
~ 9 ~

International Journal of Cloud Computing and Database Management 2023; 4(1): 09-11

E-ISSN: 2707-5915

P-ISSN: 2707-5907

IJCCDM 2023; 4(1): 09-11

Received: 08-11-2022

Accepted: 14-12-2022

Dr. Nesar Ahmad

HOD and Professor,

Department of Statistics and

Computer Science, Tilka

Manjhi Bhagalpur University,

Bhagalpur, Bihar, India

Supriya Raj

Research Scholar, Department

of Statistics and Computer

Science, Tilka Manjhi

Bhagalpur University,

Bhagalpur, Bihar, India

Corresponding Author:

Dr. Nesar Ahmad

HOD and Professor,

Department of Statistics and

Computer Science, Tilka

Manjhi Bhagalpur University,

Bhagalpur, Bihar, India

Modern symmetric searchable encryption technique

for string classification in cloud technology

Dr. Nesar Ahmad and Supriya Raj

DOI: https://doi.org/10.33545/27075907.2023.v4.i1a.44

Abstract
In this paper, we give an effective and easy-to-use symmetric Searchable symmetric encryption (SSE)

for string search. Unlike previous plans, we use hash affixing instead of a chain of encryption activities

for record age, which makes it suitable for lightweight applications. Here is the first time that

probabilistic trapdoors for string search in SSE are suggested. We give solid proof that our plan isn't

secure against a real but curious server, depending on the definitions. Here, we also show another idea

for search design protection, which protects some of the spillage from the trapdoor. I've shown that our

plan is safe under the inquiry design in the definition of noticeability. I explain why SSE's scheme for

string search can't meet the flexibility criteria mentioned, and I also suggest changes to our plan so that

it can be used against moving enemies at the cost of more changes to communications and more

memory space.

Keywords: Cloud storage, symmetric key, searchable encryption, hash-chain, and lightweight

cryptography

1. Introduction
The cloud is meant to store a large number of encrypted reports. With the rise of distributed

computing, more and more customers and driving organisations are getting used to the idea

of private storage being re-appropriated. This makes it easy for customers with a lot of

encrypted information to store it in the cloud in secret. No matter what, this makes it hard to

look. This gives a boost to a new field of study called "Searchable Encryption" (SE). SE can

be divided into symmetric accessible encryptions (SSE) and Asymmetric Searchable

Encryption (ASE). We think about the SSE for string look in this paper. In the SSE, the

customer encrypts the information and stores it in the cloud. It can be seen that the customer

can organise the information on their own and keep up with more information structures to

get to the information they need quickly. In this method, the calculations on the customer

side are as big as the information, but the calculations to get to the information are smaller

for both the customer and the cloud server.

Since a cloud server stores a lot of archives, searching for a catchphrase may bring up a large

number of documents, most of which were not expected. This causes unnecessary traffic on

the system. This makes people look against a string, which makes the question more clear.

Looking for string is a multi-catchphrase seek that makes it safe to ask for watchwords. So,

even if all of these keywords are in a report, their order and proximity to each other should

be taken into account when searching. The record table should be set up in a way that keeps

the words' location information safe.

Even though there are a few works in writing that include string look (like [1, 8, 2, 3], and [5]),

most of them need formal security evidence against the changed meanings of [1] and also

send a lot of information to the server after the search. In the SSE plot, the server has to

know nothing about how the questions and information are asked and collected. SSE does

this by using symmetric cryptographic natives instead of open key encryption, which

requires a lot of calculations but leaks little data [1]. Here, we use a model that will be used

throughout the paper to explain how our calculations and data structures work.

With more and more documents being stored in the cloud, it can be hard and take a lot of

time to find the one you want. One solution could be to use symmetric searchable encryption

(SSE), which lets one party send its data to another party (like a cloud) for private storage

and selective searching.

https://doi.org/10.33545/27075907.2023.v4.i1a.44

International Journal of Cloud Computing and Database Management https://www.computersciencejournals.com/ijccdm

~ 10 ~

In this paper, we looked at the security definitions of [11]

again and came up with a new lightweight SSE scheme

called s;s for searching strings.

