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Abstract 
This paper develops an operations research framework for energy-efficient encoding in IoT networks. 
The encoding problem is modeled as an optimization task, where the objective is to minimize total 
energy cost comprising computational energy for encoding and transmission energy proportional to 
code length. Decision variables include encoding scheme selection and codeword assignment, subject 
to Kraft’s inequality, latency, and memory constraints. A goal programming approach is used to 
balance energy efficiency and reliability. The model provides a mathematical foundation linking 
information theory and optimization, offering new insights into sustainable IoT data transmission. 
Arithmetic coding is closest to the entropy bound 100% efficient, Huffman coding achieves good 
efficiency 85-90% and Fixed-length encoding is least efficient 82%. Fixed-length encoding has the 
lowest total energy (3.5 units), since computation cost is minimal even though more bits are 
transmitted. Huffman coding requires more computation, raising its total energy slightly (3.9 units). 
Arithmetic coding saves transmission energy but has the highest computational cost, giving it the 
largest total energy (3.97 units). 
 

Keywords: Energy-efficient encoding, operations research, optimization, IoT, huffman coding, kraft 
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Introduction 
Piątkowski et al., (2024) [12] implementation of several lightweight compressors on a typical 

microcontroller; measurement of encoding time, CPU energy, and radio transmission energy 

for representative datasets. Comparative experiments across data types, their work 

compression reduces transmitted bytes substantially for some data types, but the net energy 

benefit depends on the trade-off between CPU cost and transmission savings; for very small 

or high-entropy data the compression overhead can outweigh transmission savings. Costa et 

al., (2024) [2] proposes two online, multivariate compression approaches tailored to TinyML 

and embedded systems that do not assume a fixed data distribution; designed to be 

computationally light and to work with streaming sensor data. Design of two algorithms 

based on data typicality/eccentricity analytics; evaluation on vehicular (OBD-II) datasets and 

embedded hardware profiling (execution time, memory). Both proposed methods achieve 

good compression ratios and low execution times compared with heavier compressors, 

making them suitable for on-device use in IoT. Guo et al., (2024) [4] presents an architecture 

combining local (device/fog) preprocessing and cloud processing to reduce energy and 

latency in telehealth IoT. Encoding and compression at the edge is a key component to 

reduce uplink cost. System design and simulation/empirical evaluation using telehealth 

sensor traces; energy modeling across device, fog, and cloud tiers; comparison of different 

compression location strategies. Their work shows how encoding decisions interact with 

system architecture (fog vs cloud) essential when you expand your OR model beyond single 

nodes to networked IoT systems. Mishra et al., (2022) [10] compares simple, implementable 

compression techniques (RLE, Adaptive Huffman, and hybrids) on sensor nodes, and 

measures the energy tradeoffs in typical WSN scenarios. Implementation of RLE, Adaptive 

Huffman Encoding (AHE), and a hybrid H-RLEAHE on representative microcontrollers; 

evaluation using synthetic and real sensor traces; energy profiled for CPU and radio. 

Lightweight algorithms (RLE) are energy efficient for low entropy or highly repetitive 

signals; adaptive methods can yield better compression for variable data but sometimes at 

greater CPU cost. The hybrid approach often gives a middle ground. Radhakrishnan et al., 

(2024) [13] jointly evaluates lightweight cryptographic algorithms and compression schemes 
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on constrained devices, measuring execution time, energy, 

and security tradeoffs. Security and compression interact: 

some compression approaches change data patterns 

affecting cryptographic throughput or security assumptions; 

practical recommendations are provided for secure yet 

energy-aware pipelines. Balamurali et al., (2025) [1] 

