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Abstract 
In this paper, we give an effective and easy-to-use symmetric Searchable symmetric encryption (SSE) 

for string search. Unlike previous plans, we use hash affixing instead of a chain of encryption activities 

for record age, which makes it suitable for lightweight applications. Here is the first time that 

probabilistic trapdoors for string search in SSE are suggested. We give solid proof that our plan isn't 

secure against a real but curious server, depending on the definitions. Here, we also show another idea 

for search design protection, which protects some of the spillage from the trapdoor. I've shown that our 

plan is safe under the inquiry design in the definition of noticeability. I explain why SSE's scheme for 

string search can't meet the flexibility criteria mentioned, and I also suggest changes to our plan so that 

it can be used against moving enemies at the cost of more changes to communications and more 

memory space. 
 

Keywords: Cloud storage, symmetric key, searchable encryption, hash-chain, and lightweight 

cryptography 

 

1. Introduction 
The cloud is meant to store a large number of encrypted reports. With the rise of distributed 

computing, more and more customers and driving organisations are getting used to the idea 

of private storage being re-appropriated. This makes it easy for customers with a lot of 

encrypted information to store it in the cloud in secret. No matter what, this makes it hard to 

look. This gives a boost to a new field of study called "Searchable Encryption" (SE). SE can 

be divided into symmetric accessible encryptions (SSE) and Asymmetric Searchable 

Encryption (ASE). We think about the SSE for string look in this paper. In the SSE, the 

customer encrypts the information and stores it in the cloud. It can be seen that the customer 

can organise the information on their own and keep up with more information structures to 

get to the information they need quickly. In this method, the calculations on the customer 

side are as big as the information, but the calculations to get to the information are smaller 

for both the customer and the cloud server. 

Since a cloud server stores a lot of archives, searching for a catchphrase may bring up a large 

number of documents, most of which were not expected. This causes unnecessary traffic on 

the system. This makes people look against a string, which makes the question more clear. 

Looking for string is a multi-catchphrase seek that makes it safe to ask for watchwords. So, 

even if all of these keywords are in a report, their order and proximity to each other should 

be taken into account when searching. The record table should be set up in a way that keeps 

the words' location information safe. 

Even though there are a few works in writing that include string look (like [1, 8, 2, 3], and [5]), 

most of them need formal security evidence against the changed meanings of [1] and also 

send a lot of information to the server after the search. In the SSE plot, the server has to 

know nothing about how the questions and information are asked and collected. SSE does 

this by using symmetric cryptographic natives instead of open key encryption, which 

requires a lot of calculations but leaks little data [1]. Here, we use a model that will be used 

throughout the paper to explain how our calculations and data structures work. 

With more and more documents being stored in the cloud, it can be hard and take a lot of 

time to find the one you want. One solution could be to use symmetric searchable encryption 

(SSE), which lets one party send its data to another party (like a cloud) for private storage 

and selective searching.  

https://doi.org/10.33545/27075907.2023.v4.i1a.44
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In this paper, we looked at the security definitions of [11] 

again and came up with a new lightweight SSE scheme 

called s;s for searching strings. 

 

2. Review of the Literature 

Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. 

Encryption that is both sure and easy to look up. In the 

pages 535-552 of the Annual International Cryptology 

Conference. Springer. 

When the encryption calculation is random, the traditional 

ideas of security for open-key encryption plans must be met. 

These are mainly the lack of definition or semantic security 

under a picked plaintext or picked ciphertext attack [4, 3, 8, 10]. 

This paper looks at the case where the calculation for 

encryption is deterministic. First, we talk about the 

application of the spurring. Quick pursuit. More and more 

people are interested in remote information storage as 

redistributed databases [2]. The information will be stored in 

a jumbled way. (The company that specialises in databases 

isn't believed.) We like the idea of an open key setting, 

where anyone can add encoded information to the database 

that a known "beneficiary" can find and decode. The 

encryption scheme must make it possible for the recipient to 

look for information. Public key encryption with keyword 

search (PEKS) [11, 1, 8] is a solution that gives strong 

protection and can be shown to do so. However, search 

requires a lot of direct investment in the size of the database. 

Since databases can be as big as terabytes, this isn't enough 

space. The commonsense network shows that they need a 

record with a certain field value that can be found in a time 

that is proportional to the size of the database. (For example, 

by using tree-based information structures correctly.) Only 

this is possible with deterministic encryption. The encoded 

fields can be stored in the data structure, and an objective 

ciphertext can be found in a time that is proportional to the 

size of the database. The question is what kind of safety one 

can expect. To answer this, we need to know what security 

means in the context of deterministic encryption. A 

definition. One option is to just ask for one-wayness, but we 

might want to make sure that as much information about the 

plaintext is shared as possible. To figure out how big this 

could be, we look at two rules that are built into 

deterministic encryption. First of all, there is no way to 

protect anything if the plaintext is known to come from a 

small space. In reality, if the enemy knows that c is the 

encryption under open key pk of a plaintext x from a set X, 

he or she can record the encryption cx of x under pk for all x 

X and return as the decryption of c the x that makes cx = c. 

We deal with this by possibly requiring protection when the 

plaintext comes from a space with a high min-entropy. 

