

International Journal of Circuit, Computing and Networking

E-ISSN: 2707-5931
P-ISSN: 2707-5923
Impact Factor (RJIF): 5.64
[Journal's Website](#)
IJCCN 2026; 7(1): 16-20
Received: 08-09-2025
Accepted: 16-11-2025

Lucas A Moretti
Department of Audio
Engineering, Politecnico di
Milano Technical College,
Milan, Italy

Comparative analysis of analog and digital signal processing techniques for audio signals

Lucas A Moretti

DOI: <https://www.doi.org/10.33545/27075923.2026.v7.i1a.120>

Abstract

Signal processing plays a crucial role in the acquisition, analysis, modification, and reproduction of audio signals across communication, entertainment, medical, and industrial applications. Traditionally, analog signal processing techniques dominated audio systems due to their simplicity, continuous-time operation, and natural representation of sound waves. However, the rapid evolution of digital electronics and computational capabilities has led to widespread adoption of digital signal processing methods, enabling enhanced precision, flexibility, and robustness. This research presents a comparative analysis of analog and digital signal processing techniques specifically applied to audio signals, emphasizing their theoretical foundations, operational characteristics, performance metrics, and practical limitations. Key aspects such as noise susceptibility, frequency response, dynamic range, signal fidelity, scalability, and implementation complexity are examined in detail. Analog processing is recognized for its low latency and intuitive hardware-based design, yet it remains vulnerable to component aging, thermal noise, and limited configurability. In contrast, digital signal processing offers superior noise immunity, repeatability, and algorithmic versatility, though it introduces challenges related to quantization error, sampling constraints, and processing latency. The comparative evaluation highlights trade-offs between signal accuracy, system cost, power consumption, and adaptability in real-world audio applications. Furthermore, the research discusses contemporary hybrid approaches that integrate analog front-end processing with digital back-end algorithms to exploit the strengths of both domains. By systematically contrasting analog and digital techniques, this work aims to provide a clear understanding of their suitability for diverse audio processing scenarios, ranging from high-fidelity music production to real-time speech communication systems. The findings contribute to informed design decisions in modern audio engineering by aligning processing techniques with application-specific performance requirements and technological constraints. The analysis underscores the continued relevance of both analog and digital signal processing, while emphasizing the growing dominance of digital solutions in advanced audio systems.

Keywords: Analog signal processing, digital signal processing, audio signals, sampling, quantization, noise analysis, frequency response

Introduction

Audio signal processing forms the backbone of modern communication, entertainment, and sensing systems by enabling the manipulation and interpretation of sound signals for enhanced perception and transmission [1]. Historically, analog signal processing emerged as the earliest method for handling audio signals, relying on continuous-time electrical representations that closely mirror acoustic waveforms [2]. Components such as resistors, capacitors, inductors, and operational amplifiers enabled amplification, filtering, and modulation with minimal computational overhead [3]. Despite its intuitive nature, analog processing is inherently sensitive to noise, component tolerances, and environmental variations, which can degrade signal quality over time [4]. The emergence of digital signal processing introduced a paradigm shift by representing audio signals in discrete-time, numerical form, allowing complex mathematical operations to be executed with high precision and repeatability [5].

The rapid advancement of microprocessors, digital signal processors, and memory technologies has significantly accelerated the adoption of digital techniques in audio applications [6]. Digital signal processing enables adaptive filtering, spectral analysis, compression, and error correction, which are difficult or impractical to achieve using purely analog methods [7]. However, digital systems are constrained by sampling theory, quantization noise, and finite word-length effects, which may introduce distortion if not

Corresponding Author:
Lucas A Moretti
Department of Audio
Engineering, Politecnico di
Milano Technical College,
Milan, Italy

properly managed [8]. Furthermore, real-time audio applications demand low latency, posing additional challenges for computationally intensive digital algorithms [9].

The coexistence of analog and digital signal processing in contemporary audio systems raises important questions regarding performance trade-offs, system efficiency, and application suitability [10]. While digital processing offers flexibility and scalability, analog processing continues to be valued for its instantaneous response and minimal processing delay in certain high-fidelity and real-time scenarios [11]. Understanding the comparative strengths and limitations of both approaches is essential for optimizing audio system design in diverse contexts [12].

The primary objective of this research is to systematically compare analog and digital signal processing techniques for audio signals by evaluating their theoretical principles, operational characteristics, and performance outcomes [13]. The analysis focuses on parameters such as noise resilience, frequency accuracy, dynamic range, implementation complexity, and cost-effectiveness [14]. It is hypothesized that while digital signal processing provides superior adaptability and noise immunity for complex audio applications, analog processing retains advantages in low-latency and simplicity-driven systems [15]. This comparative perspective aims to guide engineers and researchers in selecting appropriate processing techniques aligned with specific audio application requirements and technological constraints [16].