investigates how compressive sensing and lightweight 

encoding and routing strategies together can substantially 

improve energy and memory efficiency of wireless sensor 

networks (WSNs). Jointly optimizing compression and 

network protocols (cluster head selection and selective 

sampling) yields larger gains than treating compression in 

isolation. Simulation shows significant increases in network 

lifetime. Mnif et al., (2024) [9] while focused on model 

compression for TinyML, this paper evaluates how 

combining pruning, quantization and distillation reduces on-

device computer and communications cost with direct 

implications for sensor node energy. The work carefully 

combined compression strategies yield large reductions in 

inference energy and model size while maintaining 

acceptable accuracy; this indirectly reduces upstream 

transmission in cases where model outputs (labels) are sent 

instead of raw data. Shah et al., (2023) [15] proposes model 

compression schemes to reduce communication cost in 

federated learning; analysis includes quantization and 

scarification methods and their effect on accuracy vs 

communication tradeoffs. Theoretical analysis and 

experiments showing how compression reduces 

communication while preserving model performance under 

various aggregation strategies. Energy implications for edge 

devices are discussed as a corollary. Compression reduces 

communication (hence energy) but must be carefully 

calibrated to avoid prohibitive accuracy drop; some second-

order aggregation techniques can compensate. Nassra et al., 

(2023) [11] systematic performance evaluation of multiple 

compression families (lightweight lossy, temporal 

predictive, error-bounded) focusing on compression ratio, 

computational cost, and energy tradeoffs on typical sensor 

data. Lossy temporal compressors provide the highest end-

to-end energy savings, but application accuracy constraints 

must be respected; lightweight error-bounded methods are 

good compromises. it summarizes which compressor 

families are promising under different application 

constraints and provides numbers to parameterize your OR 

model. Idrees et al., (2025) [7] introduces SZ4IoT a tailored, 

interpolation-based variant of the SZ compressor optimized 

for microcontrollers. Designed to handle multivariate time 

series with low memory and CPU demand. The algorithm 

design and implementation on microcontrollers; benchmarks 

on multiple sensor datasets; comparison with standard SZ 

and other lightweight compressors. SZ4IoT achieves strong 

compression ratios with small memory footprint and modest 

CPU cost, making it practical for energy-constrained 

devices. Du et al., (2020) [3] proposes a method to reduce 

energy consumption in IoT sensory networks by using 

compressed sensing. Instead of sending full sensor readings, 

the method encodes the data in a compressed domain; 

categories (ranges) instead of exact values are used when 

anomalies are rare. The mechanism reduces transmission 

energy by reducing amount of data sent. Compressed 

sensing is effectively a form of encoding and data reduction. 

This work gives you both the mathematical framework for 

compression (prediction and sampling) and energy savings, 

useful for your OR model as a candidate strategy. Robinson 

et al., (2021) [14] presents a novel encoding algorithm (non-

linear, enhanced encoding) aimed especially at reducing 

“medium time” in wireless networks. By reducing this, both 

delays and energy used for transmissions and 

retransmissions are reduced. The algorithm is evaluated in a 

wireless network setting. Directly about encoding and 

shows how encoding strategy impacts energy via channel 

access time. Good for comparing encoding methods in your 

model. Kadhim et al., (2021) the article proposes an 

Adaptive Data Compression Scheme (ADCS) which uses 

two compression schemes (S-LZW and S-LEC), and uses 

mixed integer linear programming to choose which scheme 

to use on each node depending on battery, device capability, 

etc. They compare with non-compression schemes and show 

40% power savings, and up to 50% longer device lifetime. 

Very close to your intended OR model: selecting encoding 

and compression scheme as decision variable, balancing 

energy costs. You can use their methodology and 

performance numbers in your proposal. Manchanda & 

Sharma, (2020) [8] they propose combining compressive 

sensing and clustering in heterogeneous wireless sensor 

networks (WSN). Nodes are grouped; clusters perform 

compression via CS; cluster heads transmit results. The 

scheme reduces data volume and hence transmission energy; 

design includes optimization of cluster formation. This is 

good for multi-node OR models: shows that compression 

and network structure (clustering) jointly affect energy 

consumption. This supports expanding the encoding strategy 

to include network topology in your model. Idrees & Idrees 

(2022) [6] for EEG sensor data, they propose a lossless 

compression scheme working in a fog architecture. Use 

hierarchical clustering and Huffman coding. Evaluated on 

EEG datasets; measure compression ratio, computational 

cost, latency. Good specific real-sensor use case (EEG) with 

encoding and fog, which may allow adding tiers in your 

model (device, fog, gateway). The lossless constraint is 

useful if your application requires exact data. Hussein et al., 

(2022) [5] distributed approach using prediction 

(autoregressive model) to decide whether to transmit current 

period’s data; when transmission is decided, applies 

compression. Evaluated with real sensor data. Shows good 

trade-off: reduces transmitted data size, energy 

consumption, while maintaining acceptable accuracy. Very 

strong match: predictive encoding and compression and 

decision to transmit or not. You can incorporate prediction 

and compression and selective sending in your OR model as 

decision variables and constraints. Väänänen & Hämäläinen 

(2022) [16] tests different temporal compression methods on 

real LoRa sensor nodes. Looks at how often data is sampled 

and sent, how spreading factor and, or LoRa parameter 

change energy, and effect of applying temporal compression 

in online mode. Finds that temporal compression 

significantly reduces number of transmissions, leading to 

energy savings. Especially useful for variable rate and 

temporal encoding / sampling tradeoffs. If your encoding 

scheme is combined with sampling strategy or transmission 

scheduling, these numbers are helpful. 

 

Methodology  

Problem Definition 

a. The IoT system is represented as a set of devices 

transmitting data through encoding schemes. 

b. Each device generates symbols with probabilities pi. 

c. The energy cost is composed of: 
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i) Encoding cost Ec (computational energy). 

ii) Transmission cost Et, proportional to the code length. 

