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Abstract

This paper develops an operations research framework for energy-efficient encoding in 10T networks.
The encoding problem is modeled as an optimization task, where the objective is to minimize total
energy cost comprising computational energy for encoding and transmission energy proportional to
code length. Decision variables include encoding scheme selection and codeword assignment, subject
to Kraft’s inequality, latency, and memory constraints. A goal programming approach is used to
balance energy efficiency and reliability. The model provides a mathematical foundation linking
information theory and optimization, offering new insights into sustainable 10T data transmission.
Arithmetic coding is closest to the entropy bound 100% efficient, Huffman coding achieves good
efficiency 85-90% and Fixed-length encoding is least efficient 82%. Fixed-length encoding has the
lowest total energy (3.5 units), since computation cost is minimal even though more bits are
transmitted. Huffman coding requires more computation, raising its total energy slightly (3.9 units).
Avrithmetic coding saves transmission energy but has the highest computational cost, giving it the
largest total energy (3.97 units).

Keywords: Energy-efficient encoding, operations research, optimization, 10T, huffman coding, kraft
inequality, goal programming, stochastic modeling

Introduction

Pigtkowski et al., (2024) 4 implementation of several lightweight compressors on a typical
microcontroller; measurement of encoding time, CPU energy, and radio transmission energy
for representative datasets. Comparative experiments across data types, their work
compression reduces transmitted bytes substantially for some data types, but the net energy
benefit depends on the trade-off between CPU cost and transmission savings; for very small
or high-entropy data the compression overhead can outweigh transmission savings. Costa et
al., (2024) I proposes two online, multivariate compression approaches tailored to TinyML
and embedded systems that do not assume a fixed data distribution; designed to be
computationally light and to work with streaming sensor data. Design of two algorithms
based on data typicality/eccentricity analytics; evaluation on vehicular (OBD-I1I) datasets and
embedded hardware profiling (execution time, memory). Both proposed methods achieve
good compression ratios and low execution times compared with heavier compressors,
making them suitable for on-device use in 1oT. Guo et al., (2024) ™ presents an architecture
combining local (device/fog) preprocessing and cloud processing to reduce energy and
latency in telehealth 10T. Encoding and compression at the edge is a key component to
reduce uplink cost. System design and simulation/empirical evaluation using telehealth
sensor traces; energy modeling across device, fog, and cloud tiers; comparison of different
compression location strategies. Their work shows how encoding decisions interact with
system architecture (fog vs cloud) essential when you expand your OR model beyond single
nodes to networked 10T systems. Mishra et al., (2022) % compares simple, implementable
compression techniques (RLE, Adaptive Huffman, and hybrids) on sensor nodes, and
measures the energy tradeoffs in typical WSN scenarios. Implementation of RLE, Adaptive
Huffman Encoding (AHE), and a hybrid H-RLEAHE on representative microcontrollers;
evaluation using synthetic and real sensor traces; energy profiled for CPU and radio.
Lightweight algorithms (RLE) are energy efficient for low entropy or highly repetitive
signals; adaptive methods can yield better compression for variable data but sometimes at
greater CPU cost. The hybrid approach often gives a middle ground. Radhakrishnan et al.,
(2024) 231 jointly evaluates lightweight cryptographic algorithms and compression schemes
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on constrained devices, measuring execution time, energy,
and security tradeoffs. Security and compression interact:
some compression approaches change data patterns
affecting cryptographic throughput or security assumptions;
practical recommendations are provided for secure yet
energy-aware pipelines. Balamurali et al., (2025) M
investigates how compressive sensing and lightweight
encoding and routing strategies together can substantially
improve energy and memory efficiency of wireless sensor
networks (WSNSs). Jointly optimizing compression and
network protocols (cluster head selection and selective
sampling) yields larger gains than treating compression in
isolation. Simulation shows significant increases in network
lifetime. Mnif et al., (2024) © while focused on model
compression for TinyML, this paper evaluates how
combining pruning, quantization and distillation reduces on-
device computer and communications cost with direct
implications for sensor node energy. The work carefully
combined compression strategies yield large reductions in
inference energy and model size while maintaining
acceptable accuracy; this indirectly reduces upstream
transmission in cases where model outputs (labels) are sent
instead of raw data. Shah et al., (2023) ! proposes model
compression schemes to reduce communication cost in
federated learning; analysis includes quantization and
scarification methods and their effect on accuracy vs
communication tradeoffs. Theoretical analysis and
experiments  showing how  compression  reduces
