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Abstract 
Ensuring high data quality (DQ) across large-scale, heterogeneous datasets remains a critical challenge 

in modern data ecosystems. Traditional rule-based DQ frameworks are often brittle, labour-intensive, 

and poorly suited for dynamic, schema-evolving environments. This paper presents a novel AI 

metadata-driven approach that leverages machine learning and metadata intelligence to automate the 

inference, validation, and enforcement of DQ rules across enterprise data pipelines. The proposed 

framework integrates five modular components: metadata profiling, AI-based rule generation, human-

in-the-loop feedback, scalable rule execution, and continuous monitoring with drift detection. Metadata 

is harvested from sources like Apache Atlas and Hive Metastore to capture schema structure, lineage, 

and statistical patterns, which are then analysed using machine learning models—including decision 

trees and clustering algorithms—to generate candidate rules. These rules are validated with human 

feedback and enforced at scale using Spark and AWS Glue across both batch and streaming workloads. 

A real-world prototype deployed on cloud-native infrastructure was evaluated on 15 datasets spanning 

finance, healthcare, and retail, totalling over 1.2 billion records. The system achieved 87% precision in 

auto-inferred rules, 60% reduction in manual rule authoring effort, and 45% improvement in anomaly 

detection compared to static rule baselines. Moreover, 93% of rules remained valid post-schema drift, 

demonstrating strong adaptability. Results also show execution times as low as 18-22 seconds per 10 

million records, enabling real-time enforcement at scale. This research highlights the effectiveness of 

combining metadata automation with AI to enable scalable, adaptive, and resilient DQ governance, 

offering a reusable architecture for intelligent data quality management in enterprise environments. 
 

Keywords: Data quality, metadata management, AI-driven rule enforcement, machine learning, data 

governance, dataops, data pipelines, anomaly detection, scalable data management 

 

Introduction 
In today's digital economy, data is a strategic asset that drives business decisions, innovation, 

and operational efficiency. However, the value of data is directly tied to its quality. Poor data 

quality (DQ) characterized by inaccuracies, inconsistencies, incompleteness, or 

duplication—can lead to flawed analytics, compliance failures, and significant economic 

losses. As organizations scale their data infrastructure across cloud environments and adopt 

real-time ingestion pipelines, enforcing consistent and adaptive data quality checks has 

become more complex than ever. 

Traditional rule-based data quality approaches depend heavily on manually crafted validation 

logic, which is rigid, labour-intensive, and difficult to maintain. Moreover, static rules fail to 

keep pace with changing schemas, evolving business semantics, and new data sources. 

Metadata the descriptive information about datasets, schemas, lineage, and usage offers an 

underutilized yet powerful foundation for automating and contextualizing data quality 

enforcement. 

This paper explores an AI-powered, metadata-driven architecture for data quality 

management that dynamically generates and enforces validation rules based on learned 

patterns and contextual metadata. The objective is to create a scalable, self-learning system 

capable of continuously improving rule accuracy, minimizing human intervention, and 

ensuring data trustworthiness across diverse domains. 

 

The Importance of Data Quality in Modern Enterprises 
As organizations become increasingly data-driven, data quality is no longer a back-office 

concern. It has emerged as a board-level priority.  
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From regulatory reporting in finance to patient records in 

healthcare, high-quality data underpins critical operational, 

analytical, and strategic activities. Inaccurate or incomplete 

data can derail machine learning models, skew business 

intelligence dashboards, and lead to costly decisions. 

Yet, despite the importance of DQ, most enterprises struggle 

to implement scalable solutions. According to a Gartner 

report, poor data quality costs organizations an average of 

$17.9 million annually. Traditional tools, while effective in 

small-scale or static environments, falter when applied to 

high-volume, real-time, and heterogeneous datasets. 

 

Challenges of Rule-Based DQ Systems 
Manual rule authoring remains the cornerstone of most DQ 

frameworks. Business analysts and data stewards define 

rules based on known domain constraints (e.g., "email must 

contain '@'", "age must be positive"). However, this process 

suffers from several limitations: 

1. Scalability Issues: As datasets multiply across systems 

and regions, manually authoring and maintaining rules 

becomes unsustainable. 

2. Schema Drift: As data schemas evolve, rules often 

break or become obsolete. 

3. Context Loss: Static rules lack awareness of usage 

context, business semantics, or downstream impacts. 

4. Delayed Feedback: Errors are often detected post-

factum during reporting or analytics, reducing their 

operational utility. 

 

These challenges necessitate a more adaptive and intelligent 

solution that evolves with the data. 

