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Abstract 
Additive manufacturing (AM) has arisen as a promising advanced manufacturing innovation. 
Notwithstanding, its expansive selection in industry is as yet impeded by high passage boundaries of 
design for additive manufacturing (DfAM), restricted materials library, different preparing deserts, and 
conflicting product quality. Lately, machine learning (ML) has acquired expanding consideration in 
AM because of its unprecedented performance in information undertakings like order, relapse and 
grouping. This article gives a comprehensive audit on the cutting edge of ML applications in an 
assortment of AM spaces. In the DfAM, ML can be utilized to yield new elite Meta materials and 
advanced topological designs. In AM preparing, contemporary ML calculations can assist with 
upgrading measure parameters, and lead examination of powder spreading and in-measure deformity 
observing. On the production of AM, ML can help professionals in pre-manufacturing planning, and 
product quality assessment and control. In addition, there has been an expanding worry about 
information security in AM as information penetrates could happen with the guide of ML procedures. 
This paper puts forth the challenges arising when machine learning techniques are used during quality 
control and data security in the field of additive manufacturing. Then we propose few risk mitigation 
strategies to counter those challenges. This paper can be a readymade guide for practitioners who are 
involved in AM process considering ML solutions in the process. 
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Introduction 
Additive manufacturing permits industries to grow minimal expense customized and on-
demand products or complex pieces of a machine in a brief timeframe, which brings about 
low energy utilization and less waste materials. In additive manufacturing, cost prediction of 
a product (i.e., machine or a piece of a machine) is a significant factor that straightforwardly 
affects the production and is a testing measure [1]. In smart industries, because of ML and Big 
Data methods, the expense of various products can be precisely predicted. Be that as it may, 
precise predictions require an adequate amount of manufacturing information/information, 
which could be gotten from the crude data created during the manufacturing and inventory 
network process [2, 3]. The manufacturing and store network process. In writing, a few 
intriguing arrangements have been proposed for breaking down various parts of additive 
manufacturing. The utilization of advanced data model string for additive manufacturing is 
presented with the answers for data the board to meet the necessities of present day 
industries. Like any manufacturing technology, additive manufacturing needs certain 
framework conditions to achieve the best cost-benefit ratio [4]. For instance, introducing the 
expensive tool prices of injection molding can compensate the production costs, industrial 
3D printing drives some profits in multiple domains like: Construction of basic components 
with efficient cost, decrease the costs related to production and storage of spare entities by 
manufacturing the parts on demand, speed up the development of the products and 
developing models to stay ahead of competitors, overhauling the products [5, 6]. Additive 
manufacturing was originally used for rapid prototyping, so as to develop few robust visual 
and functional prototypes. It results into considerable speeding of product development and 
its entry into the market. From that period, additive manufacturing has found its stronghold 
into series production. It has created various nascent opportunities in dynamic areas 
including healthcare, automobile industries and aerospace industries, consumer goods etc [7]. 
The AM mechanisms influencing Machine Learning (ML) can be categorised under 3 classes 
of technology, namely powder bed fusion (PBF), directed energy deposition (DED) and 
material extrusion.
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These 3 mechanisms are so much popular that they have 

attracted considerable amount of attention in academic 

research and industrial applications.ML is a subset of 

artificial intelligence (AI) technique that helps a machine or 

system to learn from input data by employing training 

methods and supports in decision making by predictive 

results. In the field of research, ML is improving its 

importance and producing huge impact in the areas like 

medical diagnostics, material property prediction, smart 

manufacturing, autonomous driving, natural language 

processing and object recognition.ML procedures are 

generally sorted as supervised, unsupervised and 

reinforcement learning [8, 9]. Supervised learning empowers 

a PC program to gain from a bunch of named data in the 

preparation set so it can distinguish unlabelled data from a 

test set with the most noteworthy conceivable precision [10]. 

The datasets can be in an assortment of forms including 

forms of pictures, brief snippets or text. There is a target 

work known as cost work, which computes the mistake 

between the predicted yield esteems and the genuine yield 

esteems. In the preparation cycle, the parameters (or loads) 

between neurons in contiguous layers are refreshed to 

decrease the expense work after every emphasis (or age) [11]. 

