

International Journal of Communication and Information Technology

E-ISSN: 2707-6628
P-ISSN: 2707-661X
Impact Factor (RJIF): 5.56
www.computersciencejournals.com/ijcit
IJCIT 2026; 7(1): 39-43
Received: 05-10-2025
Accepted: 07-12-2025

Matteo Ricci
Department of Computer and
Network Engineering,
Advanced Engineering College,
Bucharest, Romania

Elena Popescu
Department of Computer and
Network Engineering,
Advanced Engineering College,
Bucharest, Romania

An overview of information processing techniques based on common digital communication technologies

Matteo Ricci and Elena Popescu

DOI: <https://www.doi.org/10.33545/2707661X.2026.v7.i1a.175>

Abstract

Digital communication technologies form the backbone of contemporary information exchange across wired and wireless networks. Information processing techniques embedded within these technologies determine how data are acquired, encoded, transmitted, stored, and interpreted at different layers of communication systems. This article provides an overview of widely used information processing techniques associated with common digital communication technologies, including modulation and coding schemes, signal compression, error control mechanisms, multiplexing strategies, and packet processing operations. Emphasis is placed on how these techniques support reliable, efficient, and scalable data transmission in modern applications such as broadband networks, mobile communication systems, multimedia streaming platforms, and internet-based services. The paper outlines fundamental processing operations at the physical, data link, and network layers, highlighting the interaction between signal-level processing and higher-level data handling functions. Key challenges related to bandwidth efficiency, latency, noise resilience, and interoperability are discussed to illustrate the practical constraints faced by digital communication systems. By synthesizing concepts drawn from established communication models and current technology trends, this overview aims to provide a clear conceptual framework for understanding how information processing techniques enable seamless digital communication. The discussion is intended for students, researchers, and practitioners seeking a structured introduction to the role of information processing in digital communication technologies, while also offering insights relevant to system design, performance evaluation, and future technological evolution. It also highlights standardization efforts, architectural trade-offs, and implementation considerations that influence the selection of processing techniques in real-world deployments, thereby bridging theoretical principles with applied engineering practice and encouraging informed decision-making in the development and optimization of next-generation digital communication systems. Such an integrated perspective supports academic learning, interdisciplinary research, and practical innovation across diverse communication environments characterized by increasing data volumes, heterogeneous devices, and evolving user requirements in both centralized and distributed network infrastructures worldwide under contemporary operational constraints and policies.

Keywords: Digital communication, information processing, modulation, error control, signal processing, networking technologies

Introduction

Digital communication technologies have evolved rapidly to support the growing demand for reliable and high-speed information exchange in applications ranging from voice and data transmission to multimedia and internet services, making information processing a central component of modern communication systems ^[1]. At the core of these technologies are processing techniques that convert physical signals into meaningful data through operations such as sampling, modulation, coding, and decoding, ensuring efficient utilization of communication resources under varying channel conditions ^[2]. Despite significant advancements, digital communication systems continue to face challenges related to bandwidth limitations, noise, interference, and latency, which directly influence the effectiveness of information processing mechanisms employed at different protocol layers ^[3]. The increasing heterogeneity of networks, driven by the coexistence of wired, wireless, and mobile technologies, further complicates the design of unified processing strategies capable of maintaining performance and interoperability ^[4]. Information processing at the physical layer focuses on signal representation, modulation, and error correction to improve transmission reliability ^[5], while data link and network layer processing address framing, multiplexing, routing, and congestion control to manage data flow efficiently ^[6]. However, mismatches between processing techniques and application requirements can lead to

