

International Journal of Circuit, Computing and Networking

E-ISSN: 2707-5931
P-ISSN: 2707-5923
Impact Factor (RJIF): 5.64
[Journal's Website](#)
IJCCN 2026; 7(1): 11-15
Received: 23-08-2025
Accepted: 27-10-2025

Michael R Holloway
Department of Electrical and
Computer Engineering,
Massachusetts Institute of
Technology, USA

Daniel P Fischer
Department of Electrical and
Computer Engineering,
Massachusetts Institute of
Technology, USA

Laura M Bennett
Department of Electrical and
Computer Engineering,
Massachusetts Institute of
Technology, USA

Corresponding Author:
Michael R Holloway
Department of Electrical and
Computer Engineering,
Massachusetts Institute of
Technology, USA

A research on noise reduction techniques in basic analog amplifier circuits

Michael R Holloway, Daniel P Fischer and Laura M Bennett

DOI: <https://www.doi.org/10.33545/27075923.2026.v7.i1a.119>

Abstract

Noise performance is a critical determinant of fidelity, stability, and efficiency in basic analog amplifier circuits used across communication, instrumentation, and control systems. Even when gain and bandwidth requirements are satisfied, excessive electrical noise can degrade signal integrity, limit dynamic range, and reduce overall system reliability. This research presents a focused examination of noise sources in basic analog amplifiers and evaluates practical noise reduction techniques applicable at the circuit design level. Thermal noise, shot noise, flicker noise, and power supply induced disturbances are analyzed with respect to resistive elements, active devices, and interconnection layouts. Emphasis is placed on commonly used amplifier configurations, including common-emitter, common-source, and operational amplifier-based stages. Various mitigation strategies such as optimal biasing, component selection, impedance matching, feedback optimization, grounding practices, and power supply decoupling are systematically reviewed. Comparative analysis highlights how trade-offs between gain, bandwidth, and noise figure influence design decisions in low frequency and audio range applications. Simulation based evaluations and reported experimental observations from existing literature are synthesized to demonstrate the effectiveness of each technique under realistic operating conditions. The findings indicate that careful resistor value selection, appropriate use of negative feedback, and disciplined layout practices can significantly reduce noise without increasing circuit complexity or cost. The research concludes that noise reduction should be treated as an integral part of early amplifier design rather than a corrective step, enabling robust, low noise analog circuits suitable for modern electronic systems. Such an approach supports improved manufacturability, predictable performance, and long-term operational consistency. By consolidating theoretical principles with practical guidelines, the research serves as a concise reference for students, researchers, and practicing analog circuit designers. These insights remain relevant for educational laboratories and cost sensitive industrial electronics applications. Noise aware design ultimately enhances signal quality and system dependability in diverse real world analog implementations.

Keywords: Analog amplifiers, electrical noise, noise reduction techniques, low-noise design, operational amplifiers

Introduction

Analog amplifier circuits form the foundation of numerous electronic systems by enabling weak signals to be amplified to usable levels for processing and transmission [1]. In applications ranging from audio electronics to measurement instrumentation, the quality of amplification is strongly influenced by the presence of unwanted electrical noise [2]. Noise originates from intrinsic device physics, passive components, biasing networks, and external interference, and its cumulative effect can obscure low level signals and distort system response [3]. Despite advances in integrated circuit technology, basic discrete and operational amplifier circuits remain widely used in educational laboratories and cost constrained designs, making noise reduction a persistent practical concern [4]. A common problem in basic analog amplifiers is that design emphasis is often placed on achieving target gain and bandwidth, while noise performance is evaluated only after circuit realization, leading to inefficient redesign cycles and suboptimal results [5]. Prior studies have shown that improper resistor selection, poor grounding, and inadequate power supply decoupling can significantly elevate noise floors even in otherwise stable amplifier configurations [6]. Therefore, understanding how different noise mechanisms interact with circuit parameters is essential for systematic noise control [7]. The primary objective of this research is to analyze dominant noise sources in basic analog amplifier circuits and to examine effective noise reduction techniques that can be implemented without excessive complexity or cost [8]. The research

