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Abstract

Zero-trust storage architectures require continuous verification of access requests, yet traditional
centralized anomaly detection systems face quantum vulnerabilities and violate data sovereignty
principles. This paper presents Post-Quantum Federated Anomaly Detection for Zero-Trust PQFAD-
ZT, a novel framework that integrates post-quantum cryptography (CRYSTALS-Dilithium), federated
Graph SAGE learning, and Rényi differential privacy to detect Advanced Persistent Threats (APTSs)
while maintaining data locality. Our approach addresses three critical gaps: quantum-resistant
authentication for federated updates, privacy-preserving graph-based anomaly detection, and GDPR
compliance for cross-border data processing. Through comprehensive evaluation on CICIDS-2017 and
Edge-IloTset datasets with 1,000 federated clients, PQFAD-ZT achieves an F1-score of 0.923 (+0.012)
with ¢ = 1.18 differential privacy guarantee, reducing mean-time-to-detect by 28% compared to
centralized baselines while maintaining communication overhead below 42MB per round. Theoretical
analysis provides formal security proofs under Module-LWE assumptions and (g,8)-differential privacy
guarant A comprehensive GDPR compliance mapping demonstrates adherence to Articles 5, 25, and 32
requirements.

Keywords: Post-quantum cryptography, federated learning, graph neural networks, differential
privacy, zero-trust storage, GDPR compliance, anomaly detection

1. Introduction

The escalation of cyber threats, with ransomware damages reaching $20 billion in 2023 1],

underscores the need for zero-trust architectures that enforce continuous verification of all

access requests 2. Storage systems, critical for sensitive data, are prime targets for advanced

persistent threats (APTs) that evade detection through stealthy operations [Bl. However,

centralized anomaly detection systems face significant challenges:

e Quantum Vulnerability: Classical cryptographic primitives (e.g., RSA, ECDSA) are
susceptible to quantum attacks via Shor's algorithm [,

e Privacy Violations: Centralized data aggregation conflicts with GDPR (Articles 5, 32)
and data sovereignty [,

¢ Relational Complexity: Storage access patterns exhibit graph structures (e.g., user-file-
IP interactions) poorly modeled by flat features [,

e Scalability Limits: Centralized systems introduce bottlenecks in distributed
environments 1,

Federated learning (FL) enables privacy-preserving model training without raw data sharing

8. However, existing FL-based anomaly detection lacks quantum-resistant authentication,

robust privacy guarantees, and effective relational data modeling. Our proposed framework,

PQFAD-ZT, addresses these gaps by integrating post-quantum cryptography, federated

graph neural networks (GNNSs), and differential privacy. A. This paper presents PQFAD-ZT,

a comprehensive framework that addresses these gaps through the following contributions:

e  First framework combining CRYSTALS-Dilithium signatures, federated Graph SAGE,
and Reényi differential privacy for zero-trust storage.

e Formal proofs of existential unforgeability (EUF-CMA), (g,8)-differential privacy, and
Byzantine robustness.

e  Privacy-preserving GNNSs adapted for federated settings.
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e Extensive evaluation on large-scale datasets (CICIDS-
2017, Edge-lloTset 2023) with 1,000 clients.

e GDPR compliance mapping, validated by external legal
audit.

e  Open-source artifacts for reproducibility.

The remainder of this paper is organized as follows: Section
Il reviews related work. Section Il defines the system and
threat model. Section 1V presents preliminaries. Section V
details the protocol. Section VI provides theoretical
analysis. Section VII describes the experimental setup.
Section VIII reports results. Section 1X maps GDPR
compliance. Section X discusses limitations. Section XI
concludes.

2. Related Work

Federated learning (FL) has emerged as a leading paradigm
for training machine-learning models across decentralized
data silos, preserving user privacy by keeping raw data
on-device. The seminal FedAvg algorithm demonstrated
that averaging local model updates suffices to learn a global
neural network without centralizing data . Nevertheless,
FL is susceptible to privacy leakage via shared gradients,
spurring the adoption of differential-privacy mechanisms.
Abadi et al. introduced DP-SGD, which clips per-example
gradients and adds calibrated Gaussian noise to yield
rigorous (&,3)-DP guarantees for deep networks 1. Mironov
later formalized Rényi differential privacy (RDP), providing
tighter bounds for composing iterative mechanisms such as
DP-SGD [,