 

Metadata as a Foundation for Automation 
Metadata describes the who, what, when, where, and how of 

data. It includes technical metadata (e.g., data types, column 

names), operational metadata (e.g., frequency of update, 

data lineage), and business metadata (e.g., data owner, 

domain). Together, this information provides a contextual 

map that can be used to: 

 

Automatically identify potential quality issues 

Suggest rule templates based on schema and usage patterns 

Correlate data quality with downstream analytics or model 

performance 

When coupled with AI/ML models, metadata becomes a 

rich feature space for predictive and prescriptive data 

quality enforcement. 

 

2. Recent Survey 

Data quality (DQ) is foundational to trustworthy analytics, 

operational efficiency, and decision-making across data-

driven systems. Despite advancements in data engineering 

and AI, ensuring data quality at scale remains an enduring 

challenge, attracting significant research attention over the 

past two decades. 

Initial research focused on detecting and categorizing data 

errors—such as missing values, duplicates, and format 

inconsistencies—which impact data usability and 

trustworthiness. Abedjan et al. [1] offered a landmark survey 

that classified existing data error detection methods and 

emphasized the need for more scalable, adaptive, and 

domain-aware systems. 

With the rise of machine learning (ML), the need for data 

validation pipelines that align with model requirements 

became essential. Breck et al. [2] proposed a systematic data 

validation approach tailored to ML pipelines, integrating 

schema checks, feature distribution monitoring, and 

training-serving skew detection. 

Commodity tools for data cleaning began gaining 

prominence with systems like NADEEF, which introduced a 

rule-based framework for detecting and repairing violations 

using user-defined constraints [3]. Building on this, Ehrlinger 

and Wöß [4] advocated for automated DQ monitoring 

systems capable of proactive anomaly detection across 

enterprise datasets. 

Metadata emerged as a critical enabler in contextualizing 

and governing data quality. Elmagarmid et al. [5] 

emphasized the central role of metadata in facilitating 

profiling, constraint enforcement, and lineage tracking for 

effective data quality assessment. Complementarily, Fan 

and Geerts [6] presented a formal foundation for data quality 

management, categorizing types of rules and constraints 

grounded in logic and database theory. 

Context-aware systems such as Ground were introduced to 

capture provenance, context, and evolution of datasets, 

assisting in understanding how quality issues propagate [7]. 

Hu et al. [8] proposed Auto-Validate, an unsupervised 

system that leverages data-dominance relations to identify 

validation opportunities without labelled data. 

Machine learning techniques for data cleaning were 

systematically analysed by Ilyas and Rekatsinas [9], who 

classified them into supervised, semi-supervised, and 

unsupervised approaches. They highlighted a shift toward 

active learning and reinforcement-based methods for 

scalable cleaning. An example is ActiveClean, a system that 

integrates human-in-the-loop cleaning with statistical 

modeling to maintain model fidelity [10]. 

Deep learning also made its way into DQ monitoring, with 

Mahdavi et al. [11] demonstrating the use of autoencoders 

and neural nets to detect anomalies in large-scale datasets. 

Parallelly, metadata-driven systems were shown to be 

highly effective for DQ assessment, as Maydanchik [12] 

outlined the integration of quality metrics directly into 

metadata registries for real-time validation. 

More recently, metadata enrichment has become central to 

AI-driven data governance strategies. Oliveira et al. [13] 

proposed automated enrichment pipelines that leverage AI 

to infer data types, relationships, and sensitivity levels. 

Quarati and Clematis [14] emphasized metadata-based DQ 

assessment frameworks capable of scalable rule 

enforcement and data profiling in heterogeneous systems. 

Integration remains a holistic challenge for DQ, as pointed 

out by Rahm [15], who argued for integrated approaches that 

combine transformation, profiling, and resolution pipelines. 

Earlier systems like Potter’s Wheel by Raman and 

Hellerstein [16] exemplified interactive DQ interfaces that 

allow domain experts to iteratively clean data with visual 

feedback. 

Dependency-driven systems such as Horizon have emerged 

to scale data cleaning using functional and inclusion 

dependencies automatically mined from data [17]. Schelter et 

al. [18] extended this vision with systems for automating 

quality verification in distributed data platforms, addressing 

the needs of data lake architectures. 

The evolution of data curation systems such as Data Tamer 
[19] further illustrated the importance of human-guided, 

scalable tools to handle schema mapping, entity resolution, 

and record linking. In parallel, recommendation systems 
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began using metadata to support ML practitioners with 

pipeline design and feature selection, as discussed by 

Vanschoren and Yeung [20]. 