 

Objective: Minimize the total energy 

 

 
 

Mathematical Model 

a. Decision Variables 
i) li: length of codeword assigned to symbol i.  

ii) xj: binary variable indicating choice of encoding 

scheme j.  

 

Constraints 

i) Kraft Inequality:   

ii) Latency Constraint:  where R is 

transmission rate,  is maximum latency allowed. 

iii) Memory Constraint:  

iv) Scheme Selection Constraint:  

c) Final Optimization Problem: 

 

min Z =  

 

v) where α, β are weight factors for transmission and 

computational costs, and cj is the computational cost of 

scheme j. 

 

III. Analysis and Result 

IoT device have 

 
Symbol Probability pi  

A 0.30 

B 0.20 

C 0.15 

D 0.15 

E 0.10 

F 0.10 

 

6 symbols with different probabilities: 

Define Energy Model 

a. Transmission energy: proportional to codeword 

length. Assume 1 unit energy per bit. 

b. Computation energy: depends on scheme: 

i) Fixed-length encoding: 1 unit/symbol 

ii) Huffman coding: 2 units/symbol 

iii) Arithmetic coding: 3 units/symbol 

 

So total energy per scheme =  

 

Where α=1, β=0.5 (to weight transmission more heavily 

than computation). 

Methods to Compare 

a. Fixed-length encoding (all codewords = 3 bits since 6 

symbols). 

b. Huffman coding (optimal prefix-free variable lengths). 

c. Arithmetic coding (close to entropy bound). 

 

Expected Outputs 

a. Average code length (efficiency of encoding). 

b. Energy consumption under each scheme. 

c. Optimal scheme selection (based on OR model). 

 

Scheme 
Avg.Code 

Length 

Transmission 

Energy 

Computational 

Energy 

Total 

Energy 

Fixed-lenght 3.00 bits 3.00 0.50 3.59 

Huffman 2.90 bits 2.90 1.00 3.90 

Arithmetic 2.47 bits 2.47 1.50 3.97 

 

Interpretation  

a. Fixed-length encoding uses more bits (3.0 and 2.5) but 

has very low computation cost, making it the most 

energy-efficient overall in this synthetic example. 

b. Huffman coding is better in compression (2.9 and 3.0), 

but slightly higher computation cost raises total energy. 

c. Arithmetic coding is closest to the entropy bound (2.47 

and entropy = 2.47), meaning it is the most 

theoretically efficient. However, its high computation 

cost outweighs the transmission savings in energy 

terms. 

 

 
 

Fig 1: Total energy consumption by encoding scheme 
 

 
 

Fig 2: Energy breckdown by encoding scheme 
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Fig 3: Trade-off: energy vs encoding efficiency 
 

 
 

Fig 4: Pareto frontier: compression vs energy 

 

 
 

Fig 5: Sensetivity analysis: optimal encoding scheme 
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Energy and Encoding Efficiency 

Arithmetic: highest efficiency 100%, but higher energy. 

Fixed-length: least efficient 82%, but lowest energy. 

Huffman sits in between. 

 

Pareto Frontier  

a. Displays compression ratio vs total energy. 

b. No single scheme dominates completely, there is a 

Pareto trade-off: 

i) If you want lowest energy, pick Fixed. 

ii) If you want highest compression, pick Arithmetic. 

iii) Huffman is a compromise solution. 

 

Sensitivity Analysis Heatmap (α and β) 

The heatmap shows which scheme is optimal under 

different energy weightings: 

i) Fixed (blue/0) dominates when computation cost (β) is 

high. 

ii) Arithmetic (green/2) becomes optimal when 

transmission weight (α) dominates. 

iii) Huffman (orange/1) appears in transition regions as a 

balance. 

 

Conclusion 

No single encoding scheme is universally optimal. The 

choice depends on the relative importance of transmission 

vs computation energy in an IoT environment. Fixed-length 

is best for energy-limited devices, Arithmetic is best for 

bandwidth-limited systems, and Huffman offers a trade-off 

suitable for balanced IoT applications. Arithmetic coding is 

closest to the entropy bound 100% efficient, Huffman 

coding achieves good efficiency 85-90% and Fixed-length 

encoding is least efficient 82%. Fixed-length encoding has 

the lowest total energy (3.5 units), since computation cost is 

minimal even though more bits are transmitted. Huffman 

coding requires more computation, raising its total energy 

slightly (3.9 units). Arithmetic coding saves transmission 

energy but has the highest computational cost, giving it the 

largest total energy (3.97 units). 

 

Summary  

Fixed-length is optimal when devices prioritize energy 

savings, Arithmetic is optimal when minimizing 

transmission bandwidth is critical, Huffman provides a 

balance between the two. When transmission cost (α) 

dominates, Arithmetic coding becomes optimal, when 

computation cost (β) dominates, Fixed-length encoding is 

optimal, Huffman coding is best in balanced scenarios, 

acting as a middle ground. 
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