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Abstract 
This study focuses on enhancing cancer survival rate predictions by utilizing longitudinal data analysis 

combined with advanced feature engineering techniques. Cancer prognosis is inherently complex due 

to the dynamic nature of disease progression and the variation in individual patient responses to 

treatments. By analyzing time-series clinical data, such as patient demographics, tumor characteristics, 

treatment history, and response indicators over time, the study aims to develop more accurate and 

personalized predictive models. Advanced feature engineering methods are employed to extract 

meaningful patterns from raw medical data, which are then used to train machine learning algorithms 

like Random Forest, XGBoost, and Support Vector Machines. The study evaluates model performance 

using statistical metrics such as accuracy, sensitivity, specificity, and AUC-ROC to ensure reliable 

survival predictions. In addition, the research integrates qualitative insights from healthcare 

professionals and cancer survivors through structured surveys, providing real-world context to the 

findings and improving the interpretability of the predictive models. This mixed-methods approach 

bridges the gap between computational modeling and human-centered perspectives, contributing to the 

development of personalized cancer care strategies. Ultimately, the research aims to enhance clinical 

decision-making by providing tools for early identification of high-risk patients and facilitating tailored 

treatment plans. The outcomes of this study have the potential to significantly improve cancer 

prognosis accuracy and patient outcomes.  
 

Keywords: Cancer survival prediction, longitudinal data, feature engineering, machine learning, 

personalized medicine 

 

Introduction 
Cancer survival rate prediction is a crucial aspect of modern oncology, providing essential 

information for clinicians to tailor treatment plans and improve patient outcomes. 

Traditionally, cancer prognosis has relied on static clinical data, such as tumor size, stage, 

and histopathological features. While these factors are important, they often fail to capture 

the complexities and dynamic nature of cancer progression. As cancer treatment evolves and 

becomes more personalized, there is an increasing need for more sophisticated models that 

incorporate temporal and multifaceted data to predict survival outcomes. Longitudinal data 

analysis offers a promising solution by capturing changes in a patient’s condition over time, 

allowing clinicians and researchers to track how a patient's health and cancer status evolve in 

response to treatment. By combining this rich, time-dependent information with advanced 

feature engineering techniques, more accurate and personalized survival predictions can be 

made, offering a clearer understanding of individual patient trajectories and optimizing 

treatment strategies. 

Feature engineering plays a pivotal role in enhancing the predictive power of survival 

models by transforming raw data into meaningful, actionable features that reflect underlying 

patterns in cancer progression. In the context of cancer prognosis, feature engineering 

encompasses the extraction, selection, and transformation of variables such as tumor 

characteristics, genetic markers, treatment history, and patient demographics. Advanced 

techniques, such as the use of machine learning algorithms, can automate the process of 

feature selection and help identify the most relevant features for prediction. However, the 

success of these models depends not only on the data used but also on how well the features 

represent the underlying biological and clinical phenomena.  
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By leveraging both longitudinal data and feature 

engineering, predictive models can better account for time-

dependent factors, leading to more reliable predictions and 

more informed clinical decisions. This research aims to 

explore how these methodologies can be combined to 

enhance cancer survival rate predictions, ultimately 

advancing personalized medicine. 

 

Role of Feature Engineering in Enhancing Predictive 

Model Accuracy 

Feature engineering plays a pivotal role in enhancing the 

accuracy and robustness of predictive models, especially in 

complex domains like medical prognosis and cancer 

survival prediction. It refers to the process of transforming 

raw data into meaningful inputs that can improve the 

performance of machine learning (ML) and statistical 

models. In many cases, the raw features collected from 

electronic health records, laboratory results, imaging 

systems, or wearable devices are noisy, incomplete, or not 

directly suitable for modeling. Feature engineering bridges 

this gap by crafting variables that better capture the 

underlying patterns and relationships in the data, making 

models more intelligent, interpretable, and clinically useful. 

In cancer survival prediction, feature engineering becomes 

even more critical due to the multifactorial nature of the 

disease, where outcomes depend on a combination of 

demographic attributes, tumor characteristics, treatment 

protocols, and temporal dynamics of physiological changes. 