In the testing interaction, the previously concealed new data, 

for example test set, is acquainted with give a fair-minded 

assessment of the model's exactness. Unsupervised learning 

surmises from unlabelled data. It is a data-driven ML 

method which can uncover hidden examples or gathering 

comparable data together (for example grouping) in a given 

random dataset [12]. Unsupervised learning is broadly 

utilized in anomaly detection, recommendations systems, 

and market segmentation. Reinforcement learning is a semi-

supervised ML worldview which permits the model to 

collaborate with the climate and figure out how to make the 

best moves that can yield the best rewards. It requires no 

preparation dataset, and the model gains from its own 

behaviour [13]. Reinforcement learning is prevalently 

embraced in mechanical arms, self-ruling cars, and Alpha-

Go. 

 

Related Work 

For many years, materials researchers and architects have 

concocted a wide assortment of composites with properties 

that are not found in nature yet surpass their constituent 

mass materials, which are regularly alluded to as 

metamaterials. Nonetheless, designing metamaterials 

physically by the Edisonian approach is extremely difficult 

and comprehensive. This is because of the cosmic number 

of potential blends. With the guide of the contemporary ML 

strategies, the revelation cycle of metamaterials can be 

altogether facilitated. The new progression of ML permits 

material researchers and architects to jump from predicting 

material properties to designing novel metamaterials. 

Moreover, AM strategies can materialize the designs that 

were unworkable to create, as shown in numerous analysts' 

works. The potential for the collaboration of cutting edge 

ML in materials design and AM procedures remains 

relatively unexploited. Chet et al. built up a totally robotized 

interaction to find ideal constructions for metamaterials, 

which were later tentatively approved by particular laser 

sintering (SLS) measure with the PEBA2301 elastic 

material. It is imagined that given the ideal elastic material 

properties, for example Youthful's modulus, Poisson's ratio 

and shear modulus, the framework can produce bespoke 

microstructure that matches the determination through ML. 

Gu et al. [14] randomly produced 100,000 microstructures by 

utilizing 3 kinds of unit cells on a 8 by 8 grid structure, 

which correspond to under 10−8% of the relative multitude 

of potential mixes. Convolutional neural networks (CNN) 

was then applied to prepare the database where mechanical 

properties were determined by limited component technique 

(FEM) and made new microstructural examples of a 

composite metamaterial that was multiple times more 

grounded and multiple times tougher. 

Their designs were approved by multi-material streaming 

AM process. One feature is that ascertaining the mechanical 

properties took FEM recreation roughly 5 days, while it just 

required 10 h for CNN to prepare and under 1 min to yield 

the same amount of data. Generally, measure parameter 

improvement and enhancement are executed by design of 

examination or re-enactment strategies to additively produce 

new materials. In any case, the design of examination 

approach normally includes experimentation, which is 

tedious and expensive, especially for metal AM. The actual 

based reproduction can uncover the fundamental instrument 

for the formation of explicit highlights during handling, for 

example melt pool math, keyhole, Microstructure. All things 

considered, large scale recreations, for example FEM, may 

experience the ill effects of inconsistencies with test results 

due to the worked on assumptions. The progressively more 

complex methods, for example computational liquid 

dynamics, as a rule center on single tracks or a negligible 

number of tracks and layers. This makes it trying to predict 

the mechanical properties of the parts at a large scale or 

continuum. Therefore, numerous scientists have explored 

the possibility of acquainting ML approaches with settle the 

previously mentioned challenges in measure improvement 

of metal AM. It is tracked down that under the different AM 

measures, ML was chiefly used to interface their key cycle 

parameters to the quality indicators at two levels, namely 

mesoscale level (for example porosity or relative density, 

melt pool geometries) and macro-scale level (for example 

mechanical properties). Moreover, a few scientists applied 

ML to build measure maps, which could fill in as an 

amazing representation device to distinguish the cycle 

windows. 