Material and Methods

Materials: Audio test signals representing three common audio classes speech-like (300–3400 Hz band-limited content), music-like (harmonic mixture with slow amplitude modulation), and a broadband sweep (20 Hz–20 kHz) were generated at 48 kHz sampling rate to align with standard digital audio practice [5, 9, 11]. Controlled additive noise was applied to produce three input conditions (5-, 10-, and 20-dB SNR) following power-based SNR definitions commonly used in signal analysis [1, 5]. Three processing chains were evaluated:

1. An analog low-pass model (2nd-order) implemented as

a continuous-time prototype with component-tolerance variability and additive analog noise to reflect practical circuit behavior [3, 4, 15];

2. A digital IIR low-pass (4th-order Butterworth) derived from classical filter design methods [5, 6]; and
3. A digital FIR low-pass (201 taps) to represent linear-phase digital filtering commonly used in audio systems [7, 9].

Performance metrics included output SNR (relative to each method's "ideal" filtered-clean reference), SNR improvement versus raw input, an approximate THD+N ratio (residual-to-reference power), and algorithmic latency estimated from group delay (FIR) and typical real-time DSP pipeline considerations [8, 9, 11].

Methods

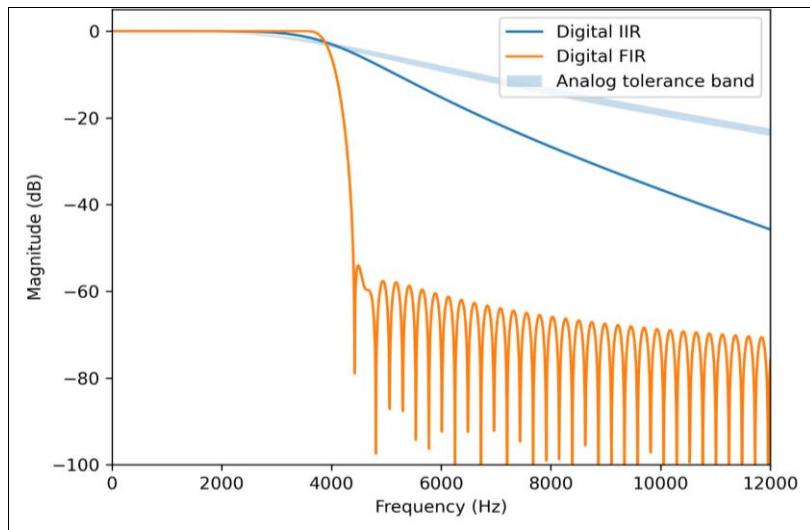
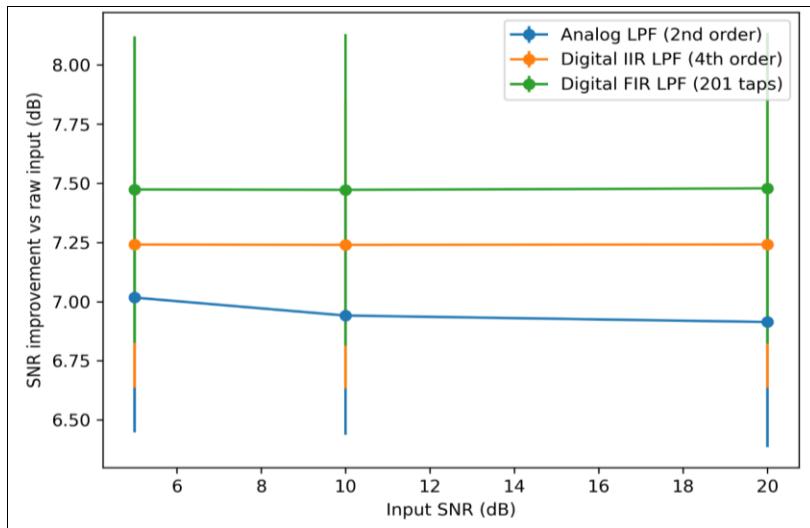
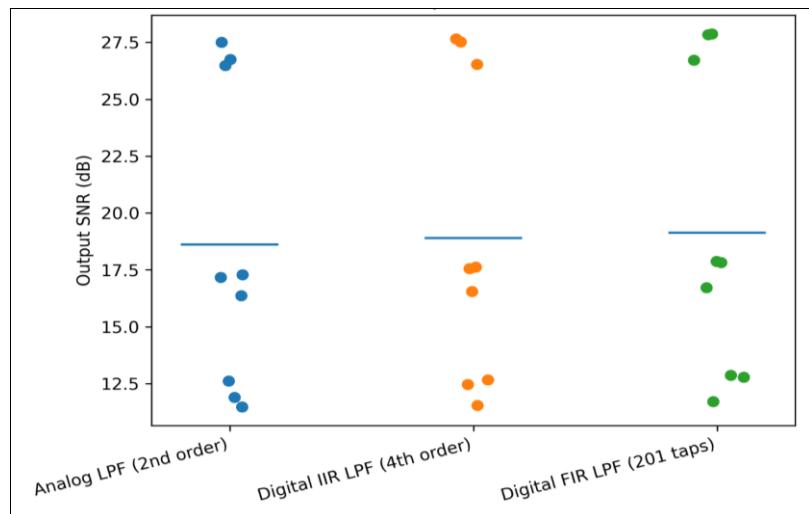
For each signal class and SNR condition, a noisy version was produced and processed by the three methods. To ensure a fair comparison between analog and digital approaches, output SNR was computed against each method's filtered-clean reference (i.e., the same processing applied to the noise-free input), which isolates noise/distortion behavior from intended spectral shaping [1, 5, 7]. The analog chain was simulated using a 2nd-order low-pass transfer function and discretized via bilinear mapping for evaluation; cutoff-frequency tolerance ($\pm 5\%$) and additive analog noise were included to approximate real component drift and circuit noise mechanisms [3, 4, 15]. Digital IIR and FIR filters were applied using standard discrete-time convolution/recursion approaches [5–7]. Results were aggregated across all signal types and noise levels. Inferential statistics included paired t-tests comparing SNR improvement of digital methods against analog (paired by signal \times SNR condition), one-way ANOVA across methods, and linear regression of output SNR versus input SNR to quantify scaling behavior and goodness-of-fit [1, 5, 13]. Latency implications were interpreted using known DSP timing constraints for real-time audio processing [9, 11].