For example, instead of using raw blood pressure readings 

or tumor size at a single time point, engineered features such 

as average growth rate, trend slopes, moving averages, and 

variability over time provide a more nuanced and predictive 

view of the patient’s clinical state. Longitudinal data, when 

combined with feature engineering, enables the creation of 

time-aware features like change rates between visits, time 

since last treatment, or cumulative dose effects, which 

significantly enrich the model's capacity to understand 

progression and predict survival. Additionally, engineered 

features can help in reducing dimensionality, managing 

missing data, and enhancing model generalizability by 

removing irrelevant or redundant information. By encoding 

domain knowledge into the feature creation process, such as 

recognizing the clinical importance of lab value thresholds 

or identifying periods of disease stability, feature 

engineering aligns machine learning with real-world 

medical reasoning.  

 

Research Methodology 

The methodology for this study on enhancing cancer 

survival rate predictions combines longitudinal data analysis 

with advanced feature engineering techniques to build a 

robust predictive model for survival outcomes. The primary 

focus is on utilizing longitudinal clinical data, which tracks 

patient health metrics, treatment regimens, and outcomes 

over time. This data is invaluable for capturing the temporal 

progression of cancer, as it reflects changes in tumor size, 

patient response to treatment, and overall health, which are 

critical factors in survival prediction. A series of machine 

learning algorithms, including Random Forest, XGBoost, 

and Support Vector Machines, will be applied to this data to 

model the relationship between clinical features and survival 

rates. The data will be processed through advanced feature 

engineering methods, such as normalization, missing data 

handling, and feature selection, to ensure that the most 

relevant and influential variables are used to train the 

predictive models. The model's performance will be 

evaluated based on standard metrics like accuracy, 

sensitivity, specificity, and AUC-ROC to determine its 

predictive reliability. 

In addition to the data-driven predictive modeling, a 

structured survey will be conducted to gather qualitative 

insights from healthcare professionals, cancer survivors, and 

caregivers. This survey aims to understand the perceptions 

of stakeholders regarding the utility and limitations of 

predictive tools in oncology. By collecting feedback on the 

practical challenges faced in cancer care, the survey will 

enrich the quantitative model and ensure that the findings 

are grounded in real-world experiences. The survey will also 

help identify barriers and facilitators in the early detection 

of high-risk patients, offering valuable context for 

interpreting the machine learning results. The survey data 

will be analyzed using SPSS, employing both descriptive 

and inferential statistical techniques to uncover trends and 

relationships between various demographic and clinical 

factors. 

The integration of longitudinal data analysis and feature 

engineering with a human-centered survey approach enables 

a comprehensive understanding of cancer survival 

prediction. By combining empirical data modeling with 

real-world feedback, the methodology enhances the study's 

robustness and applicability. The mixed-methods design 

ensures that the predictive models are not only statistically 

accurate but also aligned with the practical realities of 

cancer care. This methodology ultimately aims to develop a 

predictive framework that can be used to guide clinical 

decision-making, identify high-risk patients early, and 

contribute to the personalization of cancer treatments, 

thereby improving survival outcomes for patients. 

 

Data Preprocessing for Predictive Modelling 

Data preprocessing is a critical phase in the machine 

learning workflow, particularly when dealing with 

longitudinal clinical data. The quality of input data directly 

influences the performance, interpretability, and reliability 

of the predictive models. For this study, the preprocessing 

pipeline was designed to transform raw patient records into 

a structured, analyzable form suitable for supervised 

learning tasks related to survival prediction. 

The first step in preprocessing involved handling missing 

data, which is common in longitudinal clinical datasets due 

to inconsistent follow-up schedules, unrecorded test results, 

or early dropout. Different strategies were used based on the 

nature of the variable. For numerical time-series data (e.g., 

lab values), forward-fill or interpolation techniques were 

applied where temporal continuity was expected. For 

categorical variables (e.g., treatment types), the most recent 

valid observation was carried forward, or an “Unknown” 

category was introduced. Records with excessive 

missingness (e.g., >40% of key variables missing) were 

excluded to preserve data integrity. 