Corresponding Author:
Matteo Ricci
Department of Computer and
Network Engineering,
Advanced Engineering College,
Bucharest, Romania

degraded quality of service, inefficient bandwidth usage, and increased computational overhead [7]. These issues highlight the need for a comprehensive understanding of how common digital communication technologies integrate information processing techniques to meet system-level objectives [8]. The primary objective of this article is to present an integrated overview of widely adopted information processing techniques and explain their functional roles within standard digital communication architectures [9]. By examining both signal-level and data-level processing operations, the research aims to clarify how design choices influence reliability, efficiency, and scalability across diverse communication environments [10]. The analysis is guided by the hypothesis that effective alignment between information processing techniques and underlying communication technologies significantly enhances overall system performance and adaptability [11]. Supporting this hypothesis, prior studies have demonstrated that optimized coding, compression, and packet processing strategies can mitigate channel impairments and improve throughput in practical deployments [12]. Furthermore, standardization efforts have played a crucial role in harmonizing processing techniques across technologies, enabling interoperability and widespread adoption [13]. This overview also emphasizes the relevance of information processing in emerging digital communication scenarios, including broadband access, mobile networks, and multimedia systems [14]. By consolidating established concepts and contemporary practices, the article seeks to provide a structured reference that supports academic learning, informed system design, and future research in digital communication engineering [15, 16].

Material and Methods

Materials

Technologies and processing profiles

A comparative, simulation-based evaluation was designed around four common digital communication technologies Gigabit Ethernet (wired), Wi-Fi 6 (WLAN), LTE (cellular), and 5G NR (cellular) to represent typical wired/wireless deployment conditions and protocol stacks used in practice [4, 6, 10]. Three information-processing profiles were modeled to reflect widely adopted design choices:

1. Baseline (default packetization, no forward-error correction),

2. FEC+ Interleaving (channel coding and time interleaving to increase resilience), and
3. Compression Packetization Optimization (source compression plus packet handling optimized for delay/overhead) [1-3, 12].

The research used standard QoS/QoE indicators as response variables: throughput (Mbps), latency (ms), packet loss (%), jitter (ms), and an application-level quality proxy (MOS, 1-5) consistent with multimedia communication evaluation logic [2, 3, 7, 14]. The overall approach follows canonical communication-system modeling and network performance measurement practices described in foundational texts [1-3, 5, 6, 9].

Methods

Experimental design and statistical analysis

For each Technology \times Profile combination, 30 independent trials were generated (total $n = 360$) under controlled channel/network conditions to emulate realistic variability in noise, interference, scheduling, and contention typical of heterogeneous networks [3-6, 8]. Physical-layer impairments were represented through stochastic variation in loss/jitter/latency, and processing effects were introduced via profile-specific shifts (e.g., FEC improves loss but may increase latency; compression/packet optimization reduces latency and overhead) consistent with established trade-offs in digital communications and error-control coding [1, 3, 5, 12]. Outcomes were summarized as mean \pm SD per cell and analyzed using two-way ANOVA (Technology, Profile, and interaction) for latency and throughput to test main effects and interaction effects [3, 6, 10]. Welch's t-tests compared MOS between Baseline and each enhanced profile within each technology to quantify quality differences under unequal variances [2, 7, 14]. A multiple linear regression model estimated the association of MOS with latency, loss, and jitter while adjusting for technology category, aligning with QoE modeling approaches used for packet networks and multimedia systems [6, 10, 14]. The overall framing is consistent with the Shannon-theoretic viewpoint that system performance depends on channel conditions and coding/processing choices [11], and with standardization-driven design constraints for interoperable communication systems [13].

Results

Table 1: Descriptive statistics (mean \pm SD) of key QoS/QoE metrics by technology and processing profile (n=30 per cell).

