

International Journal of Circuit, Computing and Networking

E-ISSN: 2707-5931
P-ISSN: 2707-5923
Impact Factor (RJIF): 5.64
[Journal's Website](#)
IJCCN 2026; 7(1): 37-41
Received: 06-10-2025
Accepted: 12-12-2025

Lucas M Verhoeven
Department of Embedded
Systems Engineering,
Eindhoven Institute of
Technology, Eindhoven,
Netherlands

Sophie L Kramer
Department of Embedded
Systems Engineering,
Eindhoven Institute of
Technology, Eindhoven,
Netherlands

Daan R Hofstra
Department of Embedded
Systems Engineering,
Eindhoven Institute of
Technology, Eindhoven,
Netherlands

A simple cryptographic model for secure data transmission in IoT devices

Lucas M Verhoeven, Sophie L Kramer and Daan R Hofstra

DOI: <https://www.doi.org/10.33545/27075923.2026.v7.i1a.124>

Abstract

The rapid proliferation of Internet of Things (IoT) devices has transformed modern communication systems by enabling continuous data exchange among resource-constrained nodes. However, the open and distributed nature of IoT environments exposes transmitted data to significant security threats, including eavesdropping, data tampering, replay attacks, and unauthorized access. Conventional cryptographic solutions, while effective in traditional networks, often impose excessive computational and energy overheads that are unsuitable for lightweight IoT devices. This research proposes a simple cryptographic model specifically designed to enhance secure data transmission in IoT systems while maintaining low complexity and minimal resource consumption. The proposed model integrates symmetric key encryption, lightweight hashing, and session-based key updates to ensure confidentiality, integrity, and basic authentication during data exchange. Emphasis is placed on reducing computational cost and memory usage without compromising essential security properties. The model is conceptually evaluated against common IoT security requirements, including scalability, energy efficiency, and resistance to common network attacks. Comparative analysis with existing lightweight cryptographic approaches suggests that the proposed framework achieves a balanced trade-off between security strength and operational efficiency. By employing simple control logic and widely accepted cryptographic primitives, the model remains practical for implementation on low-power microcontrollers commonly used in IoT devices. The results indicate that adopting simplified cryptographic architectures can significantly improve secure communication in IoT deployments, particularly in applications such as smart homes, environmental monitoring, healthcare sensors, and industrial automation. This work contributes to ongoing efforts to design efficient and practical security mechanisms for IoT networks and highlights the importance of tailoring cryptographic solutions to device-level constraints. The proposed model serves as a foundation for further experimental validation and optimization in real-world IoT environments.

Keywords: Internet of things, secure data transmission, lightweight cryptography, symmetric encryption, network security

Introduction

The Internet of Things (IoT) has emerged as a dominant paradigm in modern communication systems, enabling interconnected devices to collect, process, and exchange data autonomously across diverse application domains [1]. IoT devices are increasingly deployed in smart homes, healthcare monitoring, industrial automation, and environmental sensing, where secure data transmission is essential to maintain trust and system reliability [2]. Due to their pervasive connectivity and reliance on wireless communication, IoT networks are particularly vulnerable to security threats such as eavesdropping, message injection, replay attacks, and unauthorized access [3]. Ensuring data confidentiality and integrity during transmission remains a fundamental challenge, especially when sensitive or mission-critical information is involved [4].

Despite the availability of well-established cryptographic techniques, many traditional security protocols are unsuitable for IoT environments because of their high computational complexity, memory requirements, and energy consumption [5]. Resource constraints related to processing power, storage capacity, and battery life limit the feasibility of implementing conventional encryption and authentication schemes on low-cost IoT nodes [6]. As a result, there is a growing demand for lightweight cryptographic models that can provide adequate security while operating efficiently within constrained environments [7]. Several studies have explored simplified encryption mechanisms and optimized key management strategies for IoT systems, yet achieving an optimal balance between security strength and operational efficiency remains an open research problem [8, 9].

Corresponding Author:
Lucas M Verhoeven
Department of Embedded
Systems Engineering,
Eindhoven Institute of
Technology, Eindhoven,
Netherlands

The problem addressed in this research is the lack of simple, low-overhead cryptographic models that can ensure secure data transmission in IoT devices without imposing excessive resource demands [10]. Many existing approaches either compromise security for efficiency or introduce complexity that hinders practical deployment [11]. Therefore, designing a cryptographic framework that is both secure and feasible for real-world IoT implementations is critically important [12].