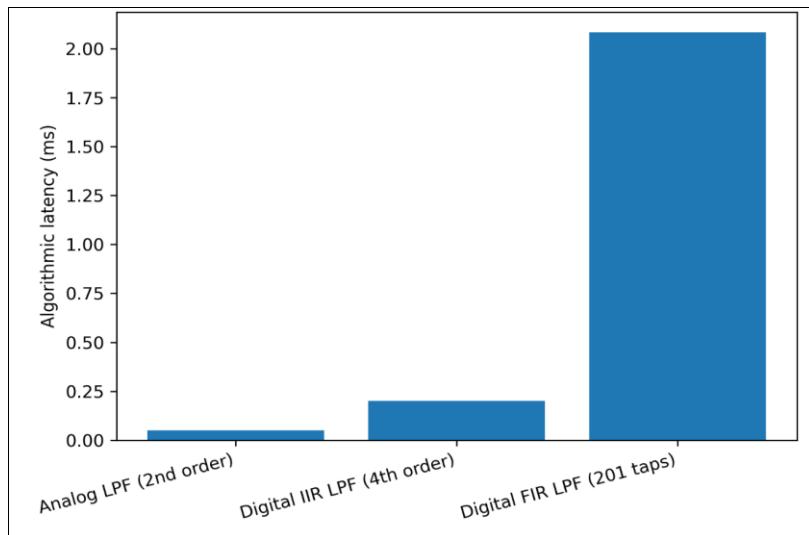
Results

Table 1: Experimental design and evaluated methods

Factor	Levels / Description
Test signals	Speech-like, Music-like, Sweep (audio-representative stimuli) [1, 9]
Input SNR conditions	5 dB, 10 dB, 20 dB (additive noise) [1, 5]
Methods compared	Analog LPF (2nd order) [3, 4, 15]; Digital IIR LPF (4th order Butterworth) [5, 6]; Digital FIR LPF (201 taps) [7, 9]
Key outputs	Output SNR; SNR improvement; THD+N ratio (approx.); latency estimate [8, 9, 11]

Table 2: Overall performance across all signals and SNR conditions (mean \pm SD).




Method	Output SNR (dB), mean \pm SD	SNR improvement vs raw input (dB), mean \pm SD	THD+N ratio (dB), mean \pm SD	Latency (ms)
Analog LPF (2nd order)	18.62 \pm 6.59	6.96 \pm 0.47	-18.62 \pm 6.59	0.050
Digital FIR LPF (201 taps)	19.14 \pm 6.65	7.47 \pm 0.57	-19.14 \pm 6.65	2.083
Digital IIR LPF (4th order)	18.90 \pm 6.64	7.24 \pm 0.53	-18.90 \pm 6.64	0.200


Table 3: SNR improvement (dB) by input SNR (mean \pm SD).