From the consumer’s perspective, Wang and Strong [21] 

provided a nuanced view of DQ, asserting that accuracy is 

just one of many dimensions-others include completeness, 

relevance, and interpretability-which are often subjective 

and context-driven. 

Yakout et al. [22] proposed guided data repair systems that 

prioritize fixing records most likely to impact downstream 

analytics, introducing a cost-benefit analysis to the cleaning 

process. Zhang et al. [23] surveyed how AI technologies-

including generative models and reinforcement learning-are 

increasingly being applied to automate quality checks and 

contextual data repairs. 

The challenge of discovering related datasets within large 

data lakes-crucial for joining, enrichment, and context 

inference-was explored by Zhang and Ives [24], who used 

metadata similarity and content-based indexing to 

recommend relevant tables. 

Lastly, enterprise-grade frameworks for AI-driven data 

governance have been formalized in recent years. Zuzarte et 

al. [25] provided a Gartner-style architecture blueprint 

emphasizing metadata-centric control, automation of 

compliance rules, and continuous DQ monitoring across 

cloud-native platforms. 

 

3. Proposed Methodology 

 

 
 

Fig 1: Proposed Methodology Flow Chart 
 

Figure 1: Proposed Methodology Flow Chart, the solution 

comprises five sequential and interdependent components 

that form a complete AI-driven metadata-based data quality 

(DQ) pipeline. 

The process begins with the input stage, where metadata and 

sample data are collected from source systems. This 

includes schema definitions, column data types, data 

lineage, and statistical summaries, serving as the foundation 

for intelligent rule generation. The first component, 3.1 

Metadata Profiling and Feature Extraction, performs 

automated harvesting and profiling of metadata using tools 

such as Apache Atlas and Hive Metastore, extracting 

relevant structural and semantic features. 

Next, 3.2 AI-Based Rule Generation applies machine 

learning techniques—such as decision trees, clustering 

algorithms, and pattern analysis—to generate candidate DQ 

rules. These rules may include format checks (e.g., email 

regex), referential integrity constraints (e.g., foreign key 

matches), or range validations based on historical data 

distributions. 

In the third component, 3.3 Rule Recommendation and 

Feedback Loop, the system ranks and scores the generated 

rules, which are then reviewed through a human-in-the-loop 

interface. Data stewards can approve, modify, or reject the 

rules, and this feedback is used to retrain models, improving 

rule precision over time. 
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Following that, 3.4 Scalable Rule Enforcement deploys the 

approved rules into production via scalable execution 

engines such as Apache Spark, AWS Glue, or dbt tests. 

These rules are enforced during both batch and stream 

processing, with violations being logged and alerts pushed 

to monitoring platforms. 

Finally, 3.5 Monitoring and Drift Detection continuously 

tracks schema changes, data drift, and rule performance. 

When anomalies or schema evolution are detected, the 

system automatically revalidates rules and triggers updates, 

ensuring adaptability in dynamic data environments. 

The output of this pipeline is rule-conformant, quality-

audited data, which is more trustworthy for downstream 

analytics, reporting, and decision-making. Overall, the 

methodology in Figure 1 presents a modular, intelligent, and 

scalable approach to enterprise-wide data quality 

governance. 
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3.1 Metadata Profiling and Feature Extraction 

Metadata from source systems-including schema 

definitions, column types, data lineage, statistical 

summaries, and business glossaries-is collected using 

crawlers or integrated with metadata catalogs (e.g., Apache 

Atlas, Amundsen). This metadata forms the foundation for 

contextual DQ rule inference. 

 

3.2 AI-Based Rule Generation 

Machine learning models, including decision trees and 

unsupervised clustering (e.g., DBSCAN, Isolation Forest), 

analyse metadata and sample data to auto-generate 

candidate DQ rules. For instance, AI may infer that a 

customer’s email should match a regex pattern or that 

transaction dates should not exceed current time. Historical 

data behaviours further guide rule prioritization. 

 

3.3 Rule Recommendation and Feedback Loop 

Rules are scored and ranked by confidence levels. A human-

in-the-loop interface allows data stewards to approve or 

reject suggested rules, and feedback is logged to retrain the 

models. This enables continuous improvement in rule 

accuracy and reduces false positives. 

 

3.4 Scalable Rule Enforcement 

DQ rules are deployed via lightweight runtime engines (e.g., 

Spark jobs, AWS Glue, or dbt tests) to enforce validations 

during batch and stream processing. Rule violations are 

logged, and alerts are pushed to monitoring tools such as 

Grafana or DataDog. 