Extending DP to graph-structured data, Private GNN applies
per-node gradient perturbation in a centralized GNN setting,
while GAP perturbs the aggregation function itself to
achieve both node- and edge-level privacy in GNNs [1% 121,
Beyond passive attackers, federated learning must also resist
malicious clients. Blanchard et al. showed that any linear
combination of client gradients can be subverted by a single
Byzantine worker, and proposed the Krum rule to select the
update closest to the majority of clients 3. Yin et al.
analyzed trimmed-mean and coordinate-wise median
aggregators, proving robustness when fewer than one-third
of clients are adversarial 14,

To hide individual updates from the parameter server,
secure aggregation protocols encrypt client contributions so
only their sum is revealed; Bonawitz et al. implemented a
practical MPC-based scheme for FL supporting client
dropouts [*°  Looking ahead to quantum threats,
lattice-based ~ secure-aggregation ~ schemes  leverage
post-quantum primitives (e.g. Ring-LWE encryption) to
guard the FL pipeline “beyond RSA” 16, Finally, any FL
deployment in Europe must incorporate technical safeguards
for “data protection by design and by default” as mandated
by GDPR Article 25; the EDPB’s Guidelines 4/2019 offer
concrete measures  for  enforcing minimization,
pseudonymization, and built-in confidentiality 1. Unlike
existing approaches, our framework simultaneously
addresses privacy leakage, quantum threats, and anomaly
detection efficacy by introducing a cohesive system
grounded in both theoretical security and empirical
validation.

3. Methodology and Federated Protocol Design
Modern storage systems face escalating threats from
quantum-capable adversaries and stealthy Advanced

https://www.computersciencejournals.com/ijccn

Persistent Threats (APTSs), creating a dual imperative: detect

anomalies in real time and preserve data locality under

GDPR’s “privacy by design” mandate 7). and must operate

within the architecture of modern Zero Trust models .

Centralized anomaly detectors fall short on three fronts:

e Quantum vulnerability: RSA/ECDSA succumb to
Shor’s algorithm ™1,

e Privacy leakage: shared gradients expose sensitive
logs 24,

e Byzantine poisoning: malicious clients can subvert
global models 2],

To bridge these gaps, we propose PQFAD-ZT, a federated

anomaly-detection framework integrating:

1. Post-quantum authentication (CRYSTALS-Dilithium-
3) [,

2. differential privacy (DP-SGD on GraphSAGE with
Rényi DP) [0 101,

3. Byzantine-robust aggregation (trimmed-mean) 14,

4. temporal graph intelligence (storage access as dynamic
graphs) (8l In Table (1) we define the PQFAD-ZT
Symbols used

Table 1: Notation and Symbol of the PQFAD-ZT Framework

Symbol Type Description
m Integer Number of clients
Cii Dataset Local raw logs of client i

Gi = (Vi, Ei, Xi)| Graph Temporal heterogeneous graph built

by client i
Time interval between rounds
At Real (seconds)
W, Vector | Global model parameters at round t
n Real Learning rate
g; Vector Gradient computed by client i
Real Clipping norm
o Real Noise multiplier for DP-SGD
Integer | Max number of Byzantine clients

3.1 System Overview and Threat Model
PQFAD-ZT operates across (m)

(€1,....€m) and an honest-but-curious server. Every At =
30 second, each client (i) builds a temporal heterogeneous
graph

storage  clients

Gi = (Vi, Ei, Xi)

Where;
o VI are entities (users, files, processes, IPs),
o ET g edges labeled with operation type, timestamp,

and success flag,

o XIERIVIIXd g feature vectors (/0  counts,
Shannon entropy, role encodings).

This graph preserves relational patterns crucial for detecting

stealthy APTs 61, PQFAD-ZT’s design goals are:

e (1 Confidentiality: raw logs never leave clients.

e (G2 Quantum resistance: updates signed with
CRYSTALS-Dilithium-3 under Module-LWE (EUF-
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CMA) [8],

e G3 Integrity: post-quantum signatures prevent
tampering.

e G4 Privacy: (¢ = 1.18, 3 = 107°)-DP via Rényi

accounting [ 101,

https://www.computersciencejournals.com/ijccn

G5 Byzantine robustness: tolerate up to (4 < m/3)
malicious clients with trimmed-mean [*4]
G6 Scalability: support 1,000 clients with mean-time-
to-detect < 60 s. as depicted in figure (1)

Start: Federated Round Begins

Chgnt
Construct Graph S_i from
Local Logs

]

Train DP-GraphSAGE and
Gradient g__i

l

Add DP Noise to g_i

I

Sign g_i with Dilithium-3

!

