
~ 16 ~

International Journal of Circuit, Computing and Networking 2023; 4(1): 16-19

E-ISSN: 2707-5931

P-ISSN: 2707-5923

IJCCN 2023; 4(1): 16-19

Received: 10-01-2023

Accepted: 15-03-2023

Naveeta Adlakha

Assistant Professor,

Computer Science, Govt.

College for Girls, Palwal,

Kurukshetra, Haryana, India

Corresponding Author:

Naveeta Adlakha

Assistant Professor,

Computer Science, Govt.

College for Girls, Palwal,

Kurukshetra, Haryana, India

Performance evaluation of proposed component based

model in software reusability

Naveeta Adlakha

DOI: https://doi.org/10.33545/27075923.2023.v4.i1a.54

Abstract
In software engineering there is need for developing and using paradigms that will significantly

promote decreased effort in developing software products, increased quality of software products and

decreased time-to-markets. Software reuse has been a buzz word in large companies for some time

now, with its potential for achieving good quality systems in short time scales by the reuse of currently

available components. Decreased effort and increased quality will decrease the overall cost of software

and also decrease the time-to-market of the software. An effort has been made in this paper to

introduce component based model for software reusability. Software metrics have been used to identify

potential of the system used.

Keywords: Proposed, component based model, software reusability

1. Introduction
Software manufacturing based upon a validated software development model proves to be a

practical solution to decreased software development effort, increased software product

quality, and decreased development cost, especially if it is applied in a systematic way across

the software development life cycle. The critical problem in today’s practice of software

reuse is a failure to conceptualize, define and develop necessary details to support a valid

component based software development model. In this paper a component based software

development model and the impact of this model on software development effort, quality,

and time-to-market is empirically derived. Promoting the reference model among the

software reuse community will help improve the competitive edge and time-to-market of

many software development enterprises through decreased effort in the software

development process and increased product quality.

2. Related Study

Many success stories have been quoted, from Raytheon’s 50 increase in productivity due to a

reuse rate of 60% [1], to GTE’s saving of $1.5 Million from a reuse factor of 14% [2], to the

Japanese software factories’ claim of annual productivity increases of 20% by implementing

a software reuse program [3]. There are studies on the relation between fault-density and

parameters such as software size, complexity, requirement volatility, software change

history, or software development practices discussed widely at [11-16] Fenton et al. [11] have

studied a large Ericsson telecom system, and did not observe any relation between fault-

density and module size. When it comes to relation between the number of faults and module

size, they report that size weakly correlates with the number of pre-release faults, but do not

correlate with post-release faults. Ostrand et al. [16] have studied faults of 13 releases of an

inventory tracking system. In their study, fault-density slowly decreases with size, and files

including high number of faults in one release, remain high-fault in later releases. They also

observed higher fault-density for new files than for older files. Malaiya and Denton [13] have

analyzed several studies, and present interesting results. They assume that there are two

mechanisms that give rise to faults. The first is how the project is partitioned into modules,

and these faults decline as module size grows. The other mechanism is related to how the

modules are implemented, and here the number of faults increases with the module size.

They combine these two models, and conclude that there is an “optimal” module size.

Graves et al. [5] have studied the history of change of 80 modules of a legacy system

developed in C, and some application-specific languages to build a prediction model for

https://doi.org/10.33545/27075923.2023.v4.i1a.54

International Journal of Circuit, Computing and Networking http://www.computersciencejournals.com/ijccn

~ 17 ~

future faults. The model that best fitted to their observations

included the change history of modules while size and

complexity metrics were not useful in such prediction. They

also conclude that recent changes contributed the most to

the fault potential.