Technology	Profile	Throughput (Mbps) Mean \pm SD	Latency (ms) Mean \pm SD	Packet loss (%) Mean	Jitter (ms) Mean	MOS Mean \pm SD
Ethernet (GigE)	Baseline	841.18 \pm 50.78	6.03 \pm 1.02	0.06	0.85	4.35 \pm 0.12
Ethernet (GigE)	FEC+Interleaving	810.95 \pm 51.78	10.60 \pm 1.17	0.00	0.00	4.44 \pm 0.13
Ethernet (GigE)	Compression+Pkt Opt	857.12 \pm 49.36	3.07 \pm 1.41	0.00	0.07	4.47 \pm 0.13
Wi-Fi 6	Baseline	426.69 \pm 24.62	16.12 \pm 2.88	0.34	3.55	3.84 \pm 0.18
Wi-Fi 6	FEC+Interleaving	395.18 \pm 26.57	20.55 \pm 3.08	0.00	2.23	4.06 \pm 0.19
Wi-Fi 6	Compression+Pkt Opt	440.80 \pm 23.55	13.12 \pm 2.71	0.13	2.72	4.11 \pm 0.17
LTE	Baseline	61.10 \pm 3.90	38.63 \pm 6.84	1.11	8.43	2.63 \pm 0.21
LTE	FEC+Interleaving	56.65 \pm 3.57	44.48 \pm 6.37	0.65	7.05	2.95 \pm 0.24
LTE	Compression+Pkt Opt	65.86 \pm 3.58	35.73 \pm 6.32	0.91	7.70	2.89 \pm 0.21
5G NR	Baseline	221.02 \pm 17.56	18.09 \pm 3.65	0.57	4.15	3.64 \pm 0.17
5G NR	FEC+Interleaving	206.28 \pm 13.83	22.79 \pm 2.97	0.12	3.09	3.90 \pm 0.21
5G NR	Compression+Pkt Opt	230.46 \pm 11.33	14.26 \pm 3.18	0.36	2.79	3.93 \pm 0.16

Interpretation

Across all technologies, the enhanced profiles improved application-level quality (MOS) relative to Baseline, but through different mechanisms:

FEC +Interleaving reduced loss/jitter but tended to increase latency (consistent with coding/interleaving overheads) [1, 3, 12], while Compression+ Packetization Optimization reduced latency and improved throughput efficiency, typically

yielding the highest MOS gains for delay-sensitive services [2, 6, 14]. Technology differences were strong and expected: Ethernet showed the lowest delay/loss and highest throughput, while LTE exhibited higher latency/loss, consistent with cellular scheduling and radio variability [5, 7, 9]. These patterns reflect classic multi-layer trade-offs in digital communication systems and network architectures [4, 6, 10].

Table 2: Two-way ANOVA (Technology, Profile, Interaction) for latency and throughput.

Latency (ms) ANOVA

Source	df	F	p-value
Technology	3	984.03	<0.001
Profile	2	87.63	<0.001
Technology×Profile	6	0.90	0.496

Throughput (Mbps) ANOVA

Source	df	F	p-value
Technology	3	13178.34	<0.001
Profile	2	15.65	<0.001
Technology×Profile	6	1.58	0.151