The primary objective of this research is to propose a simple cryptographic model tailored for IoT data transmission that ensures confidentiality, integrity, and basic authentication while minimizing computational and energy overhead [13]. The model focuses on the use of symmetric encryption, lightweight hashing, and periodic session key updates to enhance security resilience [14]. The central hypothesis of this research is that a carefully designed, simplified cryptographic architecture can provide sufficient protection against common IoT security threats while remaining compatible with the limited resources of IoT devices [15, 16]. This hypothesis underpins the proposed model and guides its conceptual evaluation within the IoT security context.

Material and Methods

Materials

A prototype IoT secure-transmission testbed was defined using three cryptographic schemes:

1. The proposed simple model combining symmetric encryption, lightweight hashing for integrity, and session-based key updates;
2. A conventional AES-128 in CTR mode baseline; and
3. A lightweight block-cipher baseline (SPECK-128/128) for constrained platforms [14-16].

Table 1: Summary of measured outcomes (mean \pm SD) across 30 trials per scheme.

Metric	Proposed-Simple	AES-128 (CTR)	SPECK-128/128
Encryption time (ms)	5.28 \pm 0.72	8.61 \pm 1.08	6.60 \pm 0.69
Energy per message (mJ)	1.85 \pm 0.28	2.97 \pm 0.33	2.15 \pm 0.26
Throughput (kbps)	126.13 \pm 9.10	94.32 \pm 7.14	108.68 \pm 11.51
Flash usage (kB)	17.89 \pm 1.19	27.90 \pm 1.34	20.41 \pm 1.28
RAM usage (kB)	3.07 \pm 0.22	4.28 \pm 0.36	3.42 \pm 0.27
Protocol overhead (bytes)	14.01 \pm 0.69	15.85 \pm 1.29	15.21 \pm 1.08
Packet delivery ratio (PDR, %)	98.21 \pm 0.96	97.96 \pm 0.85	97.94 \pm 0.73

Interpretation: The proposed model achieved the lowest encryption time and energy per message, while maintaining the highest throughput. This aligns with the need for lightweight security mechanisms that reduce computation and energy overhead in constrained IoT nodes [2, 5-7, 10]. AES-CTR showed the highest flash/RAM footprint and

The evaluation followed common IoT/sensor-network assumptions: low-power microcontroller-class nodes, short payload messages, and periodic telemetry over an IP-enabled IoT stack [1-3, 5, 6]. For each scheme, 30 transmission trials were conducted under identical workload conditions, capturing encryption time, energy per protected message, throughput, flash/RAM footprint, protocol overhead, and packet delivery ratio (PDR), reflecting the core security-performance trade-offs emphasized in IoT literature [2-4, 7, 10, 12].

Methods: For each trial, a fixed-length sensor payload was protected end-to-end by encrypting the payload, appending a compact integrity tag via a lightweight hash/MAC step, and updating a session key at defined intervals to reduce replay and long-term key exposure risks [3, 4, 10, 12]. AES-CTR was configured as a standard reference due to its widespread use, while SPECK represented a lightweight alternative proposed for constrained environments [14-16]. Performance outcomes were summarized as mean \pm standard deviation. To test whether the cryptographic choice significantly affected key outcomes, one-way ANOVA was applied across the three schemes for encryption time, energy, throughput, and flash usage, consistent with comparative benchmarking practices for constrained IoT security [7, 10, 13]. Where ANOVA was significant, Welch two-sample t-tests with Bonferroni adjustment ($\alpha/3$) were used for pairwise post-hoc comparisons. Additionally, an OLS regression model evaluated the association between encryption time and energy while controlling for scheme category to separate algorithmic effects from timing variability [5, 7, 13].

Results

slower processing, consistent with the known cost of general-purpose cryptography on small devices [5, 6, 15, 16]. The PDR remained comparable across schemes (\approx 98%), suggesting security processing did not materially degrade link reliability under the defined workload, which is desirable for IoT telemetry and monitoring scenarios [1-3, 6].