 

Quality Control Challenges using ML 

One basic factor that thwarts the confirmation of AM items 

is the irregularity of item quality from one machine to 

another of the same cycle, or even from one form to another 

of the same machine. The irregularity may prompt varieties 

in geometrical exactness, relative thickness, measure 

soundness and mechanical properties. Consequently, broad 

examination works have endeavoured to apply ML 

techniques to accomplish quality control of AM parts. 

Geometric errors can be limited by three techniques, namely 

rescaling the whole part, adjusting the original CAD, and 

executing measure control. The scaling proportion can be 

anticipated through MLP or CNN to change the general size 

of parts before manufacture. The shape subordinate 

geometric deviations because of warm pressure can be 

displayed by ML algorithms in order to make important 

geometric adjustment in CAD record. More explicitly, MLP 

was executed to make up for geometrical deformation to 

neutralize the warm impacts coming about because of SLM 

preparing, as exhibited by numerous scientists. FEM re-

enactment information were prepared to anticipate the 
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deformed areas to adjust the original CAD math. A 

comparative methodology was used by Noriega et al. In 

FDM printing, where test information were prepared rather 

than reproduction information. To accomplish measure 

control, SOM can connect explicit sorts of geometric 

deviations to certain interaction conditions. This 

methodology can likewise altogether decrease the amount of 

3D point cloud information required while surveying the 

geometric exactness of AM parts utilizing a laser scanner, 

when contrasted with numerous mainstreams supervised 

ML draws near. Moreover, by controlling interaction 

parameters for DED, the state of single tracks can be 

controlled to lessen geometric errors at the macro scale. In 

the PBF interaction, surface pictures taken of each created 

layer after laser openness can be utilized to prepare ML 

algorithms for early detection of twisted parts before 

powder covering was performed. To improve the relative 

form thickness, measure solidness and mechanical 

performance of AM-constructed parts, in-measure 

monitoring is utilized by presenting different sensors and 

cameras as talked about beforehand. The sign emanations, 

principally visual signs and acoustic signs, are gathered and 

handled to prepare diverse ML algorithms to monitor the 

printing interaction. Here in AM, ML can be applied to 

consequently analyze printing status and disappointment 

modes, melting condition, porosity detection, tensile 

property expectation, and surface harshness forecast. 

 

Data security Challenges with ML 

Intellectual property (IP) protection is considered as high 

priority in many fields. By and large, advanced 

manufacturing comprises of two major parts, for example 

cyber domain and physical domain. In spite of the fact that 

information penetrates or IP spillage is normally brought 

about by the cyber domain, it can likewise happen through 

the physical domain (otherwise called side channels), as AM 

frameworks can emanate different signals while making 3D 

items. IP espionage may exploit ML strategies to deal with 

the transmitted signals to reproduce CAD information in a 

roundabout way. Up to this point, using ML to reproduce 

3D items from side channels is demonstrated to be possible 

essentially by means of gathering acoustic signals during 

printing. The acoustic signals from stepper motors of a 

FDM could be gathered by receivers. This sign can by 

implication reflect G-code, which releases the information 

like the movement of axis, speed of nozzle, temperature and 

extrusion amount of materials for the FDM interaction. The 

extricated highlights of acoustic information can be used to 

prepare ML algorithms to remake a vital model with axis 

expectation exactness of 78% and length forecast error of 

18%, according to different analysts. In a more difficult to-

identify IP robbery situation, the espionage can even place 

his cell phone close to the equipment to catch the acoustic 

information. 

 

Mitigating the risks associated with ML during Additive 

Manufacturing 

In this section we consider the inherent limitations of 

adopting ML in the design, process or production of AM.A 

huge challenge is the shortcomings in the predictive 

outcomes given by the ML algorithms. This may cause 

subsequent significant loss to the AM design process. We 

discuss regarding following risks and represent mitigation 

methods  

Risk 1: Involvement of Ethics 

This amount of data, coupled with the rapid development of 

processor power and computer parallelization, has now 

made it possible to obtain and study huge amounts of data 

with relative ease. We are now currently enteringa age in 

which we trust algorithms and data more than our own 

judgment and logic. 