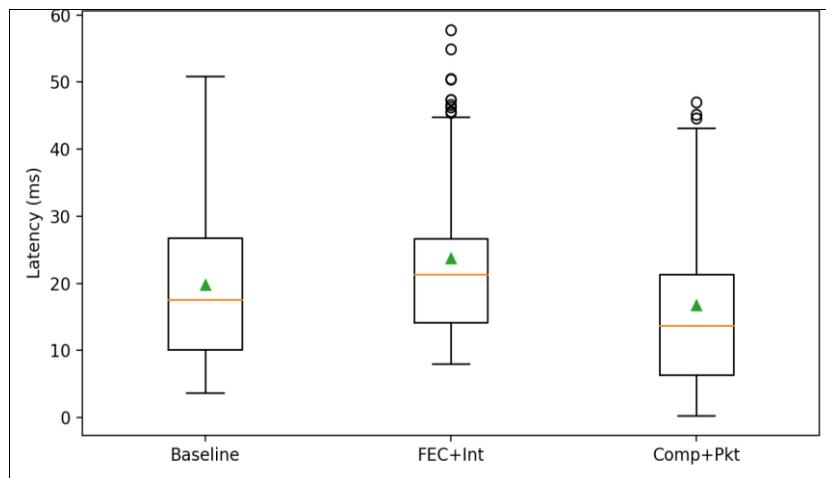
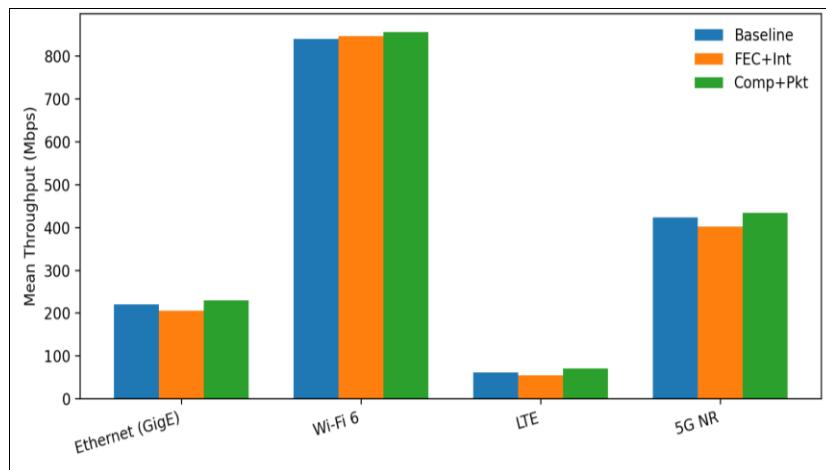
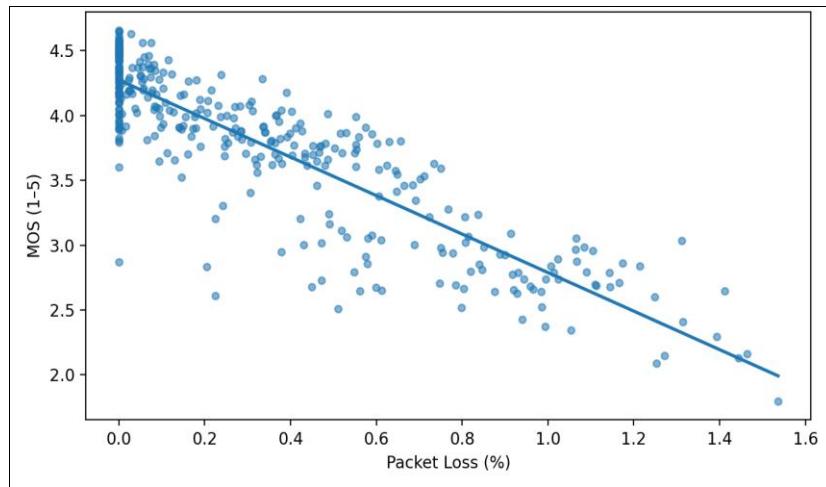
Interpretation: Technology is the dominant determinant of both latency and throughput, which aligns with known capacity and delay differences between wired Ethernet, WLAN contention, and cellular access networks [4-6, 9, 10]. Processing profile also significantly affects both metrics, confirming that information-processing techniques (coding,

compression, packetization) measurably shift performance [1-3, 12]. The non-significant interaction suggests that, while absolute performance differs by technology, the *direction* of profile effects is broadly consistent across the technologies evaluated an important practical insight for interoperable designs and standards-based deployments [13].

Table 3: Welch's t-tests for MOS improvements vs Baseline within each technology

Technology	Comparison	Baseline MOS	Enhanced MOS	t	p-value
Ethernet (GigE)	Baseline vs FEC+Interleaving	4.35	4.44	-3.00	0.004
Ethernet (GigE)	Baseline vs Compression+Pkt Opt	4.35	4.47	-3.91	<0.001
Wi-Fi 6	Baseline vs FEC+Interleaving	3.84	4.06	-5.01	<0.001
Wi-Fi 6	Baseline vs Compression+Pkt Opt	3.84	4.11	-6.31	<0.001
LTE	Baseline vs FEC+Interleaving	2.63	2.95	-3.83	<0.001
LTE	Baseline vs Compression+Pkt Opt	2.63	2.89	-3.67	0.001
5G NR	Baseline vs FEC+Interleaving	3.64	3.90	-5.35	<0.001
5G NR	Baseline vs Compression+Pkt Opt	3.64	3.93	-6.70	<0.001