communication while preserving model performance under
various aggregation strategies. Energy implications for edge
devices are discussed as a corollary. Compression reduces
communication (hence energy) but must be carefully
calibrated to avoid prohibitive accuracy drop; some second-
order aggregation techniques can compensate. Nassra et al.,
(2023) M1 systematic performance evaluation of multiple
compression  families  (lightweight lossy, temporal
predictive, error-bounded) focusing on compression ratio,
computational cost, and energy tradeoffs on typical sensor
data. Lossy temporal compressors provide the highest end-
to-end energy savings, but application accuracy constraints
must be respected; lightweight error-bounded methods are
good compromises. it summarizes which compressor
families are promising under different application
constraints and provides numbers to parameterize your OR
model. Idrees et al., (2025) [ introduces SZ4loT a tailored,
interpolation-based variant of the SZ compressor optimized
for microcontrollers. Designed to handle multivariate time
series with low memory and CPU demand. The algorithm
design and implementation on microcontrollers; benchmarks
on multiple sensor datasets; comparison with standard SZ
and other lightweight compressors. SZ410T achieves strong
compression ratios with small memory footprint and modest
CPU cost, making it practical for energy-constrained
devices. Du et al., (2020) I proposes a method to reduce
energy consumption in loT sensory networks by using
compressed sensing. Instead of sending full sensor readings,
the method encodes the data in a compressed domain;
categories (ranges) instead of exact values are used when
anomalies are rare. The mechanism reduces transmission
energy by reducing amount of data sent. Compressed
sensing is effectively a form of encoding and data reduction.
This work gives you both the mathematical framework for
compression (prediction and sampling) and energy savings,
useful for your OR model as a candidate strategy. Robinson
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et al., (2021) 1 presents a novel encoding algorithm (non-
linear, enhanced encoding) aimed especially at reducing
“medium time” in wireless networks. By reducing this, both
delays and energy used for transmissions and
retransmissions are reduced. The algorithm is evaluated in a
wireless network setting. Directly about encoding and
shows how encoding strategy impacts energy via channel
access time. Good for comparing encoding methods in your
model. Kadhim et al., (2021) the article proposes an
Adaptive Data Compression Scheme (ADCS) which uses
two compression schemes (S-LZW and S-LEC), and uses
mixed integer linear programming to choose which scheme
to use on each node depending on battery, device capability,
etc. They compare with non-compression schemes and show
40% power savings, and up to 50% longer device lifetime.
Very close to your intended OR model: selecting encoding
and compression scheme as decision variable, balancing
energy costs. You can use their methodology and
performance numbers in your proposal. Manchanda &
Sharma, (2020) ! they propose combining compressive
sensing and clustering in heterogeneous wireless sensor
networks (WSN). Nodes are grouped; clusters perform
compression via CS; cluster heads transmit results. The
scheme reduces data volume and hence transmission energy;
design includes optimization of cluster formation. This is
good for multi-node OR models: shows that compression
and network structure (clustering) jointly affect energy
consumption. This supports expanding the encoding strategy
to include network topology in your model. Idrees & ldrees
(2022) 1 for EEG sensor data, they propose a lossless
compression scheme working in a fog architecture. Use
hierarchical clustering and Huffman coding. Evaluated on
EEG datasets; measure compression ratio, computational
cost, latency. Good specific real-sensor use case (EEG) with
encoding and fog, which may allow adding tiers in your
model (device, fog, gateway). The lossless constraint is
useful if your application requires exact data. Hussein et al.,
(2022) Bl distributed approach using prediction
(autoregressive model) to decide whether to transmit current
period’s data; when transmission is decided, applies
compression. Evaluated with real sensor data. Shows good
trade-off: reduces transmitted data size, energy
consumption, while maintaining acceptable accuracy. Very
strong match: predictive encoding and compression and
decision to transmit or not. You can incorporate prediction
and compression and selective sending in your OR model as
decision variables and constraints. Va&nanen & Hamaldinen
(2022) [61 tests different temporal compression methods on
real LoRa sensor nodes. Looks at how often data is sampled
and sent, how spreading factor and, or LoRa parameter
change energy, and effect of applying temporal compression
in online mode. Finds that temporal compression
significantly reduces number of transmissions, leading to
energy savings. Especially useful for variable rate and
temporal encoding / sampling tradeoffs. If your encoding
scheme is combined with sampling strategy or transmission
scheduling, these numbers are helpful.

Methodology

Problem Definition

a. The loT system is represented as a set of devices
transmitting data through encoding schemes.

b. Each device generates symbols with probabilities p;.