The idea of trusting data and algorithms more than our own 

judgment has its pros and cons. obviously, we benefit from 

these algorithms, otherwise, we wouldn’t be using them in 

the first place. These algorithms allow us to automate 

processes by making informed judgments using available 

data. Sometimes, however, this means replacing someone’s 

job with an algorithm, which comes with ethical 

ramifications. Additionally, who do we blame if something 

goes wrong? Consider the AM process involved in the 

manufacturing of a self-driving car. If an unethical engineer 

is involved in the AM process to detect a defect and he 

passes the validation results after reducing the defect 

percentage, the future risk associated with that system may 

result into accidents. 

 

Risk 2: Problems which are Deterministic  

Machine learning is incredibly powerful for sensors and can 

be used to help calibrate and correct sensors when 

connected to other sensors measuring environmental 

variables such as temperature, pressure, and humidity. The 

correlations between the signals from these sensors can be 

used to develop self-calibration procedures during AM 

process. So we can observe that, things get a bit more 

interesting when it comes to computational modelling. 

Running computer models that simulate procedures 

involving quality control are very computationally 

expensive. In fact, it is so computationally expensive, that a 

research-level simulation can take weeks even when running 

on a supercomputer. Machine learning is stochastic, not 

deterministic. A neural network does not understand all the 

additive manufacturing principles. 

Be that as it may, this may not be a constraint for long. 

There are different scientists taking a gander at adding 

physical constraints to neural organizations and different 

calculations with the goal that they can be utilized for 

purposes like this. 

 

Risk 3: Data 

This limitation is too obvious. If the designers are unable to 

train the model properly, then poor results will be obtained. 

This can manifest itself in two ways: lack of data, and lack 

of good data. 

Many machine learning calculations require a lot of 

information before they start to give valuable outcomes. A 

genuine illustration of this is a neural organization. Neural 

networks are information eating machines that require 

plentiful measures of training information. The bigger the 

design, the more information is expected to create feasible 

outcomes. Reusing information is an impractical notion, and 

information augmentation is helpful somewhat, yet having 

more information is consistently the favoured arrangement. 

If you can get the data, then use it. 

 

Risk 4: Misapplication 

Identified with the subsequent impediment examined 

already, there is purported to be a emergency of machine 

learning in scholarly exploration whereby individuals 
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indiscriminately use machine learning to attempt to break 

down frameworks that are either deterministic or stochastic 

in nature.  

For reasons examined in constraints, applying machine 

learning on deterministic frameworks will succeed, yet the 

algorithm which not be learning the connection between the 

two factors, and won't know when it is abusing physical 

laws. We essentially gave a few information sources and 

yields to the framework and advised it to get familiar with 

the relationship — like somebody deciphering word for 

word out of a word reference, the algorithm will just seem 

to have an easy handle of the hidden physical science.  

For stochastic (irregular) frameworks, things are somewhat 

more subtle. The emergency of machine learning for 

arbitrary frameworks shows itself in following 2 ways: 

1. P-hacking 

2. Scope of the analysis 

 

1. P-hacking 

When one has access to large data, which may have 

hundreds, thousands, or even millions of variables, it is not 

too difficult to find a statistically significant result (given 

that the level of statistical significance needed for most 

scientific research is p < 0.05). This often leads to spurious 

correlations being found that are usually obtained by p-

hacking (looking through mountains of data until a 

correlation showing statistically significant results is found). 

These are not true correlations and are just responding to the 

noise in the measurements. 

This has resulted in individuals ‘fishing’ for statistically 

significant correlations through large data sets, and 

masquerading these as true correlations. Sometimes, this is 

an innocent mistake (in which case the scientist should be 

better trained), but other times, it is done to increase the 

number of papers a researcher has published — even in the 

world of academia, competition is strong and people will do 

anything to improve their metrics. 

 

2. Scope of the Analysis 

There are inherent differences in the scope of the analysis 

for machine learning as compared with statistical modelling 

- statistical modelling is inherently confirmatory, and 

machine learning is inherently exploratory. 