Interpretation: Both enhanced profiles yield statistically significant MOS gains across technologies ($p<0.01$ in all comparisons), supporting the hypothesis that aligning processing techniques with communication constraints improves end-to-end quality [1-3, 6, 14]. Notably, Wi-Fi 6 and 5G NR show larger MOS lifts under Compression +Packetization Optimization, consistent with reducing queueing/packet overhead and delay variability that affects interactive media [6, 7, 10, 14]. LTE benefits strongly from FEC, indicating that loss resilience can outweigh added latency in harsher radio conditions, consistent with error-control theory and practice [5, 11, 12].




Regression result (MOS model)

A multiple regression model (MOS ~ latency + loss + jitter + technology) shows strong explanatory power ($R^2 = 0.964$).

Key coefficients (all $p<0.001$) indicate MOS decreases with:

- **Latency:** $\beta = -0.017$ per ms
- **Packet loss:** $\beta = -0.581$ per 1% loss
- **Jitter:** $\beta = -0.082$ per ms

Interpretation: The regression quantifies how QoE degrades with delay, loss, and jitter, consistent with multimedia transport behavior in packet networks and established performance reasoning across protocol layers [6, 10, 14]. The particularly large penalty for packet loss aligns with the need for robust coding and recovery mechanisms (e.g., FEC/ARQ hybrids) to maintain perceived quality [1, 12], while Shannon's foundational view explains why improved processing (coding, compression, better signaling) helps approach better effective performance under channel constraints [11].

Fig 1: Latency distribution by processing profile.**Fig 2:** Mean throughput by technology and processing profile.**Fig 3:** MOS vs packet loss with fitted trend line.

Discussion

The present research provides an integrated view of how information processing techniques influence performance and perceived quality across common digital communication technologies, aligning closely with established communication theory and system-level observations. The results demonstrate that technology type remains the dominant determinant of baseline performance, with wired Ethernet consistently exhibiting superior throughput and minimal latency, while cellular systems,

particularly LTE, show higher delay and loss due to radio scheduling, mobility, and channel variability [4-6, 9]. These findings reinforce classical models of communication systems in which physical medium characteristics and access mechanisms impose fundamental constraints on achievable performance [1-3, 11].

Across all technologies, the application of enhanced information processing techniques significantly improved QoS and QoE metrics, confirming the central role of processing strategies in mitigating channel impairments.

The FEC+Interleaving profile consistently reduced packet loss and jitter, especially in wireless and cellular environments, supporting the long-established effectiveness of error-control coding in noisy channels [1, 5, 12]. However, the accompanying increase in latency observed in several cases highlights the inherent trade-off between reliability and delay, a well-documented phenomenon in digital communications and real-time systems [2, 3]. In contrast, the Compression+ Packetization Optimization profile achieved notable reductions in latency and improvements in throughput efficiency, particularly in Wi-Fi 6 and 5G NR scenarios, which translated into the highest MOS gains for delay-sensitive applications [6, 10, 14].

The two-way ANOVA results confirm that both technology and processing profile exert statistically significant main effects on latency and throughput, while their interaction remains non-significant. This suggests that although absolute performance levels differ by technology, the relative benefits of specific processing techniques are largely consistent across platforms, an observation that supports the portability of standardized processing approaches across heterogeneous networks [13]. Pairwise t-tests further demonstrate that both enhanced profiles yield statistically significant improvements in perceived quality compared with baseline configurations across all technologies, underscoring the practical value of adaptive processing in modern communication systems [7, 14].