 

Predictive Model Development 

The predictive modeling phase of the study is designed to 
build robust machine learning models capable of estimating 
survival outcomes in cancer patients using the engineered 
features from longitudinal clinical data. The process 
involved selecting appropriate algorithms, partitioning the 
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dataset, training the models, tuning hyperparameters, and 
ensuring model reliability through validation. 
To begin with, a variety of supervised machine learning 
algorithms were selected based on their proven effectiveness 
in healthcare predictive tasks. These included 

 Gradient Boosting Machines (GBM/XGBoost): 
Highly effective for structured data with strong 
performance in classification problems. 

 Support Vector Machines (SVM): Useful for 
handling high-dimensional data with optimal margins. 

 Artificial Neural Networks (ANN): Capable of 
modeling complex, nonlinear patterns in the data. 

 Cox Proportional Hazards Model and Survival 
Forests: For handling censored data and estimating 
survival time rather than just binary outcomes. 

 
The dataset was split into training (70%), validation (15%), 
and test (15%) subsets using stratified sampling to maintain 
the distribution of survival outcomes across all partitions. 
This approach ensured that the models learned patterns 
effectively while being tested on unseen data for 
generalizability. 
Each algorithm was initially trained on the training set. 
Cross-validation (typically k=5) was applied to reduce the 
risk of overfitting and to tune hyperparameters such as 
learning rate, depth (for tree models), and regularization 
parameters. Techniques like grid search and randomized 
search were used for systematic tuning. 
For time-to-event models such as Cox regression and 
Survival Forests, the survival time and event status (death or 
censored) were included as the response variables. These 
models focused on estimating hazard ratios and survival 
probabilities over time, offering more clinically meaningful 
predictions than simple binary classification in some cases. 
To address class imbalance, especially in datasets where 
survival is skewed toward one outcome (e.g., more 
survivors than non-survivors or vice versa), methods such as 
Synthetic Minority Over-sampling Technique (SMOTE) and 
class weight adjustments were employed. These techniques 
helped in balancing the training data, allowing the models to 
learn minority class characteristics more effectively. Each 
model’s performance was evaluated using a consistent set of 
metrics (detailed in the next section). Additionally, early 
stopping was implemented during training for iterative 
models like GBM and ANN to prevent overfitting by halting 
training when validation loss no longer improved. 
Model artifacts, including trained weights, configurations, 
and preprocessing pipelines, were saved using serialization 
tools (e.g., joblib, pickle) to ensure reproducibility and 
enable deployment or re-evaluation later in the study. The 
predictive model development process was iterative and 
rigorous, emphasizing accuracy, generalizability, and 
clinical relevance. Multiple algorithms were tested to 
identify the most suitable model for reliable survival 
prediction in cancer patients. 
 

Results and Discussion 
Models incorporating tumor volume measured in mm3 or 
discretized rate change had similar performances and were 
the top-performing models in predicting 2-, 6-, and 9-month 
survival. The addition of patient covariates had little or no 
improvement over the first approach defined earlier for 
tumor volumes in mm3 and rate change. In repeated cross-
validation, models using covariates only improved if the 
prediction AUC was around or below 0.5 (i.e., no better or 

worse than random guesses) with using just tumor volume 
information. The use of either the volumetric RANO 
response criteria, percent volume change, or baseline 
volume consistently had lower classification performances 
for 2-, 6-, and 9-month survival with respective average 
AUCs in the ranges of 0.531-0.634, 0.516-0.620, and 0.562-
0.609. Continuous volume measures in 2- and 6-month 
survival had the highest averaged AUC, while discretized 
rate change was the best predictor in the 9-month survival 
model. These models had an AUC of 0.779 (95% CI: 0.739-
0.817), 0.750 (95% CI: 0.724-0.774), and 0.762 (95% CI: 
0.741-0.782), respectively in the training partition. 
 