2. Review of the Literature

Mihir Bellare, Alexandra Boldyreva, and Adam ONeill.

Encryption that is both sure and easy to look up. In the

pages 535-552 of the Annual International Cryptology

Conference. Springer.

When the encryption calculation is random, the traditional

ideas of security for open-key encryption plans must be met.

These are mainly the lack of definition or semantic security

under a picked plaintext or picked ciphertext attack [4, 3, 8, 10].

This paper looks at the case where the calculation for

encryption is deterministic. First, we talk about the

application of the spurring. Quick pursuit. More and more

people are interested in remote information storage as

redistributed databases [2]. The information will be stored in

a jumbled way. (The company that specialises in databases

isn't believed.) We like the idea of an open key setting,

where anyone can add encoded information to the database

that a known "beneficiary" can find and decode. The

encryption scheme must make it possible for the recipient to

look for information. Public key encryption with keyword

search (PEKS) [11, 1, 8] is a solution that gives strong

protection and can be shown to do so. However, search

requires a lot of direct investment in the size of the database.

Since databases can be as big as terabytes, this isn't enough

space. The commonsense network shows that they need a

record with a certain field value that can be found in a time

that is proportional to the size of the database. (For example,

by using tree-based information structures correctly.) Only

this is possible with deterministic encryption. The encoded

fields can be stored in the data structure, and an objective

ciphertext can be found in a time that is proportional to the

size of the database. The question is what kind of safety one

can expect. To answer this, we need to know what security

means in the context of deterministic encryption. A

definition. One option is to just ask for one-wayness, but we

might want to make sure that as much information about the

plaintext is shared as possible. To figure out how big this

could be, we look at two rules that are built into

deterministic encryption. First of all, there is no way to

protect anything if the plaintext is known to come from a

small space. In reality, if the enemy knows that c is the

encryption under open key pk of a plaintext x from a set X,

he or she can record the encryption cx of x under pk for all x

X and return as the decryption of c the x that makes cx = c.

We deal with this by possibly requiring protection when the

plaintext comes from a space with a high min-entropy.

Second, and this is getting less impressive, the ciphertext is

half information about the plaintext. We deal with this by

possibly requiring that halfway data not be spilled when the

plaintext and incomplete data don't depend on the open key.

This makes sense because, after all, open keys are hidden in

our product and information doesn't depend on them. Even

though our new idea of security for deterministic

encryption, which we call PRIV, is more likely to be broken

than the old ideas that used randomised plans, it is still very

strong. This new idea can be reached through the next

question. Developments. Our first step is normal and

standard: Deterministically encrypt plaintext x by using the

encryption calculation of a random plan but using a hash of

(the open key and) x as coins. We show that this "Encode

with-Hash" deterministic encryption scheme is PRIV secure

in the Random Oracle (RO) model of [11], assuming that the

beginning randomised plan is IND-CPA secure. The next

thing we're making is an addition to RSA-OAEP [10, 1]. The

change to the cushioning is fixed, but it uses three Feistel

adjustments instead of the two that OAEP uses. In the RO

model, where RSA is accepted, it has been shown that RSA-

DOAEP is PRIV secure. The length-safety feature of this

development is an appealing one. (The length of the

ciphertext grows until it matches the length of the plaintext.)

This is important when transfer speed is expensive—senders

in a database setting could be power-dependent devices—

and when you want to make sure that code is inherited.

3. Our Scheme

In this section we present our SSE scheme ss for string

search, which is composed of four algorithms KeyGen,

Build Index, Trapdoor and Search. First, we formally define

the scheme. In the subsequent subsections, we will discuss

these algorithms in detail with illustrations.

Scheme 1 (ss). The scheme ss is a collection of four

polynomial-time algorithms (KeyGen, BuildIndex,

Trapdoor, Search) such that:

 Key Gen (1): Key Gen is a probabilistic key generation

algorithm that is run by the client to setup the scheme

(see Algorithm 1). It takes a security parameter, and

returns a secret master key km and a mask-key k0

which are to be kept privately at client’s end and a

session key ks which is to be shared between client and

the server. Client also shares a -bit prime p with the

server. The length of km, k0 and ks are polynomial

bounded

 Build Index (km; k0; ks; p): Build Index is a

probabilistic algorithm run by the client to generate SI

= (I; Ir; Ic). It takes km, k0, ks, p and returns SI. Since

Build Index is randomized, we write this as SI Build

Index (km; k0; ks;p)(s).