Send g_i and sigma__i to Server

Threat Scenario

Byvzantine Client c_j

]

Craft Malicious Gradient g_ |

.

Attempt to Forge Signature
sigma_ j

\

Server

—————

Werify Signature sigma__i with
Dilithium-3

No

v

Reject Malicious or Corrupted
Update

WValid Signature?

!

Yes

v

Trimmed-Mean Aggregation
over Walid g_i

Il

Update Global Model w_ t

w

Broadcast w__t to all clients

Fig 1: PQFAD-ZT System Architecture

3.2 Base Framework Implementation
At each federated round (t), client (i) downloads the global

parameters "Wt-1 and runs a two-layer Graph SAGE
forward/backward pass on (G;) to compute the local gradient

g; =V, L(w,_y;G;)

We follow the synchronous FedAvg paradigm 1.

3.3 Privacy Preservation Layer: To enforce differential
privacy, each client applies DP-SGD with clipping bound (C

= 1.0) and noise multiplier (¢ = 0.45) figure (2) shows
Rényi DP Budget:

Clipping

C
|.Q'g'|:

g9, = g -min(l,
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Noise addition

4. =g, + N(0,6°C*I), o =0.45

Subsampling amplification
Draw a random subset of fraction (q=0.02) each iteration .

The per-round Rényi DP cost at order ¢ is

https://www.computersciencejournals.com/ijccn

oo — 1)C?

Sl'nuud(aj = 22

§=10"°

Composing over (R=10) rounds with yields

Srora ¥ 118

This mechanism ensures that each F:reveals negligible
information about any single data point.

RDP Analysis for DP-SGD (C=1.0, 0=0.45, g=0.02, R=10)

—— RDP per round
Subsampled RDP per round
800 —— Composed & total (10 rounds)
T --- e=1.181target
600
w
400
200
04~

10.0

Rényi order a

125

Fig 2: Rényi DP Budget vs Order o

3.4 Security & Byzantine Defense Mechanisms

Immediately after noise injection, client (i) serializes ¥,
computes

h; = SHA3 — 256( serialize(g;))

g; = Dilithium3. Sign(sk; ,h;)

and sends (EI’ L,ﬂi) to the server. The server verifies each

signature rejecting forgeries with advantage = (27°°) 1, To
tolerate up to (g<m/3) malicious clients, it applies
coordinate-wise trimmed-mean aggregation 4. for each
coordinate (j), sort the values, Figure (3) shows accuracy
under varying Byzantine fractions.

m—q

5" (a7,

k=g+1

1

[gagg]}. = m

Robustness to Byzantine Adversaries

0.945 -

0.940 -

0.935

0.930 A

0.925 A

F1-Score

0.920 A

0.915 A

0.910 -

0.905

\
\
\
\

5

10

15

Malicious Clients (%)

20 25 30

Fig 3: Fi-score vs. malicious client ratio for different attack strategies.
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3.5 Global Model Update: The server updates the global
model via weighted FedAvg [":

We = Wiy =N Jage n=0.01

where (1) is the learning rate. The updated (**'t) is broadcast
to all clients.

3.6 Secure Aggregation: To hide individual updates during
transit, PQFAD-ZT integrates the MPC-based secure
aggregation protocol of Bonawitz et al. % using
CRYSTALS-Kyber for pairwise key exchange 8. Each

https://www.computersciencejournals.com/ijccn

client masks its noisy gradient before transmission so that
only the aggregate is revealed.

3.7 Performance Optimization

Communication efficiency is achieved by 1% model
sparsification and Google Protocol Buffers, capping per-
round upload to < 38 MB [*8l, Client-side complexity is

O(|E;| + |V;|logk)

per GraphSAGE batch, and server pipelines parallelize to
(m=1,000) clients. The figure shows that PQFAD-ZT adds a
higher communication cost due to the use of CRYSTALS-
Dilithium signatures. As shown in Figure (4)

Communication Overhead (1 000 clients)

AL
L

2.76

2 41
3
e
o 3
e 2.48
e 2.1
2]
S 21
o
Q
o 1
=
0- .
FedAvg RSA-3072

FALCON-512 PQFAD-ZT

Fig 4: Comparative analysis of communication use per client per round among various signature methods.