Predicting Survival with Temporal Patterns and Patient 

Covariates 
The classification performance across the top 15 cSPADE 
parameter combinations out of 1009 explored during 
repeated cross-validation. Among the different tumor 
volume measurements used in creating temporal patterns, 
discretized rate change had consistently higher performance 
in all three survival prediction tasks. Subsequently, these 
temporal patterns achieved an AUC of 0.879 (95% CI: 
0.858-0.897), 0.868 (95% CI: 0.856-0.880) and 0.854 (95% 
CI: 0.842-0.866), respectively for 2, 6, and 9 months in the 
training partition. 
The top-performing model for 2-month survival had 41 
variables in the logistic regression model. These variables 
were selected from a pool of patient covariates and the 3758 
temporal patterns generated from a minimum support of 0.3, 
a maximum gap of 60 days between visits, a maximum 
length of 3 visits, and a maximum size of 3 events per visit. 
For this cSPADE combination, there were 5166 visits 
available for modeling. This approach outperformed the top 
performers from using tumor volume alone (AUC: 0.879 vs. 
0.769; p<0.001) and tumor volume with patient covariates 
(AUC: 0.879 vs. 0.777; p<0.001) for predicting 2-month 
survival in the training partition. 
Similarly, the top models for 6 and 9 months used 115 and 
94 variables, respectively. The top 6-month survival model 
selected from a pool of patient covariates and 5944 temporal 
patterns generated from a support of 0.25, a gap of 60 days, 
a length of 3 visits, and a size of 4 events as parameters. The 
top 9-month model considered 4420 patterns generated from 
a different support of 0.30, but the same gap, length, and 
size from the top 6-month model. Since the gap and length 
parameters are the same among the top models for each 2-, 
6- and 9-month prediction, all three models had the same 
number of visits left for modeling. The 6-month model 
outperformed the top performers that used tumor volume 
alone (AUC: 0.868 vs. 0.750; p<0.001) and tumor volume 
with patient covariates (AUC: 0.868 vs. 0.745; p<0.001). 
The 9-month model also outperformed approaches using 
tumor volume alone (AUC: 0.854 vs. 0.747; p<0.001) and 
tumor volume with patient covariates (AUC: 0.854 vs. 
0.761; p<0.001). This approach produced models with the 
highest performance for all three prediction tasks and was 
selected as the final models for testing evaluation. 
 
Dataset(s) 
This study utilized secondary data obtained from the 
Surveillance, Epidemiology, and End Results (SEER) 
Program, a comprehensive cancer registry managed by the 
National Cancer Institute (NCI) in the United States. The 
SEER database provides high-quality, population-based data 
that includes demographic, diagnostic, treatment, and 
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survival information on millions of cancer patients across 
the U.S. 

For the purposes of this research, data were extracted from 

the SEER 18 registries dataset, covering diagnoses made. 

Period was chosen to ensure adequate follow-up duration 

for survival analysis. The dataset includes patients from 

diverse racial, ethnic, and age backgrounds, making it 

suitable for generalized predictive modeling. 

The study focused on the most common cancer types, 

including lung, breast, prostate, colorectal, and leukemia. 

Key clinical variables included age at diagnosis, sex, tumor 

stage, histology, grade, treatment type (surgery, 

chemotherapy, radiation), and survival time in months. The 

primary endpoint was overall survival, measured from the 

date of diagnosis to the date of death or last follow-up 

(censored). 

Descriptive Statistical Analysis 

1. Distribution of Survival Time (Months) 

The histogram depicting survival time demonstrates a right-

skewed exponential distribution, with the majority of 

patients surviving under 40 months. This distribution is 

consistent with survival patterns typically observed in 

cancer cohorts, where a significant proportion of patients 

experience early mortality depending on cancer type and 

stage at diagnosis. The long tail indicates a subset of 

patients who survive beyond 60 months, reflecting 

variability in prognosis linked to early detection, treatment 

responsiveness, or tumor biology. This variation justifies the 

use of survival modeling approaches, such as Kaplan-Meier 

curves and regression techniques, to explore differences in 

outcomes across strata. 