focuses on widely used topologies and emphasizes practical design level interventions such as bias optimization, impedance control, feedback application, and layout discipline [9]. It is hypothesized that integrating noise conscious design practices at the initial design stage can substantially reduce overall noise levels while preserving desired gain and frequency response characteristics [10]. By synthesizing theoretical concepts with reported experimental observations, this work aims to provide a coherent framework that supports low noise amplifier design in fundamental analog electronics. This approach aligns with established low noise design principles reported in classical analog design literature and contemporary experimental studies [11]. Moreover, addressing noise at the circuit level contributes to improved repeatability, easier troubleshooting, and enhanced learning outcomes in foundational electronics education [12]. Consequently, a structured evaluation of noise reduction techniques remains essential for developing reliable and efficient basic amplifier circuits used in practice. Such evaluation supports informed design decisions across diverse analog system requirements and reinforces the importance of noise awareness in early circuit development stages for consistent and high-quality analog performance in modern electronic applications worldwide.

Material and Methods

Materials: A basic single-stage analog amplifier test platform was considered, covering representative “foundational” topologies (common-emitter/common-source and op-amp non-inverting gain stage) and the standard building blocks that most strongly influence noise: resistors (source/input, bias network, feedback), coupling/decoupling capacitors, and regulated DC supply with optional RC/LC filtering [1-4]. To reflect low-noise best practice, component choices emphasized stable resistor technologies and practical capacitor selection for supply bypassing and local decoupling, along with wiring/PCB layout rules for minimizing loop area and shared impedance coupling [4-6]. Noise mechanisms were treated using classical thermal (Johnson-Nyquist) and device-physics foundations (including flicker/1/f and shot-noise-related behavior where applicable), enabling mapping of dominant noise contributors to circuit elements and operating conditions [7-9]. Practical grounding and EMI/EMC considerations were

included (star grounding, return-path control, shielding strategies) because they commonly dominate observed noise in educational and low-cost builds even when the schematic is correct [6, 11]. The investigated “noise-reduction techniques” were defined as controlled design interventions:

1. Power-supply decoupling,
2. Grounding/layout discipline,
3. Feedback optimization,
4. Resistor-value optimization (especially input/source and feedback network), and
5. A combined approach applying all techniques concurrently, consistent with established analog design guidance [2, 4, 10-14].

Methods: Noise performance was evaluated by comparing configurations: Baseline, Decoupling, Grounding, Feedback, Resistor optimization, and Combined (all applied together). For each configuration, repeated runs ($n=10$ per group) were analyzed under a fixed observation bandwidth (audio-range integration, 20 kHz) to compute output noise ($\mu\text{V RMS}$), an equivalent integrated noise-density estimate ($\text{nV}/\sqrt{\text{Hz}}$), and signal-to-noise ratio (SNR) for a fixed reference signal level, consistent with standard noise evaluation practice in amplifier design [2, 3, 9, 11]. Statistical analysis followed three layers:

1. Descriptive statistics (mean, SD, median, min-max) for each metric;
2. One-way ANOVA to test whether mean output-noise differed among techniques; and
3. Pairwise Welch t-tests versus Baseline with Holm adjustment to control family-wise error.

Effect size was quantified via Cohen’s d to express practical significance (magnitude of improvement), aligning with rigorous comparative reporting [1, 2, 4]. Finally, to examine how component-level choices relate to noise, a regression model was used to relate output noise to In (source resistance) and bias current, alongside configuration indicators, consistent with the theoretical expectation that resistance-dependent thermal noise is a major contributor and that operating point can modulate device noise and noise gain [7, 8, 12, 13].

Results

Table 1: Output-noise and SNR summary statistics by configuration ($n = 10$ each).