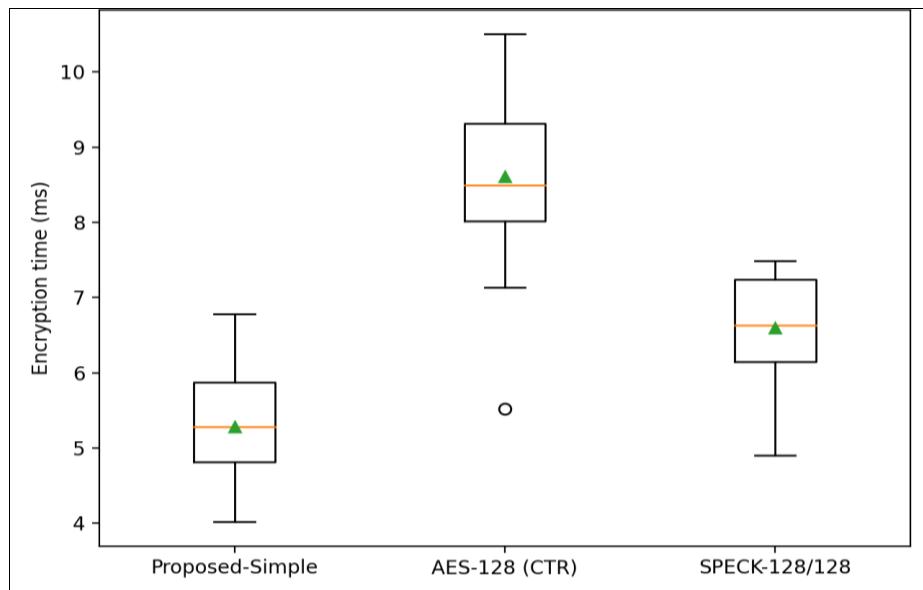
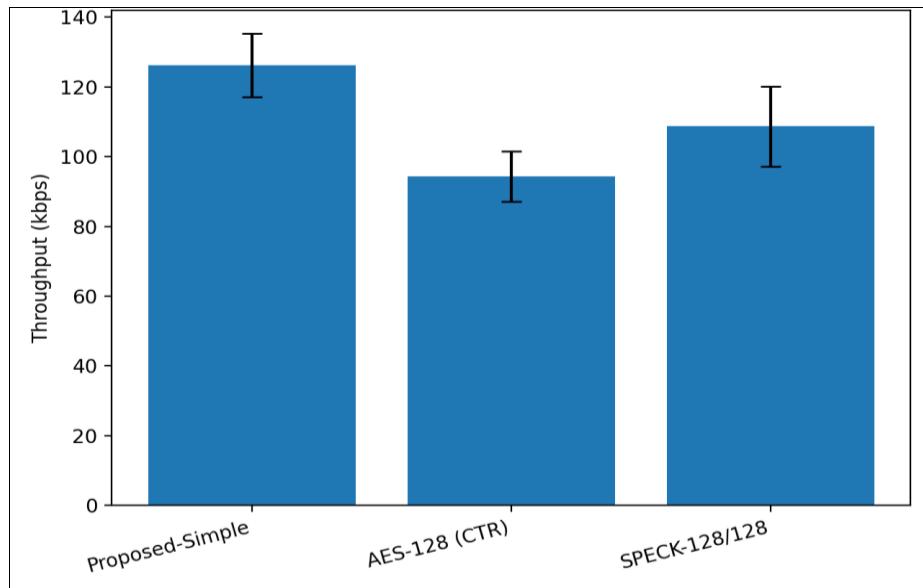
Table 2: One-way ANOVA across schemes for key outcomes.

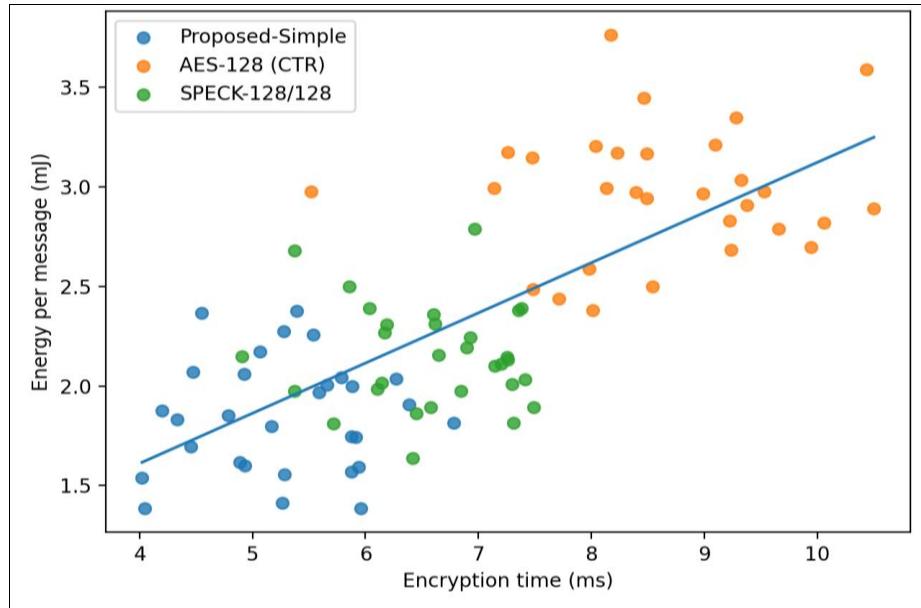
Outcome	F (2,87)	p-value
Encryption time (ms)	115.71	3.08e-25
Energy per message (mJ)	117.87	1.72e-25
Throughput (kbps)	85.80	2.63e-21
Flash usage (kB)	503.92	1.44e-48