 

3.5 Monitoring and Drift Detection 

The system tracks data drift and schema changes, 

automatically re-triggering rule validation cycles. Real-time 

dashboards show rule health, conformance trends, and 

quality scores over time. 

This modular pipeline allows enterprises to scale DQ 

enforcement across thousands of datasets with minimal 

manual effort, while adapting to changes in data semantics 

and structure. 
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4. Results and Analysis 

A prototype of the proposed metadata-driven AI framework 

was implemented using a cloud-native stack comprising 

AWS Glue, Apache Spark, and Great Expectations, with 

deep integration into metadata sources such as Apache Atlas 

and the Hive Metastore. The system was evaluated on a 

diverse testbed of 15 enterprise datasets spanning the 

finance, healthcare, and retail sectors, representing over 1.2 

billion records in total. 

The performance of the system was measured across 

multiple dimensions of data quality effectiveness and 

operational scalability. As shown in Fig. 2, the precision of 

auto-inferred data quality (DQ) rules reached 87%, 

demonstrating the AI engine’s ability to correctly generalize 

rules from metadata and sample data. These rules 

encompassed constraints such as non-null checks, regular 

expression patterns, numeric thresholds, and referential 

integrity (e.g., ensuring that customer_id exists in a 

reference table). 

A significant benefit of the system was the reduction in 

manual rule creation effort, with automation cutting down 

human intervention by 60%, as illustrated in Fig. 3. This 

was enabled through intelligent rule suggestion, active 

learning, and feedback loops that refined rule inference 

based on human validation. The efficiency gains were 

further supported by the system’s lightweight deployment 

architecture; in batch processing mode, DQ rules executed 

within 18 to 22 seconds per 10 million records, as depicted 

in Fig. 4. This level of performance confirms the 

framework's viability for large-scale data validation 

workflows. 

Another key result was the improvement in the detection 

rate of real-world anomalies, which increased by 45% over 

static rule-based approaches (Fig. 5). This improvement 

stems from the AI module’s ability to adapt rules based on 

evolving data characteristics, rather than relying on 

hardcoded thresholds. Furthermore, the system 

demonstrated strong resilience to schema drift, with 93% of 

the rules remaining valid even after structural changes in the 

data sources, as shown in Fig. 6. This adaptability is critical 

in dynamic environments where data models evolve rapidly 

and traditional rule-based systems typically fail. 

All rule violations and exceptions were logged and 

visualized through a unified UI, integrated with lineage 

views to support root-cause analysis and data steward 

interventions. These dashboards provided real-time 

feedback on rule health and conformance trends, facilitating 

both operational oversight and continuous improvement. 

Overall, the findings validate that the metadata-driven AI-

based DQ enforcement system not only scales efficiently 

across complex, high-volume datasets but also enhances 

rule coverage, accuracy, and adaptability. Compared to 

conventional DQ tools, it offers a more intelligent, 

automated, and resilient approach to managing data quality 

in modern data ecosystems. 

 

AI driven metadata DQ system evolution 

 

 
 

Fig 2: Precision of auto inferred rules 

 

 
 

Fig 2: Reduction in manual rule creation effort 
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Fig 4: Rule execution time (Batch Mode) 
 

 
 

Fig 5: Anomaly direction rate improvement 

 

 
 

Fig 6: Adaptability to schema drift

5. Conclusion 

This paper presents a scalable, AI-driven framework that 

leverages metadata intelligence to enforce data quality rules 

in a dynamic and automated manner. By combining 

metadata profiling, machine learning-based rule inference, 

and continuous feedback learning, the approach achieves 

superior adaptability and reduces the manual burden of 

maintaining data quality across large and complex data 

environments. 

The integration of DQ rule enforcement into modern data 

pipelines ensures proactive anomaly detection, real-time 

compliance, and improved trust in enterprise analytics. 

Future work will focus on integrating generative AI to 

create explainable rule suggestions and expanding support 

for multilingual datasets and ontologies. This research 

contributes a significant step forward in intelligent, 

automated data governance using AI and metadata 

symbiosis. 

https://www.computersciencejournals.com/ijccdm


International Journal of Cloud Computing and Database Management https://www.computersciencejournals.com/ijccdm 

~ 119 ~ 

References 

1. Abedjan Z, Chu X, Deng D, Fernandez RC, Ilyas IF, 

Ouzzani M, et al. Detecting data errors: Where are we 

and what needs to be done? Proceedings of the VLDB 

Endowment. 2016;9(12):993-1004. 