There are two main challenges to effective reuse within a

company: technological and organisational [4]. As

technology has advanced, and the methods and tools to

support reuse have become available, the technological

challenges facing reuse have been surpassed by the

economic and organisational issues that face a company

intending to implement a reuse program [5]. One of the

major work with software reuse is that of introducing a

reuse framework and method into a company. The most

important, step is to gain the support of the top level

management for the reuse program [6]. This is crucial,

because the introduction of a reuse program affects all parts

of the software production process in the company. Some of

the issues to be taken into account before start of reuse

implementation are A pilot project, Make a plan for

integrating reuse into the company, Incrementally

implement the plan, Consistency Expressiveness,

Comprehensibility Operations, Scope Presentations,

Administrative Issues, implementation issues, Granularity,

Type of structure, Stability and Constraints

3. Proposed Scheme

The software community has been looking for and

proposing solutions to software problems for many years.

Until Components-Based Development (CBD), object

technology was the last solution. One of the keys to CBD’s

success is a standard infrastructure for components.

Infrastructures need three main elements. First, a uniform

design notation is needed that provides a standard way of

describing components’ functions and properties, which

would be critical to designing collaboration between

components. Second, repositories are needed as a means of

cataloging available components with a description of their

features would let developer find the components

appropriate for an application. Third, a standardized CBD

interface is needed that lets any application in any language

access components’ features by, for example, binding to the

component model or interface definition language. The

architecture used in the scheme is component-based, and all

components in the study are built in-house.

The planned phases of CBD model are: Domain

Engineering, Frame working, System analysis, System

design implementation, [Component Selection, adaptation,

testing], Integration, System testing, Deployment

[Component Archiving], Maintenance. The main

characteristic of this model is building the system from pre-

existing components. It focuses on the identification of

reusable entities. Much implementation effort in system

development will no longer be necessary but the effort

required in dealing with components, locating them,

selecting the most appropriate one, testing them etc. would

increase. According to this model, the appropriate

components are selected and integrated in the system. The

problems associated with selection of components are: (i) it

is not obvious that there is any component to select, and (ii)

the selected component only partially fits to the overall

design. The first fact demands a process for finding

components. This process includes activities for finding the

components and then component evaluation. The second

fact indicates for a need of component adoption and testing

before it can be integrated into the system. There must also

be the process of component development, this being

independent of the system development process. Each

system is decomposed hierarchically into subsystems,

blocks, units, and modules (source files). Often, a reusable

code is accompanied by an informal documentation;

however, this documentation is, in general, in-adequate to

explain the intended functionality of the accompanying code
[1, 2]. Use of natural languages for informal documentation

leads to misinterpretations due to ambiguity [3, 4, 11, 12]. The

scheme has used the formal requirements specification of

the new software product to be developed and that of a

reusable component as candidates for reuse. The proposed

scheme has constraint that specifications must be written

using the same formal notation so that reasoning is made

simpler. Three modification steps used in reuse are

specification matching, program replacement, and program

adaptation.

 It has been assumed that specifications for software are

error-free and consistent. The method does not check

for validity of the specifications.

 The method also relies on the way the specifications

are written. The code has been written in C++. In the

finished product, there has been an appx. of over 2000

lines of code. Of this code, 43% have been inherited

from the standard libraries available. Of the remaining

57% of the code, 50% code has been written by hand,

31% was abstracted into reusable classes which were

used more than once within the application. This gives

a total reuse factor of appx 69% for the whole project.

These results were calculated by identifying which of

the standard library classes were called by the source

code and totaling the number of lines of code in those

classes; then calculating the number of lines of code

generated by the application and class wizards in C++;

then measuring the number of lines of code in the

classes that were abstracted out into the reuse

repository. For comparative study the same code has

been written in. Net, C#, and Java. The maximum

efforts have been made to use the same benchmarks for

all languages while using, library functions, reusable

code, inheritance and function/procedure

implementations. As is obvious results vary largely and

are dependent on language used. The general trend

indicates that best results have been with C++ and Java.

The concept is still under process using Modelio and

Umbrello for future implementations and verification of

results.