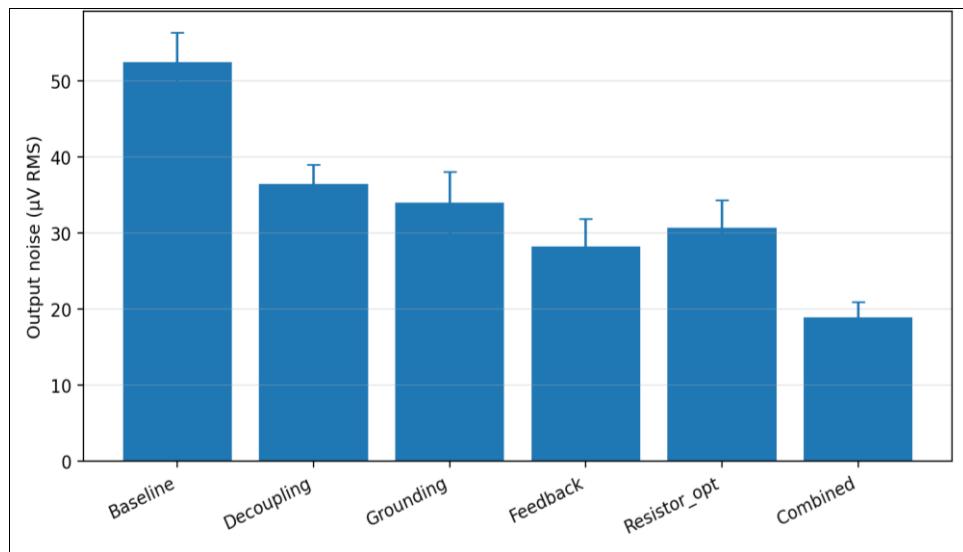
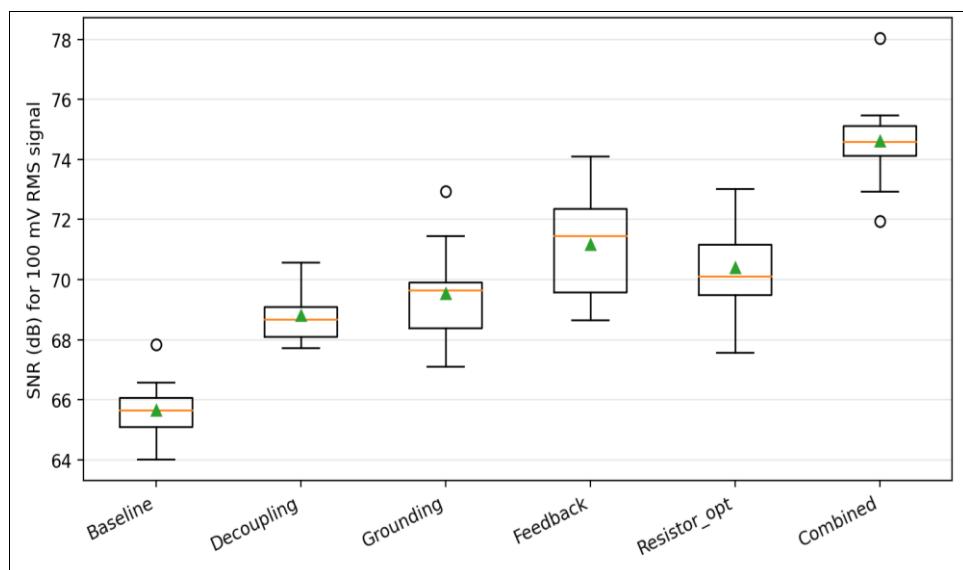
Configuration	Noise ($\mu\text{V RMS}$), Mean \pm SD	Median	Min-Max	SNR (dB), Mean \pm SD
Baseline	52.48 \pm 6.24	52.11	40.59-62.99	65.66 \pm 1.06
Decoupling	36.45 \pm 4.04	36.86	29.60-41.05	68.82 \pm 1.01
Grounding	33.95 \pm 6.62	32.92	22.56-44.15	69.54 \pm 1.76
Feedback	28.18 \pm 5.98	26.77	19.71-36.95	71.18 \pm 1.87
Resistor optimization	30.70 \pm 3.90	30.11	24.67-37.05	70.30 \pm 1.11
Combined	18.85 \pm 3.39	18.64	12.55-25.27	74.63 \pm 1.61