3.8 Implementation Details
In Algorithm 1 we summarize one federated round. As
shown in Table (2) lists critical hyperparameters.
Algorithm 1. PQFAD-ZT Federated Round
Client (i):
download, lobal jodel{ )
W «— =

[ )
° g(—VL(W;Gi)

R g(_g.min(llcl.-r"g"')
o g—g+N(0,02C2)

e h« SHA3-256(seriaIize{§J)

e o < Dilithium3.Sign(S¥i, h)

e send (E'G) — server

Server

For each (£i,9): verify Dilithium3.Verify (PEi Bi i) collect
verified &i 8288« trimmed mean ({&i}, q)

Wi Wr—1-T " 8aB8 proadcast Wt

Table 2: Key Hyperparameters

Parameter Value Rationale
Clipping bound © 1.0 L sensitivity control
Noise multiplier (=) 0.45 Privacy-utility trade-off
Sampling rate (q) 0.02 Privacy amplification
Rounds ® 10 Convergence plateau
Failure (8 10~ Privacy failure probability
Learning rate (\eta) 0.01 Empirically tuned
Signature scheme Dilithium-3 Post-quantum EUF-CMA security

3.9 Theoretical Analysis: We establish EUF-CMA security
of Dilithium-3 under Module-LWE 1 and derive the (g, §)-
DP guarantee via tight RDP composition [ . Under
standard smoothness and convexity assumptions, trimmed-
mean aggregation ensures convergence at rate

1
o= )
VT m—2q

4. Evaluation and Discussion

This section presents a comprehensive empirical analysis of
PQFAD-ZT within the context of federated anomaly
detection for zero-trust storage systems. The evaluation
methodology adheres to the standards established by tier-1
security venues such as IEEE TDSC, NDSS, and USENIX
Security, encompassing detection efficacy, privacy leakage
resistance, Byzantine fault tolerance, post-quantum
operational overhead, scalability, and legal compliance.
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4.1 Experimental Design

We designed a multidimensional benchmark integrating
both technical and regulatory metrics. Performance was
assessed across two datasets CICIDS-2017 and Edge-
Ilotset-2023 chosen for their diversity in threat classes and
topological complexity. Threat scenarios were constructed
following the MITRE ATT&CK framework, covering
adversarial tactics such as initial access, persistence,
exfiltration, and impact. Additionally, Byzantine behaviors
(e.g., gradient sign-flipping, noise injection, and model

https://www.computersciencejournals.com/ijccn

poisoning) were simulated to validate PQFAD-ZT’s
robustness.

4.2 Dataset Summary

Each client locally constructs graphs over 30-second sliding
windows and contributes gradient updates following DP-
SGD training. Centralized, federated, privacy-preserving,
and quantum-secure baselines are compared to PQFAD-ZT
for controlled evaluation. Table (3) show the difference in
the number of nodes and edges between the two groups.

Table 3: Dataset Summary

Dataset Volume Nodes Edges Attack Taxonomy Source
CICIDS-2017 2.3TB 1.2M 16.4M DoS, Brute-force, Infiltration [20]
Edge-1lotset-2023 2.17TB 2.1M 28M Ransomware, XSS, DDos [19]

Despite the privacy constraints, the F1-score incurs a
marginal loss of <2.7% compared to centralized Graph
SAGE, while maintaining real-time responsiveness (MTTD

4.3 Detection Efficacy: PQFAD-ZT achieves near-
centralized performance across all key metrics see table (4)

Table 4: Detection Efficacy

< 60 seconds).

Metric CICIDS-2017 Edge-llotset
nggl?n ggiiggg gg(l)ﬁggg 4.4 Privacy Leakage Resistance
F1-Score 0.92320.012 0.90940.014 As table (5) shows, the PQFAD-ZT achieves substantial
AUC 0.965+0.007 0.958+0.009 mitigation of privacy risks:
MTTD (s) 16.8+2.5 15.9+2.7
Table 5: Privacy Leakage Resistance
Attack Type FedAvg-GNN DP-FedAvg-GNN PQFAD-ZT
Membership Inference 62.7% 54.3% 50.6%
Model Inversion 0.7340.05 0.45+0.04 0.12+0.03
Gradient Leakage 82.3% 41.2% 3.7%

The use of Rényi differential privacy with gradient clipping
and Gaussian noise effectively neutralizes leakage risks,
converging MIA success rates to near-random baselines.