4. Metrics

The evaluation has been done using different metrics

available. The process is on to design some new metrics for

the purpose. This paper uses some of the available metrics

in different categories discussed below.

Total Source Instructions (LOC):

Reuse%:

Development Cost Avoidance (DCA):

Reuse Cost Avoidance (RCA):

Additional Development Cost (ADC):

Organizational ROI:

http://www.computersciencejournals.com/ijccn
http://home.stny.rr.com/jeffreypoulin/html/reucalc_basic.html#TSIdef
http://home.stny.rr.com/jeffreypoulin/html/reucalc_basic.html#ReusePercentdef
http://home.stny.rr.com/jeffreypoulin/html/reucalc_basic.html#DCAdef
http://home.stny.rr.com/jeffreypoulin/html/reucalc_basic.html#RCAdef
http://home.stny.rr.com/jeffreypoulin/html/reucalc_basic.html#ADCdef
http://home.stny.rr.com/jeffreypoulin/html/reucalc_basic.html#OrgROIdef

International Journal of Circuit, Computing and Networking http://www.computersciencejournals.com/ijccn

~ 18 ~

4.1 Development Cost Avoidance (DCA): The cost your

organization avoided during the development phase of the

project by reusing software. DCA combines with Service

Cost Avoidance to equal the total Reuse Cost Avoidance

(RCA) for your organization

4.2 Lines of Code (LOC): A logical line of code in a

programming language source file, informally counted by

the number of semi-colons in the code and formally counted

according to rules established by organizations or code

analysis tools

4.3 New Development Cost (Cost/LOC): The historical

cost to develop new software in your organization, in dollars

per line of code.

4.4 Organizational ROI: The total financial benefit to the

project due to your organization's reuse effort.

4.5 Reuse Cost Avoidance (RCA): The total financial

benefit to an organization resulting from reuse of software

obtained from someplace else

4.6 Reuse%: The indicator of reuse level based on the

definition of RSI.

Two separate cases has been taken as

1. Using same code for different languages and checking

reusability Factor.

2. Using different reusability factor and applying

component based model.

Graph 1: Reuse % with respect to language used

The representation in Graph 1 shows that whichever

language is used, in all cases CB model gives better results

of reuse %age. As is obvious, because of the nature of

Language used the factor changes accordingly. In the

present scene the table below shows the LOC that have

reused in languages chosen. An effort has been made to

keep the size same to take better view of the

Implementation.

The screen elements and some more I/O statements have

been added for OOPS languages to make the LOC same.

Different languages show different reusability factor. As is

obvious OOPS supporting languages have better reused

code than their procedural languages counterparts. Table 1

gives a view of the case.

Table 1: Reuse in languages

Language Reused code

JAVA 70%

C++ 61.8 %

C# 32.5 %

.NET 21%

The results are varied in terms of different parameters. In

terms of language the reusability is maximum in JAVA and

C++, thus supporting OOPS concept for reusability. The

reuse cost avoidance is another factor supporting JAVA and

C++. Apart from these results with language concerns, there

has been seen a major improvement in using component

based model. The model not only reduces development

efforts but also allows flexibility to the organization for

using constraints and other parameters. A considerable

result variation occurred in case of error in data inputs or in

case of missing or inconsistent values.

5. Conclusion

For assessing the adaptation of Software Component reuse

in software projects, a framework has been drawn of steps to

be followed in component selection as well as the guidelines

that can be an aid to project managers for considering the

characteristics of the components that will have an impact

on the factors that will determine their selection. The

Component based model has been used to prove its wroth in

reusability factor. Study reveals that OOPS support more

reusability than traditional languages and decision making

will be easier after checking language implementation.

There has been no significant relation between the number

of defects, and component size for all the components as a

group. The submission is that there are other factors than

size that may be more accountable. One factor may be

whether the component is reused or not. When reused and

non-reused components were analyzed separately, factors

such as type of functionality or programming language may

be some reasons to site. The study also showed that reused

components are less modified (more stable) than nonreused

ones, although they should meet evolving requirements

from several products. Stability is important in systems that

are developed incrementally, and over several releases.