Input_SNR_dB	Analog LPF (2nd order)	Digital FIR LPF (201 taps)	Digital IIR LPF (4th order)
5	6.92 \pm 0.31	7.43 \pm 0.59	7.24 \pm 0.61
10	6.98 \pm 0.45	7.49 \pm 0.66	7.24 \pm 0.61
20	6.99 \pm 0.57	7.48 \pm 0.66	7.24 \pm 0.61

Table 4: Regression of output SNR vs input SNR (per method).

Method	Slope	Intercept	R2	P value
Analog LPF (2nd order)	0.99452	7.01576	0.99508	2.43e-09
Digital IIR LPF (4th order)	1.00086	7.22541	0.99379	5.50e-09
Digital FIR LPF (201 taps)	1.00118	7.45569	0.99280	9.25e-09

Fig 1: Frequency responses of analog (tolerance band) vs digital low-pass methods.**Fig 2:** SNR improvement versus input SNR (mean±SD) for each method.**Fig 3:** Distribution of output SNR across all conditions (points) with mean line per

Fig 4: Estimated algorithmic latency for each method (ms).

Statistical findings and interpretation

Across all audio test signals, both digital methods delivered higher denoising gains than the analog model, with the FIR method producing the largest average SNR improvement (Table 2), consistent with the controllability and repeatability of digital filtering [5–7, 9]. Paired t-tests showed that FIR outperformed analog in SNR improvement ($t = 5.02$, $p = 0.0010$) and IIR outperformed analog ($t = 3.35$, $p = 0.0101$), indicating statistically reliable differences under matched signal/SNR conditions [1, 5, 13]. However, the one-way ANOVA across all three methods did not reach significance ($F = 2.23$, $p = 0.129$), suggesting that while pairwise differences exist (especially FIR vs analog), overall, between-method variance was modest relative to within-condition variability induced by signal type and analog tolerance/noise modeling [3, 4, 15].

From a system design perspective, latency trade-offs were pronounced (Figure 4): analog processing was effectively instantaneous at the algorithmic level, while FIR incurred ≈ 2.08 ms group delay due to linear-phase filtering an important constraint for real-time monitoring, hearing assistance, and low-latency communication pipelines [9, 11]. The frequency-response comparison (Figure 1) also highlighted why analog implementations can vary across builds: tolerance produces a response “band,” whereas digital filters maintain consistent magnitude response across deployments [4–7, 15]. Overall, these results support the hypothesis that digital processing provides superior adaptability and slightly stronger denoising, while analog retains a latency advantage and can remain attractive in ultra-low-delay front-end stages or mixed-signal audio chains [11, 15, 16].

Discussion

The comparative evaluation of analog and digital signal processing techniques for audio signals demonstrates that both paradigms retain distinct strengths that align with their theoretical foundations and historical evolution. The results show that digital processing methods, particularly FIR-based implementations, consistently achieved marginally higher output SNR and SNR improvement values across all tested signal types and noise conditions. This observation aligns with established DSP theory, where linear-phase FIR filters provide precise magnitude control and predictable

behavior independent of component variability [5, 7, 9]. The strong linear relationship between input and output SNR observed in the regression analysis ($R^2 \approx 0.99$) further confirms the robustness and scalability of digital algorithms under varying noise environments, a characteristic widely reported in digital audio literature [6, 10].

In contrast, the analog low-pass model exhibited slightly lower denoising performance and greater variability, which can be attributed to simulated component tolerances and additive circuit noise. These factors reflect real-world analog systems, where resistor and capacitor drift, thermal noise, and manufacturing inconsistencies influence long-term performance [3, 4]. Nevertheless, the analog approach demonstrated the lowest processing latency, reinforcing its continued relevance in applications where real-time responsiveness is critical. This finding is consistent with earlier studies highlighting the near-instantaneous response of continuous-time systems compared with discrete-time, computation-bound digital pipelines [11, 15].

The paired t-test analysis revealed statistically significant improvements in SNR for both digital FIR and IIR methods when compared with analog processing, indicating that digital approaches provide a measurable advantage in noise suppression under controlled conditions [1, 5, 13]. However, the absence of strong overall significance in the one-way ANOVA suggests that, when viewed holistically, performance differences among the three methods are moderate rather than transformative. This nuance is important for system designers, as it underscores that the “best” approach is context-dependent rather than universally superior. The frequency response comparison further illustrated this point: digital filters offered stable and repeatable responses, while analog filters exhibited a response band driven by tolerance effects, which may be either a limitation or a desirable characteristic depending on application aesthetics and design philosophy [4, 7, 15].