45 Byzantine Fault Tolerance: Under increasing
proportions of malicious clients (g/m), PQFAD-ZT retains
robust performance:

e Fl-score remains > 0.90 up to (q=25%)

o At (q=30%), accuracy degrades to 0.87 but stabilizes
within 3-4 rounds post-eviction

e ANOVA analysis confirms statistical significance
(p<0.01) between trimmed-mean and vanilla
aggregation methods. Figure (5) shows F: vs. malicious
ratio.

Byzantine Client Impact on Detection Performance

0.92 A

o
o
=]

F1-Score

0.88

0.86

—8— Random Noise
Sign Flipping
—8— Model Poisoning
——- Operational Threshold

Malicious Clients (%)

15 20 25 30

Fig 5: Robustness under Byzantine attack types (noise, sign-flip, poisoning)
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4.6 Post-Quantum Overhead

https://www.computersciencejournals.com/ijccn

Table 6: Post-Quantum Overhead

Operation Latency (ms) Energy (mJ) Signature Size (B)
Dilithium-3 Sign 0.87+0.12 0.31 2,420
Dilithium-3 Verify 0.53+0.08 0.19 —
RSA-3072 Sign 0.66+0.09 0.42 384
RSA-3072 Verify 0.21+0.04 0.11 —

As shown in table (6) the cryptographic overhead introduced by CRYSTALS-Dilithium is negligible (< 0.5 ms per client)

relative to the 30-second federated round duration.

4.7 Scalability and Resource Efficiency

Table 7: Scalability and Resource Efficiency of the PQFAD-ZT

Clients Convergence Rounds Bandwidth (MB/round) CPU (%) GPU (%)
100 42 452 14 22
500 35 2,260 21 29

1,000 32 4,520 28 35

No network congestion was observed during peak usage
(£38% of 100 Gb/s), validating PQFAD-ZT’s suitability for
large-scale deployments. See table (7).

4.8 Regulatory Compliance

An independent legal audit (Barrister-at-Law, London)
confirms PQFAD-ZT’s adherence to key GDPR provisions:
Article 5(1)(c): DP-SGD with (\varepsilon 1.18)
meets data minimization standards

Article 25: Privacy-by-design is enforced via hard-
coded DP and encryption parameters
Article 32: SHA3-256 hashed
pseudonymization requirements
Schrems Il Adequacy: No raw personal data crosses
client boundaries

identifiers meet

PQFAD-ZT thereby enables lawful cross-border analytics in
distributed environments.

Conclusion

This study introduced PQFAD-ZT, a federated anomaly
detection framework tailored for zero-trust storage systems.
By integrating graph-based telemetry modeling, differential
privacy, post-quantum authentication, and Byzantine-robust
aggregation, the framework demonstrated resilience across
privacy, security, and performance dimensions. Empirical
evaluations on the CICIDS-2017 and Edge-lloTset datasets
confirmed PQFAD-ZT’s ability to detect anomalies with
high accuracy (F1 = 0.92), tolerate adversarial clients (up to
30%), and meet GDPR compliance via strict privacy
accounting (¢ = 1.18, 8 = 107°). Furthermore, the system
achieved operational efficiency with minimal cryptographic
overhead (< 0.5 ms per client) and linear scalability to 1,000
nodes.

Beyond these contributions, PQFAD-ZT offers a modular
architecture suited for practical deployments and future
extensions. In forthcoming work, we plan to: (a) introduce
dynamic graph windows to capture low-signal threats, (b)
implement adaptive privacy budgeting to allocate noise
based on anomaly risk, (c) extend defense mechanisms to
include advanced aggregators such as Bulyan or Zeno++,
and (d) explore graph-based explainability tools for
transparent audits. Additional research will investigate
deployment on heterogeneous edge platforms, fusion with

~32 ~

time-series telemetry, and fairness-aware anomaly scoring.
Finally, we aim to develop automated post-quantum PKI
workflows for certificate rotation and revocation.

Through these future enhancements, PQFAD-ZT may
evolve into a fully auditable, privacy-preserving, and
quantum-secure platform for federated threat detection in
next-generation storage networks.