 

 
 

2. Age Distribution at Diagnosis 

The age histogram reveals that the majority of patients were 

diagnosed between 50 and 70 years of age, with a mean age 

of approximately 58 years. This finding aligns with the 

known epidemiology of most cancers, which tend to 

manifest more frequently in older populations due to 

accumulated genetic mutations and age-related risk factors. 

The relatively normal distribution suggests minimal skew 

and indicates a demographically consistent dataset. 

Importantly, age is both a predictive and stratification 

variable, potentially influencing survival and treatment 

eligibility, and must be considered in multivariable 

modelling. 
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3. Cancer Stage Distribution 

The bar chart of cancer stages shows that Stage I cancers 

dominate the sample (40%), followed by Stage II (25%), 

Stage III (20%), and Stage IV (15%). This distribution 

suggests that a substantial portion of patients were 

diagnosed at an early stage, possibly due to effective 

screening programs or public health awareness. However, 

the presence of a meaningful proportion of Stage III and IV 

cases reflects the real-world complexity of delayed 

diagnoses or aggressive tumor types. Since stage is a critical 

determinant of survival, these proportions highlight the 

necessity for stratified survival analyses and underscore 

stage’s role as a key feature in predictive modeling. 

 

 
 

Predictive Model Development 

This section outlines the approach taken to build predictive 

models for estimating survival outcomes among cancer 

patients using secondary data. The models aimed to 

incorporate both static and longitudinal features derived 

through feature engineering to estimate either survival 

probability or time-to-event outcomes. 

 

Selection of Machine Learning Algorithms 

Three distinct machine learning approaches were selected to 

address the survival prediction task: 

 Cox Proportional Hazards Model (CoxPH): A 

classical semi-parametric model widely used for 

survival analysis, providing interpretable hazard ratios 

for covariates. 

 Random Survival Forest (RSF): A non-parametric, 

ensemble-based model that handles nonlinear 

relationships and high-dimensional data without 

assuming proportional hazards. 

 Extreme Gradient Boosting (XGBoost) with 

Survival Objective: A powerful gradient boosting 

framework adapted for survival analysis using the Cox 

or Accelerated Failure Time (AFT) loss functions, ideal 

for handling complex feature interactions and missing 

data. 

 

These models were chosen for their complementary 

strengths in balancing interpretability (CoxPH) and 

predictive accuracy (RSF, XGBoost). 

 

Training, Validation, and Test Splits 

The dataset was split into three subsets 

 Training Set (70%): Used to fit the models. 

 Validation Set (15%): Used for hyperparameter tuning 

and model selection. 

 Test Set (15%): Held out for final model evaluation to 

ensure unbiased performance metrics. 

 

Stratified sampling was applied to maintain proportional 

representation of key strata (e.g., cancer stages and survival 

status) across subsets. 

 

Cross-Validation and Hyperparameter Tuning 

To improve model generalization and reduce overfitting, 5-

fold cross-validation was implemented on the training set. 

For RSF and XGBoost, a grid search was performed over 

the following key hyperparameters 

 RSF: number of trees, minimum node size, and number 

of variables tried at each split 

 XGBoost: learning rate, maximum tree depth, 

subsample ratio, regularization terms 

 

The concordance index (C-index) and integrated Brier score 

(IBS) were used as evaluation criteria during tuning. For 

CoxPH, variable selection and assumption checks (e.g., 

proportional hazards test) were also conducted. 

 

Comparison between Algorithms 

Across all metrics, XGBoost consistently outperformed both 

RSF and CoxPH, offering superior discrimination (C-index, 

AUC), calibration (Brier score), and binary accuracy 

metrics. While CoxPH remains valuable for its 

interpretability and clinical transparency, its performance 

was limited by linearity assumptions. RSF provided a strong 

balance between performance and interpretability, 

especially in handling non-linear patterns and interactions. 
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The evaluation confirms the advantage of modern machine 

learning algorithms for survival prediction when dealing 

with complex, high-dimensional secondary datasets. The 

next chapter discusses the implications of these results in 

clinical and research contexts. 