Second, and this is getting less impressive, the ciphertext is 

half information about the plaintext. We deal with this by 

possibly requiring that halfway data not be spilled when the 

plaintext and incomplete data don't depend on the open key. 

This makes sense because, after all, open keys are hidden in 

our product and information doesn't depend on them. Even 

though our new idea of security for deterministic 

encryption, which we call PRIV, is more likely to be broken 

than the old ideas that used randomised plans, it is still very 

strong. This new idea can be reached through the next 

question. Developments. Our first step is normal and 

standard: Deterministically encrypt plaintext x by using the 

encryption calculation of a random plan but using a hash of 

(the open key and) x as coins. We show that this "Encode 

with-Hash" deterministic encryption scheme is PRIV secure 

in the Random Oracle (RO) model of [11], assuming that the 

beginning randomised plan is IND-CPA secure. The next 

thing we're making is an addition to RSA-OAEP [10, 1]. The 

change to the cushioning is fixed, but it uses three Feistel 

adjustments instead of the two that OAEP uses. In the RO 

model, where RSA is accepted, it has been shown that RSA-

DOAEP is PRIV secure. The length-safety feature of this 

development is an appealing one. (The length of the 

ciphertext grows until it matches the length of the plaintext.) 

This is important when transfer speed is expensive—senders 

in a database setting could be power-dependent devices—

and when you want to make sure that code is inherited. 

 

3. Our Scheme 

In this section we present our SSE scheme ss for string 

search, which is composed of four algorithms KeyGen, 

Build Index, Trapdoor and Search. First, we formally define 

the scheme. In the subsequent subsections, we will discuss 

these algorithms in detail with illustrations.  

Scheme 1 (ss). The scheme ss is a collection of four 

polynomial-time algorithms (KeyGen, BuildIndex, 

Trapdoor, Search) such that:  

 Key Gen (1): Key Gen is a probabilistic key generation 

algorithm that is run by the client to setup the scheme 

(see Algorithm 1). It takes a security parameter, and 

returns a secret master key km and a mask-key k0 

which are to be kept privately at client’s end and a 

session key ks which is to be shared between client and 

the server. Client also shares a -bit prime p with the 

server. The length of km, k0 and ks are polynomial 

bounded  

 Build Index (km; k0; ks; p): Build Index is a 

probabilistic algorithm run by the client to generate SI 

= (I; Ir; Ic). It takes km, k0, ks, p and returns SI. Since 

Build Index is randomized, we write this as SI Build 

Index (km; k0; ks;p)(s).  

 Trapdoor (km; ks; p; s): Trapdoor is a probabilistic 

algorithm run by the client to generate a trapdoor for a 

given string of words s = (w1; w2; : : : ; wl). It takes 

km, k0, ks, p and s as input and outputs t = (t1; t2;: : : ; 

tl), where ti is the trapdoor corresponding to the word 

wi. Since trapdoor is randomized, we write this as t T 

rapdoor (km;k0;ks;p)(s)  

 Search (SI; t): Search is run by the server in order to 

search for the documents in D that contain the string s. 

It takes ks, SI and trapdoor t of the string s as inputs, 

and returns D(s), the set of identifiers of documents 

containing the string s. Since this algo-rithm is 

deterministic, we write it as D(s) = Searchks (SI; t) 

 

4. Conclusion  

We've shown that our scheme is safe based on the definition 

of "non-adaptive in distinguishability" [11]. For an active 

adversary, we suggest that the scheme s;s be changed at the 

cost of more memory on the client's side and two rounds of 

communication for each change to the document collection. 

In this direction, more research can be done to come up with 

an effective SSE scheme that only needs one round of 

communication, if possible. With our plan, the server 

doesn't know anything about how often words are used and 

where they are placed other than what it can learn from the 

history. 

https://www.computersciencejournals.com/ijccdm
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We bring a new security idea to SSE for the first time. It's 

called "search pattern in distinguishability." It can be seen 

that with non-adaptive distinguishability security, the 

keywords are guaranteed to be safe from possible leakage 

from the index, but not from possible leakage from the 

trapdoor. In order to do this, we use a probabilistic trapdoor 

for the first time and show that our scheme is safe by this 

measure. We've used the TIMIT dataset to test our scheme 

and put it to use for the first time to search over phone 

symbols. We've also used our scheme on DNA data from [1] 

and were able to successfully do pattern matching over an 

encrypted domain.  

 

5. Abbreviation 

Searchable symmetric encryption (SSE) 

Searchable encryption (SE) 

Asymmetric Searchable Encryption (ASE) 

Impulse under samecloseness-plan chose plaintext attacks 

(IND-CLS-CPA) 

Iindistinguishability under selective chosen plaintext attacks 

(IND-SCPA) 

Public key encryption with keyword search (PEKS) 

Mandatory Access Control (MAC),  

Role Based Access Control (RBAC) 

Optimal Asymmetric Encryption Padding (OAEP) 

RSA (Rivest–Shamir–Adleman) 

Random Oracle (RO) 

Searchable Public-Key Ciphertexts with Hidden Structures 

(SPCHS) 

Secure multi-party computation (SMC) 
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