The energy cost is composed of:

o
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i)  Encoding cost E; (computational energy).
ii) Transmission cost E;, proportional to the code length.

Objective: Minimize the total energy

minZ = EC + Ef

Mathematical Model

a. Decision Variables

i) li: length of codeword assigned to symbol i.

ii) x;: binary variable indicating choice of encoding
scheme j.

Constraints
i) Kraft Inequality: yrL2hs1

ii) Latency Constraint: Ei:;mfig L. Where R is

transmission rate, Ly g is maximum latency allowed.

i) Memory Constraint: 21", I; = My,a
iv) Scheme Selection Constraint: Zf?:lxj =1, x {01}

¢) Final Optimization Problem:

mnZ=a X, pl; + .Szj;;l CjXj

v) where o, B are weight factors for transmission and
computational costs, and cj is the computational cost of
scheme j.

I11. Analysis and Result
10T device have

Symbol Probability pi
0.30
0.20
0.15
0.15
0.10

0.10

m|m{o|O|w|>

6 symbols with different probabilities:

Define Energy Model

a. Transmission energy: proportional to codeword
length. Assume 1 unit energy per bit.

b. Computation energy: depends on scheme:

i) Fixed-length encoding: 1 unit/symbol

ii) Huffman coding: 2 units/symbol

iii) Arithmetic coding: 3 units/symbol

So total energy per scheme =

a x AvgCodelength + § x CompCost

Where a=1, B=0.5 (to weight transmission more heavily
than computation).
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Methods to Compare

a. Fixed-length encoding (all codewords = 3 bits since 6
symbols).

b. Huffman coding (optimal prefix-free variable lengths).

c. Arithmetic coding (close to entropy bound).

Expected Outputs

a. Average code length (efficiency of encoding).

b. Energy consumption under each scheme.

c. Optimal scheme selection (based on OR model).

Avg.Code | Transmission |Computational| Total
Scheme
Length Energy Energy Energy
Fixed-lenght| 3.00 bits 3.00 0.50 3.59
Huffman | 2.90 bits 2.90 1.00 3.90
Arithmetic | 2.47 bits 2.47 1.50 3.97

Interpretation

a. Fixed-length encoding uses more bits (3.0 and 2.5) but
has very low computation cost, making it the most
energy-efficient overall in this synthetic example.

b. Huffman coding is better in compression (2.9 and 3.0),
but slightly higher computation cost raises total energy.

c. Arithmetic coding is closest to the entropy bound (2.47
and entropy = 2.47), meaning it is the most
theoretically efficient. However, its high computation
cost outweighs the transmission savings in energy
terms.
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Energy and Encoding Efficiency

Avrithmetic: highest efficiency 100%, but higher energy.
Fixed-length: least efficient 82%, but lowest energy.
Huffman sits in between.

Pareto Frontier

a. Displays compression ratio vs total energy.

b. No single scheme dominates completely, there is a
Pareto trade-off:

i) If you want lowest energy, pick Fixed.

ii) If you want highest compression, pick Arithmetic.

iii) Huffman is a compromise solution.

Sensitivity Analysis Heatmap (o and B)

The heatmap shows which scheme is optimal under

different energy weightings:

i) Fixed (blue/0) dominates when computation cost (B) is
high.

ii) Arithmetic  (green/2)  becomes
transmission weight (o) dominates.

iii) Huffman (orange/1) appears in transition regions as a
balance.

optimal  when

Conclusion

No single encoding scheme is universally optimal. The
choice depends on the relative importance of transmission
VS computation energy in an 10T environment. Fixed-length
is best for energy-limited devices, Arithmetic is best for
bandwidth-limited systems, and Huffman offers a trade-off
suitable for balanced 10T applications. Arithmetic coding is
closest to the entropy bound 100% efficient, Huffman
coding achieves good efficiency 85-90% and Fixed-length
encoding is least efficient 82%. Fixed-length encoding has
the lowest total energy (3.5 units), since computation cost is
minimal even though more bits are transmitted. Huffman
coding requires more computation, raising its total energy
slightly (3.9 units). Arithmetic coding saves transmission
energy but has the highest computational cost, giving it the
largest total energy (3.97 units).

Summary

Fixed-length is optimal when devices prioritize energy
savings, Arithmetic is optimal when minimizing
transmission bandwidth is critical, Huffman provides a
balance between the two. When transmission cost (o)
dominates, Arithmetic coding becomes optimal, when
computation cost (B) dominates, Fixed-length encoding is
optimal, Huffman coding is best in balanced scenarios,
acting as a middle ground.
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