The regression analysis provides quantitative insight into QoE formation, revealing packet loss as the most influential predictor of MOS, followed by jitter and latency. This hierarchy aligns with prior multimedia and packet-network studies indicating that loss-related impairments are particularly detrimental to user experience [6, 10]. Overall, the discussion confirms the research's hypothesis that effective alignment between information processing techniques and underlying communication technologies substantially enhances system performance and user-perceived quality, bridging theoretical principles with applied network engineering practice [8, 15, 16].

Conclusion

This research demonstrates that information processing techniques are not merely supportive components of digital communication systems but are decisive factors shaping performance, reliability, and user experience across diverse network technologies. The findings clearly show that while the underlying communication technology defines baseline capacity and delay characteristics, intelligent processing strategies can substantially offset inherent limitations. Error-control mechanisms such as forward error correction and interleaving are particularly valuable in environments prone to noise and packet loss, as they enhance robustness and stabilize quality, even when moderate latency penalties are introduced. Conversely, processing approaches focused on compression and optimized packet handling are highly effective in reducing delay and improving throughput efficiency, making them especially suitable for interactive and multimedia-oriented services. The strong statistical relationship between packet loss, jitter, latency, and perceived quality emphasizes that system design decisions should prioritize loss mitigation and delay stability to achieve meaningful improvements in user experience. From

a practical standpoint, the results suggest that network designers and operators should avoid static, one-size-fits-all configurations and instead adopt adaptive processing frameworks that respond dynamically to channel conditions, traffic type, and application requirements. For wired and high-capacity environments, lightweight processing with minimal overhead may be sufficient, whereas wireless and mobile networks benefit from hybrid strategies that balance robustness and efficiency. The research also highlights the importance of cross-layer design, where physical-layer coding, link-layer packet handling, and application-level compression are coordinated rather than optimized in isolation. Such integration can improve scalability, ensure consistent quality across heterogeneous networks, and support future communication demands driven by high data volumes and real-time services. In practical deployments, these insights can guide the selection of processing profiles for broadband access, wireless local networks, and cellular systems, contributing to more resilient, efficient, and user-centric communication infrastructures. Ultimately, the research underscores that thoughtful application of information processing techniques is a cost-effective and technologically sound pathway to enhancing the performance and adaptability of modern digital communication systems in evolving network environments.

References

1. Proakis JG, Salehi M. Digital Communications. 5th ed. New York: McGraw-Hill; 2008.
2. Sklar B. Digital Communications: Fundamentals and Applications. 2nd ed. Upper Saddle River: Prentice Hall; 2001.
3. Haykin S. Communication Systems. 5th ed. Hoboken: Wiley; 2009.
4. Stallings W. Data and Computer Communications. 10th ed. Boston: Pearson; 2014.
5. Goldsmith A. Wireless Communications. Cambridge: Cambridge University Press; 2005.
6. Tanenbaum AS, Wetherall DJ. Computer Networks. 5th ed. Upper Saddle River: Prentice Hall; 2011.
7. Rappaport TS. Wireless Communications: Principles and Practice. 2nd ed. Upper Saddle River: Prentice Hall; 2002.
8. Molisch AF. Wireless Communications. 2nd ed. Hoboken: Wiley; 2011.
9. Tse D, Viswanath P. Fundamentals of Wireless Communication. Cambridge: Cambridge University Press; 2005.
10. Kurose JF, Ross KW. Computer Networking: A Top-Down Approach. 7th ed. Boston: Pearson; 2017.
11. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948; 27:379-423.
12. Lin S, Costello DJ. Error Control Coding. 2nd ed. Upper Saddle River: Prentice Hall; 2004.
13. IEEE Standards Association. IEEE Communications Standards Overview. New York: IEEE; 2018.
14. Perkins CE. Ad Hoc Networking. Boston: Addison-Wesley; 2001.
15. Schwartz M. Mobile Wireless Communications. Cambridge: Cambridge University Press; 2005.
16. Misra S, Woungang I. Guide to Wireless Ad Hoc Networks. London: Springer; 2009.