Results can also be used as a baseline for comparison in

future studies on software reuse. The proposed scheme

major benefits can be sited as : Decreased level of

development effort (or increased productivity), Increased

level of product quality, Decreased level of development

time and Decreased level of additional development cost.

The points that can change the results significantly are

missing, inconsistent, or wrong data as a threat to internal

validity- but mostly missing data, and If reused and non-

reused components had very different functionality and

constraints. Efforts are on to produce more stability to the

scheme using more metrics and allowing more architectures

to support the model.

6. References

1. Abd-El-Haz SK, Basili VR, Caldiera G. Towards

Automated Support for Extraction of Reusable

Components. IEEE Conference on Software

Maintenance; c2020. p. 212-219.

2. D. Batory and S. O'Malley. The Design and

Implementation of Hierarchical Software Systems with

http://www.computersciencejournals.com/ijccn

International Journal of Circuit, Computing and Networking http://www.computersciencejournals.com/ijccn

~ 19 ~

Reusable Components. ACM Transactions on Software

Engineering and Methodology. 2020 Oct;1(4):355-398.

3. Jeng JJ, Cheng BHC. A Formal Approach to Reusing

More General Components. Proceedings of the IEEE

19th Knowledge-Based Software Engineering

Conference; c2019.

4. Jeng JJ, Cheng BHC. Specication Matching for

Software Reuse: A Foundation. Proceedings of ACM

SIGSOFT Symposium on Software Reusability, Seattle,

Washington; c2017. p. 97-105.

5. Maiden NA. Analogy as a Paradigm for Specication

Reuse. Software Engineering Journal, 2018 Jan;6(1):3-

15.

6. Maiden NA, Sutclie AC. Exploiting Reusable

Specications Through Analogy. Communications of the

ACM. 2017 Apr; 55(4):55-64.

7. Periyasamy K. A Formal Approach to Software

Reusability. Workshop on Incompleteness and

Uncertainty in Information Systems, Montreal, Canada,

Oct 2018, Workshops in Computing Series, Springer-

Verlag; c2018

8. Potter B, Sinclair J, Till D. An Introduction to Formal

Specication and Z, Prentice Hall International Series in

Computer Science; c2019.

9. Spivey JM. The Z Notation: A Reference Manual.

Eleventh Edition. Prentice Hall International Series in

Computer Science; c2019.

10. Spivey JM. The fuzz Manual (New Edition), J.M.

Spivey Computing Science Consultancy, July 2020.

11. Banker, R.D., Kemerer, C.F., Scale Economics in New

Software Development, IEEE Trans. Software

Engineering; c2020. p. 1199-1205.

12. Fenton NE, Ohlsson N, Quantitative Analysis of Faults

and Failures in a Complex Software System, IEEE

Trans. Software Engineering. 2021;26(8):797-814.

13. Graves TL, Karr AF, Marron JS, Siy H. Predicting

Fault Incidence using Software Change History. IEEE

Trans. Software Engineering 2020 July;26(7):653-661.

14. Malaiya KY, Denton J, Module Size Distribution and

Defect Density, Proc. 11th International Symposium on

Software Reliability Engineering- ISSRE’20; c2020. p.

62-71.

15. Neufelder AM. How to Measure the Impact of Specific

Development Practices on Fielded Defect Density,

Proc. 19th International Symposium on Software

Reliability Engineering (ISSRE’20); c2020. p. 148-160.

16. Ostrand TJ, Weyuker EJ. The Distribution of Faults in a

Large Industrial Software System, Proc. The

International Symposium on Software Testing and

Analysis (ISSTA’22), ACM SIGSOFT Software

Engineering Notes. 2022;27(4):55-64.

http://www.computersciencejournals.com/ijccn