2. Breck E, Polyzotis N, Roy S, Whang SE, Zinkevich M. 

Data validation for machine learning. Proceedings of 

Machine Learning and Systems. 2019;1:334-347. 

3. Dallachiesa M, Ebaid M, Eldawy A, Elmagarmid A, 

Ilyas IF, Ouzzani M, et al. NADEEF: A commodity 

data cleaning system. Proceedings of the 2013 ACM 

SIGMOD International Conference. 2013;541-552. 

4. Ehrlinger L, Wöß W. Automated data quality 

monitoring. Journal of Data and Information Quality. 

2022;14(3):1-27. 

5. Elmagarmid AK, Ipeirotis PG, Verykios VS. Data 

quality: The role of metadata. IEEE Transactions on 

Knowledge and Data Engineering. 2014;26(1):195-213. 

6. Fan W, Geerts F. Foundations of data quality 

management. Synthesis Lectures on Data Management. 

2022;14(3):1-217. 

7. Hellerstein JM, Sikka V, Parameswaran A, Franklin 

MJ. Ground: A data context service. Proceedings of the 

8th Biennial Conference on Innovative Data Systems 

Research (CIDR 2017). 2017. 

8. Hu R, Liu Y, Dong X, Rekatsinas T, Kraska T. Auto-

Validate: Unsupervised data validation using data-

dominance. Proceedings of the VLDB Endowment. 

2021;14(12):2793-801. 

9. Ilyas IF, Rekatsinas T. Machine learning for data 

cleaning. Foundations and Trends in Databases. 

2022;12(4):295-418. 

10. Krishnan S, Wang J, Franklin MJ, Goldberg K. 

ActiveClean: Interactive data cleaning for statistical 

modeling. Proceedings of the VLDB Endowment. 

2016;9(12):948-959. 

11. Mahdavi M, Rekatsinas T, Chu X. Deep learning for 

data quality monitoring. Journal of Data and 

Information Quality. 2021;13(4):1-24. 

12. Maydanchik A. Data quality assessment in metadata-

driven systems. New Jersey: Technics Publications; 

2020. 

13. Oliveira P, Pereira C, Machado F, Batista F, Afonso 

AP. AI-driven metadata enrichment for data 

governance. Data and Knowledge Engineering. 

2023;146:102183. 

14. Quarati A, Clematis A. Metadata-based data quality 

assessment. Future Generation Computer Systems. 

2023;142:348-65. 

15. Rahm E. The case for holistic data integration. 

Advances in Databases and Information Systems. 

2016;11-27. 

16. Raman V, Hellerstein JM. Potter's wheel: An 

interactive data cleaning system. VLDB Journal. 

2021;30(1):139-162. 

17. Rezig EK, Pujara J, Knoblock CA. Horizon: Scalable 

dependency-driven data cleaning. Proceedings of the 

VLDB Endowment. 2021;14(11):2546-2554. 

18. Schelter S, Biessmann F, Grafberger A, Schmidt P. 

Automating large-scale data quality verification. 

Proceedings of the VLDB Endowment. 

2018;11(12):1781-1794. 

19. Stonebraker M, Ilyas IF, Beskales G, Cherniack M, 

Karger D, Madden S, et al. Data curation at scale: The 

data tamer system. Proceedings of the 6th Biennial 

Conference on Innovative Data Systems Research 

(CIDR 2013). 2013. 

20. Vanschoren J, Yeung S. Metadata-driven 

recommendation systems for machine learning. 

Communications of the ACM. 2021;64(6):86-92. 

21. Wang RY, Strong DM. Beyond accuracy: What data 

quality means to data consumers. Journal of 

Management Information Systems. 2019;12(4):5-34. 

22. Yakout M, Ganjam K, Chakrabarti K, Chaudhuri S. 

Guided data repair. Proceedings of the VLDB 

Endowment. 2012;5(9):874-885. 

23. Zhang A, Ge M, Chen X, Yang X. Data quality 

management in the AI era. SIGMOD Record. 

2020;49(4):38-49. 

24. Zhang S, Ives Z. Finding related tables in data lakes. 

Proceedings of the 2020 IEEE 36th International 

Conference on Data Engineering (ICDE). 2020;1445-

56. 

25. Zuzarte C, Lee R, Gupta M, Varma R, Parikh S. AI-

driven data governance frameworks. Gartner Research 

Report G00786544. 2023. 

https://www.computersciencejournals.com/ijccdm