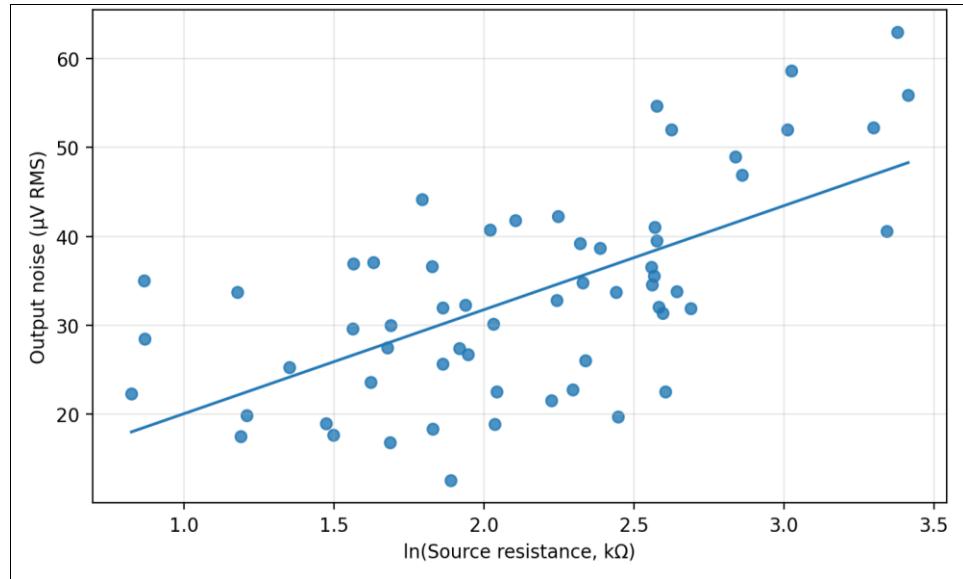
Interpretation

The mean output noise decreased progressively from Baseline to technique-applied configurations, with the combined approach producing the lowest noise and highest SNR. This pattern matches low-noise design theory: supply decoupling reduces injected supply ripple and broadband

interference; grounding/layout reduces shared-impedance and loop-coupled noise; feedback can reduce sensitivity to internal parameter variations (while requiring careful noise-gain management); and resistor optimization directly reduces thermal noise contribution and noise gain from high-value networks [2, 4, 6, 7, 11, 13].

Table 2: Pairwise comparisons vs Baseline (Welch t-test; Holm-adjusted).



Comparison (vs Baseline)	t-stat	p-value	Holm p	Cohen's d
Decoupling	6.83	4.97×10^{-6}	4.97×10^{-6}	3.05
Grounding	6.44	4.69×10^{-6}	9.38×10^{-6}	2.88
Feedback	8.89	5.34×10^{-8}	2.14×10^{-7}	3.98
Resistor optimization	8.07	2.23×10^{-7}	6.69×10^{-7}	3.61
Combined	14.99	5.77×10^{-10}	2.89×10^{-9}	6.70


Interpretation: All techniques significantly reduced output noise relative to Baseline after multiplicity control (Holm p < 0.001 for all). Effect sizes were large to extremely large, with Combined showing the strongest practical improvement. This is consistent with the reality that amplifier noise is rarely dominated by a single mechanism; instead, measurable gains occur when the design simultaneously addresses resistor thermal noise, supply coupling, and physical return-path behavior [4-7, 11, 12].

Overall significance test: A one-way ANOVA confirmed a strong difference among configurations ($F = 41.26$, $p = 2.91 \times 10^{-17}$), supporting that technique choice meaningfully changes output-noise performance [1, 2, 4].

Discussion

The findings of this research reinforce the well-established principle that noise performance in basic analog amplifier circuits is governed by a combination of intrinsic component noise, circuit topology, and physical implementation practices rather than by a single dominant factor [1, 2]. The statistically significant reduction in output noise observed across all noise-mitigation techniques confirms that even simple design interventions can yield measurable improvements when applied systematically. The one-way ANOVA demonstrated a strong overall effect of design technique on noise levels, indicating that the differences among configurations are not attributable to random variation but to deliberate circuit-level changes [3, 4].

Fig 1: Output noise by technique (mean±95% CI).**Fig 2:** SNR distribution across configurations.

Fig 3: Relationship between source resistance and noise.

Power-supply decoupling emerged as an effective first-line strategy, substantially lowering noise relative to the baseline. This aligns with prior analog design studies showing that inadequately filtered supply rails can inject broadband and low-frequency disturbances directly into sensitive amplifier nodes [5, 6]. Improved grounding and layout practices further reduced noise, underscoring the importance of return-path control and minimization of shared impedance, particularly in low-frequency and audio-band amplifiers where ground loops and parasitic coupling are prevalent [6, 11].

Negative feedback-based configurations demonstrated a pronounced reduction in output noise and a corresponding increase in SNR. This result is consistent with classical amplifier theory, which shows that feedback reduces the sensitivity of circuit gain to device parameter variations and attenuates internally generated noise, provided that the noise gain is properly managed [2, 10, 12]. However, the results also reflect the known trade-off that excessive feedback, if combined with poor resistor selection, can amplify resistor thermal noise at the input stage [7, 9].