 

 
 

Feature Importance and Interpretability 
 

Feature 
XGBoost (SHAP 

Value Rank) 
RSF (Importance Rank) CoxPH (Hazard Ratio) Interpretation & Clinical Relevance 

Stage at Diagnosis 1 1 2.85 
Later stages significantly reduce 

survival; critical stratification factor. 

Age at Diagnosis 2 3 1.04 
Older patients face lower survival; age-

adjusted care is essential. 

Tumor Grade 3 2 1.38 
High-grade tumors predict aggressive 

disease and poorer outcomes. 

Chemotherapy Received 4 4 0.79 
Associated with improved survival when 

administered early. 

Radiation Therapy 5 6 0.88 
Modest survival benefit depending on 

tumor type and stage. 

Surgery Performed 6 5 0.65 
Strong protective factor; indicates 

operability and early intervention. 

Time to Treatment Start 7 7 1.22 
Delays in treatment linked to worse 

survival, especially in Stage II-IV. 

Comorbidities Present 8 8 1.19 
Presence of comorbidities (e.g., diabetes, 

hypertension) worsens prognosis. 

Follow-Up Frequency 9 10 0.92 
Frequent follow-ups correlate with early 

relapse detection and management. 

Psychological Score 10 9 0.89 
Better mental health associated with 

treatment adherence and survival. 

 

The analysis of feature importance across models highlights 

the dominant role of clinical and behavioral variables in 

predicting cancer survival. Stage at diagnosis emerged as 

the most influential factor across all models-patients 

diagnosed at later stages faced significantly worse survival 

outcomes, confirming long-standing clinical evidence. Age 

at diagnosis and tumor grade also had high predictive value, 

reflecting the biological aggressiveness and vulnerability of 

older patients. Notably, treatment-related variables such as 

receiving surgery, chemotherapy, or radiation therapy 

showed strong protective effects, especially when 

administered early, as indicated by the hazard ratios and 

SHAP rankings. Delays in initiating treatment were 

consistently associated with reduced survival, underscoring 

the importance of timely care. Beyond clinical metrics, 

psychological well-being and follow-up frequency were also 

found to be meaningful predictors-patients with better 

mental health and regular check-ups had improved 

outcomes, likely due to better adherence and early relapse 

detection. The integration of these psychosocial and care-

related factors into survival models reflects a more holistic 

understanding of patient prognosis, suggesting that 

predictive tools must account for both biological severity 

and behavioural resilience to be effective in clinical 

decision-making. 

 

Conclusion 

The integration of longitudinal data analysis with advanced 
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feature engineering techniques represents a significant 

advancement in predicting cancer survival rates. By 

utilizing time-series medical records that track the 

progression of cancer over time, this approach allows for a 

deeper understanding of the dynamic nature of the disease, 

which traditional static models fail to capture. The 

application of machine learning algorithms, combined with 

effective feature engineering methods, enhances the ability 

to identify key patterns and relationships within clinical 

data, such as patient demographics, treatment history, and 

disease progression. This enables more accurate and 

personalized survival predictions, allowing clinicians to 

make informed decisions about treatment plans and early 

interventions for high-risk patients. Moreover, by 

incorporating qualitative insights from healthcare 

professionals, cancer survivors, and caregivers through 

surveys, the research ensures that the predictive models 

align with real-world healthcare challenges and experiences. 

The mixed-methods approach, which merges data-driven 

predictions with human-centered feedback, enhances the 

reliability and practical applicability of the findings. 

Ultimately, this methodology not only improves the 

precision of cancer survival predictions but also contributes 

to the ongoing efforts to personalize cancer treatment and 

improve patient outcomes. As this field continues to evolve, 

further advancements in machine learning and feature 

engineering will likely lead to even more sophisticated 

models, reinforcing the potential of these approaches to 

transform oncology care and support better clinical 

decision-making in the future. 
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