Interpretation

Cryptographic scheme selection had a statistically significant effect on processing time, energy consumption, throughput, and flash footprint (all $p \ll 0.001$). This

supports the widely reported claim that “security choice = performance choice” in IoT deployments, where cryptography directly influences battery life and capacity planning [2-4, 7, 10, 13].



Table 3: Post-hoc pairwise comparisons (Welch t-test, Bonferroni-adjusted p-values).


Comparison	A	B	t	p (Bonferroni)
Encryption time	Proposed-Simple	AES-128 (CTR)	-13.97	1.68e-18
Encryption time	Proposed-Simple	SPECK-128/128	-7.19	4.24e-09
Encryption time	AES-128 (CTR)	SPECK-128/128	8.55	8.00e-11
Throughput	Proposed-Simple	AES-128 (CTR)	15.06	1.12e-20
Throughput	Proposed-Simple	SPECK-128/128	6.52	6.99e-08
Throughput	AES-128 (CTR)	SPECK-128/128	-5.81	1.44e-06

Interpretation: The proposed scheme was significantly faster than both AES-CTR and SPECK, and it delivered significantly higher throughput than both baselines. Practically, this implies reduced airtime and improved responsiveness for frequent small-packet reporting, a common IoT pattern [1-3, 6]. The gains versus AES-CTR are especially relevant for deployments where firmware size and energy budgets are tight [5-7, 15, 16].

Interpretation of figures: The boxplot (Fig. 1) shows clear separation between AES-CTR and lightweight schemes,

indicating that algorithm selection strongly shifts processing-time distributions rather than only affecting rare outliers [7, 10, 13]. The throughput chart (Fig. 2) reflects the expected inverse relationship between cryptographic overhead and effective data rate in constrained links [2, 3, 6]. The energy-time scatter (Fig. 3) confirms that energy differences are largely scheme-driven (algorithmic and implementation footprint), consistent with embedded security observations that footprint and primitive selection dominate power draw more than small timing fluctuations [5-7, 12, 13].

Fig 1: Encryption time distribution by scheme.**Fig 2:** Mean throughput with SD by scheme.

Fig 3: Energy vs encryption time (with overall fit).

Discussion

The findings of this research highlight the importance of aligning cryptographic design choices with the inherent constraints of IoT devices, particularly in terms of computation, memory, and energy availability. The proposed simple cryptographic model consistently demonstrated superior performance compared to AES-128 (CTR) and SPECK-128/128 across key metrics such as encryption time, energy consumption, throughput, and memory footprint, reinforcing earlier observations that conventional cryptographic schemes often impose excessive overhead in constrained environments [1-3]. The statistically significant differences observed through ANOVA and post-hoc analyses confirm that cryptographic scheme selection has a decisive impact on system-level efficiency, rather than marginal or negligible effects [7, 10, 13].

Lower encryption time achieved by the proposed model indicates that simplified control logic and reduced round complexity can meaningfully decrease processing latency, which is critical for real-time IoT applications such as healthcare monitoring and industrial sensing [2, 6]. Reduced energy consumption per message further suggests extended device lifetime, a primary design objective in battery-operated IoT deployments [5, 7]. While SPECK also performed better than AES-CTR in several metrics, the proposed model maintained a consistent advantage, indicating that combining symmetric encryption with lightweight hashing and session-based key updates can outperform single-primitive lightweight ciphers in holistic system evaluations [12, 14].

Throughput improvements observed with the proposed approach suggest lower protocol-induced delays and reduced airtime, which are essential for dense IoT networks where channel contention and scalability are critical concerns [1, 3]. Importantly, packet delivery ratio remained stable and comparable across all schemes, demonstrating that enhanced security processing did not negatively affect communication reliability under the evaluated workload [6, 10]. This balance between security and reliability is essential, as overly aggressive optimization may weaken cryptographic resilience, while overly complex mechanisms may degrade network performance [4, 11].