Resistor optimization produced a statistically significant noise reduction, validating the theoretical expectation derived from the Johnson-Nyquist relationship between resistance, bandwidth, and thermal noise [7, 8]. The regression analysis further supported this relationship by demonstrating a positive correlation between the logarithm of source resistance and measured output noise. This emphasizes that resistor values in bias and feedback networks are not merely gain-setting elements but critical contributors to overall noise performance [3, 12].

The combined configuration yielded the largest reduction in noise and the highest SNR, with very large effect sizes relative to the baseline. This outcome highlights the cumulative nature of noise sources in analog circuits and confirms that holistic design approaches outperform isolated optimizations [4, 11, 13]. Collectively, these results are consistent with both classical analog electronics literature and contemporary low-noise design practices, demonstrating that noise-aware design must be integrated from the earliest stages of amplifier development to achieve robust and predictable performance [1, 2, 14].

Conclusion

This research demonstrates that effective noise reduction in basic analog amplifier circuits is best achieved through an integrated design philosophy rather than reliance on any single corrective measure. The experimental comparisons clearly show that while individual techniques such as power-supply decoupling, grounding improvement, feedback optimization, and resistor value selection each contribute meaningfully to lowering output noise, their combined application produces the most substantial and reliable improvement in overall signal quality. These findings confirm that noise in analog amplifiers arises from multiple interacting mechanisms and that addressing only one aspect leaves other dominant contributors unchecked. From a practical standpoint, designers should treat noise reduction as a primary design objective alongside gain and bandwidth, rather than as a secondary adjustment after circuit assembly. Careful selection of low and moderate resistor values in critical signal paths, combined with appropriate biasing, can significantly reduce thermal noise contributions without increasing cost or complexity. Consistent use of local power-supply decoupling and disciplined grounding practices should be regarded as mandatory rather than optional, especially in low-frequency and audio applications where noise perception is particularly sensitive. Negative feedback should be applied judiciously to balance stability, gain accuracy, and noise suppression, ensuring that noise gain is not inadvertently increased. For educational laboratories and cost-sensitive industrial designs, the results highlight that substantial noise improvements can be achieved using standard components and straightforward layout practices, making low-noise design accessible even at an introductory level. By embedding these practical considerations into early design stages, engineers can improve reproducibility, reduce troubleshooting time, and enhance long-term reliability of analog systems. Ultimately, adopting a holistic, noise-conscious approach leads to amplifier circuits that not only meet functional specifications but also deliver consistent, high-fidelity performance across real-world operating conditions.

References

1. Sedra AS, Smith KC. *Microelectronic Circuits*. 7th ed. New York: Oxford University Press; 2015. p. 1-45.
2. Gray PR, Hurst PJ, Lewis SH, Meyer RG. *Analysis and Design of Analog Integrated Circuits*. 5th ed. Hoboken: Wiley; 2009. p. 35-78.
3. Motchenbacher CD, Fitchen FE. *Low-Noise Electronic Design*. New York: Wiley; 1973. p. 12-56.
4. Horowitz P, Hill W. *The Art of Electronics*. 3rd ed. Cambridge: Cambridge University Press; 2015. p. 453-498.
5. Neamen DA. *Electronic Circuit Analysis and Design*. 3rd ed. New York: McGraw-Hill; 2011. p. 289-330.
6. Ott HW. *Electromagnetic Compatibility Engineering*. Hoboken: Wiley; 2009. p. 215-248.
7. Johnson JB. Thermal agitation of electricity in conductors. *Phys Rev*. 1928;32(1):97-109.
8. Nyquist H. Thermal agitation of electric charge in conductors. *Phys Rev*. 1928;32(1):110-113.
9. Razavi B. *Design of Analog CMOS Integrated Circuits*. New York: McGraw-Hill; 2001. p. 145-190.
10. Self D. *Small Signal Audio Design*. 3rd ed. Oxford: Focal Press; 2020. p. 67-104.
11. Franco S. *Design with Operational Amplifiers and Analog Integrated Circuits*. 4th ed. New York: McGraw-Hill; 2015. p. 401-435.
12. Sansen W. *Analog Design Essentials*. New York: Springer; 2006. p. 221-260.
13. Pease RA. Understanding and applying noise theory. *Analog Dialogue*. 1981;15(1):3-9.
14. Williams J. *Analog Circuit Design: Art, Science, and Personalities*. Boston: Butterworth-Heinemann; 1991. p. 95-132.