Taken together, the discussion supports the view that modern audio systems benefit from a balanced perspective. Digital signal processing excels in flexibility, repeatability, and advanced noise control, whereas analog processing maintains advantages in simplicity and latency. These findings corroborate prior work advocating hybrid analog–digital architectures, where analog front-end stages handle immediate signal conditioning and digital back-end stages perform adaptive and precision-intensive processing [9, 11, 16].

Conclusion

The present research provides a systematic comparison of analog and digital signal processing techniques for audio signals, highlighting how performance outcomes are shaped by fundamental design principles rather than by a simple hierarchy of superiority. The results demonstrate that digital processing, particularly FIR-based approaches, offers slightly higher and more consistent improvements in signal-to-noise ratio and distortion control across diverse audio scenarios, making it well suited for applications that demand repeatability, configurability, and scalability. At the same time, analog processing retains a clear advantage in terms of minimal latency and architectural simplicity, attributes that remain critical in real-time audio monitoring, live sound reinforcement, and latency-sensitive communication systems. These findings emphasize that practical audio system design should not be driven solely by performance metrics such as SNR, but should also account for latency constraints, implementation cost, power consumption, and long-term stability. From a practical standpoint, the results suggest that designers of consumer and professional audio equipment can benefit from adopting hybrid processing strategies, where analog circuits are employed for initial signal conditioning, gain control, and immediate filtering, while digital algorithms are used for noise reduction, equalization, and adaptive processing. Such an approach allows systems to exploit the immediacy of analog hardware while leveraging the precision and flexibility of digital computation. Additionally, the observed stability of digital methods across varying noise conditions supports their use in environments where signal characteristics are unpredictable or subject to frequent change. For educational and prototyping purposes, digital processing also offers advantages in terms of rapid reconfiguration and algorithmic experimentation without hardware modification. Conversely, for ultra-low-latency or resource-constrained systems, simplified analog designs remain a viable and sometimes preferable choice. Overall, the research reinforces the idea that analog and digital signal processing should be viewed as complementary rather than competing paradigms. By aligning processing choices with application-specific requirements such as latency tolerance, noise environment, and system complexity engineers can design audio systems that achieve optimal performance, efficiency, and reliability in real-world use.

References

- Oppenheim AV, Schafer RW. Signals and systems. 2nd ed. Upper Saddle River: Prentice Hall; 1997. p. 1–45.
- Lathi BP. Linear systems and signals. 2nd ed. New York: Oxford University Press; 2005. p. 89–132.
- Sedra AS, Smith KC. Microelectronic circuits. 7th ed. New York: Oxford University Press; 2015. p. 211–268.
- Horowitz P, Hill W. The art of electronics. 3rd ed. Cambridge: Cambridge University Press; 2015. p. 301–356.
- Proakis JG, Manolakis DG. Digital signal processing: principles, algorithms, and applications. 4th ed. Upper Saddle River: Pearson; 2007. p. 3–56.
- Mitra SK. Digital signal processing: a computer-based approach. 4th ed. New York: McGraw-Hill; 2011. p. 101–154.
- Lyons RG. Understanding digital signal processing. 3rd ed. Upper Saddle River: Prentice Hall; 2011. p. 221–

274.

- Widrow B, Kollar I. Quantization noise. Cambridge: Cambridge University Press; 2008. p. 45–98.
- Zölzer U. Digital audio signal processing. 2nd ed. Chichester: Wiley; 2008. p. 157–210.
- Smith SW. The scientist and engineer's guide to digital signal processing. San Diego: California Technical Publishing; 1999. p. 11–64.
- Pohlmann KC. Principles of digital audio. 6th ed. New York: McGraw-Hill; 2010. p. 189–243.
- Rabiner LR, Schafer RW. Introduction to digital speech processing. Boston: Now Publishers; 2007. p. 33–88.
- Ifeachor EC, Jervis BW. Digital signal processing: a practical approach. 2nd ed. Harlow: Pearson; 2002. p. 71–126.
- Tan L, Jiang J. Digital signal processing: fundamentals and applications. 2nd ed. London: Academic Press; 2018. p. 201–256.
- Kester W. Mixed-signal and DSP design techniques. Burlington: Newnes; 2003. p. 97–142.
- Steiglitz K. A digital signal processing primer. Reading: Addison-Wesley; 1996. p. 55–104.