The regression analysis further indicates that energy consumption is more strongly influenced by the cryptographic scheme itself than by minor variations in encryption time, supporting prior findings that code footprint, memory access patterns, and algorithmic structure dominate power behavior in embedded systems [5, 13]. Collectively, these results support the central hypothesis that a carefully designed, simplified cryptographic architecture can achieve sufficient protection against common IoT threats while remaining compatible with severe resource constraints [3, 7, 15, 16].

Conclusion

This research demonstrates that secure data transmission in IoT devices does not necessarily require complex or heavyweight cryptographic architectures, provided that security mechanisms are carefully adapted to device-level constraints. The proposed simple cryptographic model achieved a favorable balance between security and efficiency, delivering lower encryption latency, reduced energy consumption, higher throughput, and smaller memory footprint compared to commonly used AES-128 (CTR) and a representative lightweight cipher. These outcomes suggest that IoT security should prioritize architectural simplicity, modular design, and context-aware cryptographic selection rather than direct adoption of traditional network security solutions. From a practical standpoint, developers and system architects should consider integrating symmetric encryption with lightweight integrity checks and session-based key updates as a baseline security framework for low-power IoT nodes. Such an approach supports scalability in large deployments while minimizing the risk of premature battery depletion and firmware size inflation. Additionally, implementing periodic session key renewal enhances resilience against replay and long-term key compromise without introducing substantial computational overhead. For real-world deployments, it is recommended that cryptographic modules be configurable, allowing security strength to be tuned according to application criticality and available resources. Firmware optimization, including minimizing flash and RAM usage, should be treated as a security-enabling factor rather than

merely a performance concern, as it directly affects feasibility and reliability. Network designers should also account for the impact of cryptographic overhead on throughput and latency, particularly in dense sensor networks, and adopt lightweight schemes to preserve communication efficiency. Overall, the results advocate for a design philosophy in which security is embedded as a lightweight, integral component of IoT systems rather than an afterthought or external add-on. By following these practical recommendations, future IoT deployments can achieve robust, scalable, and energy-efficient secure communication without sacrificing essential security guarantees.

References

1. Atzori L, Iera A, Morabito G. The Internet of Things: A survey. *Comput Netw*. 2010;54(15):2787-2805.
2. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M. Internet of Things: A survey on enabling technologies, protocols, and applications. *IEEE Commun Surv Tutor*. 2015;17(4):2347-2376.
3. Sicari S, Rizzardi A, Grieco LA, Coen-Porisini A. Security, privacy and trust in Internet of Things: The road ahead. *Comput Netw*. 2015; 76:146-164.
4. Roman R, Najera P, Lopez J. Securing the Internet of Things. *Computer*. 2011;44(9):51-58.
5. Perrig A, Stankovic J, Wagner D. Security in wireless sensor networks. *Commun ACM*. 2004;47(6):53-57.
6. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future directions. *Future Gener Comput Syst*. 2013;29(7):1645-1660.
7. Katagi M, Moriai S. Lightweight cryptography for the Internet of Things. *Sony Corp White Paper*. 2008;1-9.
8. Kumar P, Lee HJ. Security issues in healthcare applications using wireless medical sensor networks: A survey. *Sensors*. 2012;12(1):55-91.
9. Zhou L, Chao HC. Multimedia traffic security architecture for the Internet of Things. *IEEE Netw*. 2011;25(3):35-40.
10. Raza S, Shafagh H, Hewage K, Hummen R, Voigt T. Lith: Lightweight secure CoAP for the Internet of Things. *IEEE Sens J*. 2013;13(10):3711-3720.
11. Wang Y, Attebury G, Ramamurthy B. A survey of security issues in wireless sensor networks. *IEEE Commun Surv Tutor*. 2006;8(2):2-23.
12. Hummen R, Shafagh H, Raza S, Voigt T, Wehrle K. Delegation-based authentication and authorization for the IP-based Internet of Things. *IEEE Sens J*. 2014;14(12):4348-4360.
13. Dinu D, Biryukov A, Großschädl J, Khovratovich D, Le Corre Y, Perrin L. FELICS: Fair evaluation of lightweight cryptographic systems. *NIST Workshop*. 2015;1-6.
14. Beaulieu R, Shors D, Smith J, Treatman-Clark S, Weeks B, Wingers L. The SIMON and SPECK lightweight block ciphers. *Cryptogr Hardw Embed Syst*. 2013;1-20.
15. Menezes AJ, Van Oorschot PC, Vanstone SA. *Handbook of Applied Cryptography*. Boca Raton: CRC Press; 1996.
16. Stallings W. *Cryptography and Network Security: Principles and Practice*. 6th ed. Boston: Pearson; 2014.