). The WiFi AP will notify the 

RRM when one of the monitored communication 

parameters exceeds the associated threshold. This will result 

in a new way of making decisions and allocating resources. 

The most typical cause of performance deterioration is a 

change in the communication channel as a consequence of 

introduced interferers (e.g. irregular uncoordinated 

transmissions) or changes in the propagation medium (e.g. 

the appearance of new obstacles). 

Algorithm 1 PHY reconfiguration algorithm (NBW40 

number of non-overlapping  

40MHz spectrum parts) 

 

STEP 1: Trigger occurrence  

if NBW40 ≥ N then  

Utilize Strategy 1 for 40MHz channels  

Else 

Calculate the sum throughput for Strategy 1 and 20MHz 

channel → C1  

Calculate the sum throughput for Strategy 2 and 40MHz 

channel → C2  

Go to STEP 2  

STEP 2: Find optimal strategy  

if C1 ≥ C2 then  

Utilize Strategy 1 for 20MHz channels  

else  

Utilize Strategy 2 for 40MHz channels 

 

2.3 Resource Allocation Strategy  

Stemming from the elaborations in the previous section, Fig. 

4 presents four conventional examples of the resource 

allocation and the physical layer reconfiguration, either as a 

result of the performance degradation or appearance of a 

new WiFi AP (i.e. new WiFI pair).  

 

 
 

Fig 4. 

 

3.0 Result and Discussion 

This section analyzes the performance gains of the Smart-

WiFi for large scale scenarios through simulations. The 

main goal of the analysis is to scrutinize the scalability 

behaviour of the Smart-WiFi. The section compares the 

Smart-WiFi to conventional WiFi systems and to WiFi 

systems that can assign APs to less occupied channels based 

on instantaneous WiFi channel sensing 
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Fig 5: WiFi networks operating with power control and communicating on overlapping channels 

 

 
 

Fig 6: WiFi networks operating with maximal power on non-overlapping channels 

 

The conventional WiFi systems cannot identify the less 

occupied channels. In this case, the APS are preset to a 

given channel irrespective of the underlying channel activity 

and utilization. For the simulation analysis the channel 

allocation of the conventional WiFi is modelled as a normal 

distribution: 

 
2( , )N   

 
(3)

 
 

where N denotes the WiFi channel index, l denotes the mean 

of the distribution and r is the standard deviation. The 

normal distribution resembles the real world WiFi channel 

allocation behaviour, where each AP is allocated to a given 

channel on a random basis. Additionally, most of the APS 

gravitate around a specific channel due to the default factory 

settings that are left unchanged by the end-users. The mean 

and variance in Eq. (3) are specifically chosen to reflect a 

real-world scenario where the APs can randomly occupy 

one of the thirteen WiFi channels. However, most of the 

APS will use the sixth channel, as the default off the shelf 

set. 

The WiFi system that exploits the WiFi channel sensing, is 

modelled to allocate every new AP to the least utilized and 

occupied WiFi channel based on the sensing measurements 

conducted when the new AP appears online. If all channels 

are equally occupied, the AP is allocated to a channel on a 

random basis: 

 

 ( , ),U a b 
 

(4)
 

 

where; denotes the discrete uniform random distribution, 

and a and b denote the minimal and maximal channel 

indexes. Compared to the Smart-WiFi, this approach does 

not take into consideration the historical data for the channel 

utilization, nor does it provide coordination between the 

APs to optimize the system throughput. 

The simulation analysis is performed concerning the 

achieved system throughput and the throughput gain. The 

achieved system throughput is calculated as: 
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where N denotes the number of APs in the system, and Ri 

denotes the achieved throughput of the i-th AP. The 

throughput gain is a metric that quantifies the advantages of 

the Smart- WiFi compared to the conventional WiFi and 

WiFi channel sensing. The throughput gain for N active APs 

is calculated as: 

 
1

1

1

1

1
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iN i

N
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where Rsw denotes the achieved throughput of the i-th AP 

when using Smart-WiFi, and Ri denotes the achieved 

throughput of the i-th AP when using either the 

conventional WiFi or the WiFi channel sensing. 

 Table 1 presents the simulation parameters and their values. 

The total throughput for all of the techniques is shown in 

Figure 8. The chart illustrates that Smart-WiFi delivers the 

best results, whereas the traditional WiFi channel selection 

strategy delivers the lowest results. In real-world 

circumstances, WiFi is unlikely to be implemented in an 
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extremely dense configuration with hundreds of APs 

spatially and temporally colocated. A more plausible 

scenario would have a far smaller number of AP, maybe in 

the tens [7]. For various SNR levels, Figure 8 shows the 

throughput increase of Smart-WiFi over channel sensing 

and traditional WiFi techniques. The throughput gain 

presented in the 

 

Table 1: Simulation setup 
 

Simulation parameters Parameter value 

No. of Channels 13 

No. of APs (N) 1:100 

Channel bandwidth 20 MHz 

Channel aggregation None 

Antenna configuration SISO 

SNR 10:10:30 dB 

l 6 

r 2 

a 1 

b 13 

 

 
 

Fig 7: Sum Throughput for Smart-Wifi, WiFi channel sensing and conventional WiFi (SNR = 10 dB) 

 

 
 

Fig. 8: Throughput gain of Smart-Wifi versus conventional WiFi and WiFi channel sensing (N ¼ 20) 

http://www.computersciencejournals.com/ijcit


International Journal of Communication and Information Technology http://www.computersciencejournals.com/ijcit 

~ 48 ~ 

the figure presents the average gain that the Smart-WiFi 

achieves over a span different number of active APs and it is 

calculated as: 

 

1

1 N
i

g g

i

T T
N 

 
  (7) 

 

Figure 8 indicates that when compared to traditional WiFi 

and channel sensing techniques, Smart-WiFi produces a 

significant throughput boost. It is also clear that at larger 

SNR values, the achieved throughput increase is bigger. 

Greater SNR values may arise in real-world circumstances 

owing to a denser network, i.e. a network with WiFi stations 

closer to the AP, or networks capable of broadcasting with 

higher transmit strengths. 

 

4. Conclusion 

For successful WiFi administration, the overcrowded 

unlicensed bands need more nimble and efficient solutions. 

This research described an RRM architecture and prototype 

based on REM that can control and monitor active WiFi 

devices. The Smart-WiFi prototype on display uses a unique 

REM backend technology to manage the best possible 

connectivity between commercially accessible and off-the-

shelf WiFi devices. The validation findings presented in the 

research demonstrate the prototype's usefulness in the 

context of intelligent and optimum WiFi network 

communication management. Furthermore, the simulation 

study findings show that, when compared to traditional 

WiFi deployment, the suggested method may give 

considerable performance advantages, even in large-scale 

settings. Future research will concentrate on developing a 

more holistic RRM algorithm that takes additional 

communication characteristics into account in the 

optimization loop, such as latency, packet loss, and so on. It 

will also expand the practical implementation and 

experimental validation into a larger-scale testbed 

employing commercial WiFi devices to demonstrate the 

advantages of Smart-WiFi in real-world circumstances. 
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