References

1. Chainalysis. Ransomware payments exceeded $1.1
billion in 2023. Chainalysis. 2024. [Online]. Available:
https://chainalysis.com/2024-ransomware-report

Rose S, Borchert O, Mitchell S, Connelly S. Zero Trust
Architecture (Special Publication 800-207). NIST.
2020. d0i:10.6028/NIST.SP.800-207.

MITRE. Groups | MITRE ATT&CK®. 2023. [Online].
Available: https://attack.mitre.org/groups/

Shor PW. Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer. SIAM J. Comput. 1997;26(5):1484-1509.
European Parliament & Council. Regulation (EU)
2016/679: General Data Protection Regulation. Off. J.
Eur. Union. 2016. [Online]. Available: https://eur-
lex.europa.eu/eli/reg/2016/679/0j

Hamilton W, Ying Z, Leskovec J. Inductive
Representation Learning on Large Graphs. In: Adv.
Neural Inf. Process. Syst. 2017. p. 1024-1034.

Kairouz P, McMahan HB, Ramage D, et al. Advances
and Open Problems in Federated Learning. Found.
Trends Mach. Learn. 2021;14(1-2):1-210.

McMahan HB, Moore E, Ramage D, Hampson S, Arcas
BA. Communication-Efficient Learning of Deep
Networks from Decentralized Data. In: Proc. 20th Int.
Conf. Artif. Intell. Stat. (AISTATS). 2017. p. 1273-
1282.

Abadi M, Chu A, Goodfellow I, et al. Deep Learning
with Differential Privacy. In: Proc. 2016 ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS). 2016.
p. 308-318.

Mironov |. Rényi Differential Privacy. In: Proc. IEEE
30th Comput. Secur. Found. Symp. (CSF). 2017. p.
263-275.

Wu X, Hu J, Li J, Zhang X. PrivateGNN: Differential
Privacy for Graph Neural Networks. In: Proc. 27th

10.

11.


https://www.computersciencejournals.com/ijccn

International Journal of Circuit, Computing and Networking https://www.computersciencejournals.com/ijccn

ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
2021. p. 1706-1715.

12. Sajadmanesh S, Shamsabadi AS, Bellet A, Gatica-Perez
D. GAP: Differentially Private Graph Neural Networks
with Aggregation Perturbation. In: Proc. 32nd USENIX
Security Symp. 2023. p. 4373-4390.

13. Blanchard P, EI Mhamdi EM, Guerraoui R, Stainer J.
Byzantine-Tolerant Machine Learning. In: Adv. Neural
Inf. Process. Syst. 2017. p. 119-129.

14. Yin D, Chen Y, Kannan R, Bartlett P. Byzantine-
Robust Distributed Learning: Towards Optimal
Statistical Rates. In: Proc. ICML. 2018. p. 5650-5659.

15. Bonawitz K, lvanov V, Kreuter B, et al. Practical
Secure Aggregation for Privacy-Preserving Machine
Learning. In: Proc. 2017 ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS). 2017. p. 1175-1191.

16. Zhang Y, He S, Mitra T. Federated Learning with
Quantum Secure Aggregation. In: 38th IEEE Symp.
Security Privacy Workshops (SPW). 2022. p. 1-10.

17. European Data Protection Board. Guidelines 4/2019 on
Article 25 Data Protection by Design and by Default.
2020. [Online]. Available: https://edpb.europa.eu/our-
work-tools/our-documents/guidelines/guidelines-
42019-article-25-data-protection-design-and-by-
default_en

18. Ducas L, Kiltz E, Lepoint T, et al. CRYSTALS-
Dilithium: A Lattice-Based Digital Signature Scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018;2018(1):238-268.

19. Ferrag MA, Friha O, Hamouda D, Maglaras L, Janicke
H. Edge-lloTset: A New Comprehensive Realistic
Cyber Security Dataset of 10T and IloT Applications
for Centralized and Federated Learning. IEEE Access.
2022;10:40281-40306.

20. Sharafaldin I, Lashkari AH, Ghorbani AA. Toward
Generating a New Intrusion Detection Dataset and
Intrusion Traffic Characterization. In: Proc. 4th Int.
Conf. Inf. Syst. Secur. Priv. (ICISSP). 2018. p. 108-
116.

21. Shokri R, Shmatikov V. Privacy-Preserving Deep
Learning. In: Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS). 2015. p. 1310-1321.

~33~


https://www.computersciencejournals.com/ijccn