We can consider confirmatory analysis and models to be the 

kind of thing that someone does in a Ph.D. program or in a 

research field. Imagine you are working with an advisor and 

trying to develop a theoretical framework to study some 

real-world system. This system has a set of pre-defined 

features that it is influenced by, and, after carefully 

designing experiments and developing hypotheses you are 

able to run tests to determine the validity of your 

hypotheses. 

Exploratory, on the other hand, lacks a number of qualities 

associated with the confirmatory analysis. In fact, in the 

case of truly massive amounts of data and information, the 

confirmatory approaches completely break down due to the 

sheer volume of data. In other words, it simply is not 

possible to carefully lay out a finite set of testable 

hypotheses in the presence of hundreds, much less 

thousands, much less millions of features. 

Therefore and, again, broadly speaking, machine learning 

algorithms and approaches are best suited for exploratory 

predictive modelling and classification with massive 

amounts of data and computationally complex features. 

Some will contend that they can be used on “small” data but 

why would one do so when classic, multivariate statistical 

methods are so much more informative? 

ML is a field which, in large part, addresses issues derived 

from information technology, computer science, and so on, 

these can be both theoretical and applied problems. As such, 

it is related to fields such as physics, mathematics, 

probability, and statistics but ML is really a field unto itself, 

a field which is unencumbered by the concerns raised in the 

other disciplines. Many of the solutions ML experts and 

practitioners come up with are painfully mistaken…but they 

get the job done. 

 

Risk 5: Interpretability 

Interpretability is one of the essential issues with machine 

learning. An AI consultancy firm attempting to pitch to a 

firm that possibly utilizes customary measurable techniques 

can be halted abruptly in the event that they don't consider 

the to be as interpretable. On the off chance that you can't 

persuade your customer that you see how the algorithm 

went to the choice it did, how probably would they say they 

are to confide in you and your skill?  

These models as such can be delivered feeble except if they 

can be deciphered, and the interaction of human 

understanding adheres to decides that work out in a good 

way past specialized ability. For this explanation, 

interpretability is a principal quality that machine learning 

strategies should plan to accomplish in the event that they 

are to be applied practically speaking. 

 

Future Directions 

The as of late settled utilizations of the ML-based strategies 

in the DfAM, AM interaction, and AM creation were 

completely referenced in past areas. It very well may be 

seen that the dominant part of the ebb and flow utilizations 

of ML in AM research fields are seriously focused on 

handling related cycles like parameter advancement and in-

measure observing. In any case, we can anticipate to see the 

mind-boggling ML research endeavours paid on new 

materials, normal assembling plan just as in-measure 

automated input framework for AM, which would 

additionally assist with pushing forward savvy or wise AM 

sooner rather than later. We likewise imagine that further 

developed ML calculations, like XG Boost, can essentially 

help both computational speed and execution. It is 

significant that the greater part of the AM written works 

including ML that we have surveyed in this article are 

principally zeroing in on the designing and plan parts of 

AM. Be that as it may, the utilization of ML in science and 

innovation parts of AM is still infrequently detailed, in 

especially the microstructure study, new composite plan, 

property forecast and geography advancement. This survey 

means to investigate the plausibility of interpreting cutting 

edge ML strategies into numerous other intriguing 

examination sub-fields in AM sooner rather than later. We 

accept that the accompanying ML-based applications chose 

underneath will have a critical sway on the AM people 

group. 

 

Conclusion 

Recognizing new open doors in the AM lifecycle is just a 

forerunner to the information challenges that will emerge 

when looking to make the most of these chances. For 

example, further research is required for in-situ information 
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sensor combination. The combination of warm, acoustic, 

optical and other build environmental information can make 

a more comprehensive, dependable and precise data source 

for ongoing defect detection and correction with criticism 

control. Different freedoms incorporate utilizing ML to 

build models corresponding in-situ and ex-situ information, 

for example, IR recordings with NDE X-CT information. 

Such a methodology could empower the "qualify-as-you-

build" objective for AM and lessen reliance on post build 

NDE capability. As new AM informational collections keep 

on arising so will new freedoms to use ML procedures to 

improve the manufacture of AM parts. 
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