 Trapdoor (km; ks; p; s): Trapdoor is a probabilistic

algorithm run by the client to generate a trapdoor for a

given string of words s = (w1; w2; : : : ; wl). It takes

km, k0, ks, p and s as input and outputs t = (t1; t2;: : : ;

tl), where ti is the trapdoor corresponding to the word

wi. Since trapdoor is randomized, we write this as t T

rapdoor (km;k0;ks;p)(s)

 Search (SI; t): Search is run by the server in order to

search for the documents in D that contain the string s.

It takes ks, SI and trapdoor t of the string s as inputs,

and returns D(s), the set of identifiers of documents

containing the string s. Since this algo-rithm is

deterministic, we write it as D(s) = Searchks (SI; t)

4. Conclusion

We've shown that our scheme is safe based on the definition

of "non-adaptive in distinguishability" [11]. For an active

adversary, we suggest that the scheme s;s be changed at the

cost of more memory on the client's side and two rounds of

communication for each change to the document collection.

In this direction, more research can be done to come up with

an effective SSE scheme that only needs one round of

communication, if possible. With our plan, the server

doesn't know anything about how often words are used and

where they are placed other than what it can learn from the

history.

https://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management https://www.computersciencejournals.com/ijccdm

~ 11 ~

We bring a new security idea to SSE for the first time. It's

called "search pattern in distinguishability." It can be seen

that with non-adaptive distinguishability security, the

keywords are guaranteed to be safe from possible leakage

from the index, but not from possible leakage from the

trapdoor. In order to do this, we use a probabilistic trapdoor

for the first time and show that our scheme is safe by this

measure. We've used the TIMIT dataset to test our scheme

and put it to use for the first time to search over phone

symbols. We've also used our scheme on DNA data from [1]

and were able to successfully do pattern matching over an

encrypted domain.

5. Abbreviation

Searchable symmetric encryption (SSE)

Searchable encryption (SE)

Asymmetric Searchable Encryption (ASE)

Impulse under samecloseness-plan chose plaintext attacks

(IND-CLS-CPA)

Iindistinguishability under selective chosen plaintext attacks

(IND-SCPA)

Public key encryption with keyword search (PEKS)

Mandatory Access Control (MAC),

Role Based Access Control (RBAC)

Optimal Asymmetric Encryption Padding (OAEP)

RSA (Rivest–Shamir–Adleman)

Random Oracle (RO)

Searchable Public-Key Ciphertexts with Hidden Structures

(SPCHS)

Secure multi-party computation (SMC)

6. References

1. https://github.com/iskana/pbwt sec/tree/master/sample

dat.

2. http://www.fon.hum.uva.nl/david/massp/2007/timit/trai

n/dr5/fsdc0/.

3. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike

Kiltz, Tadayoshi Kohno, Tanja Lange, et al. Searchable

Encryption Revisited: Consistency Proper-ties, Relation

to Anonymous IBE, and Extensions. 2008;21:350-391.

4. Mihir Bellare, Alexandra Boldyreva, Adam ONeill.

Deterministic and Efficiently Searchable Encryption. In

Annual International Cryptology Conference; c2007. p.

535-552.

5. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky,

Giuseppe Persiano. Public Key Encryption with

Keyword Search. In International Conference on the

Theory and Applications of Cryptographic Techniques;

c2004. p. 506-522.

6. Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky,

William E Skeith III. Public Key Encryption That

Allows PIR Queries. In Annual Interna-tional

Cryptology Conference; c2007. p. 50-67.

7. Ning Cao, Cong Wang, Ming Li, Kui Ren, Wenjing

Lou. Privacy-Preserving Multi-Keyword Ranked

Search Over Encrypted Cloud Data. 2014;25:222-233.

IEEE.

8. David Cash, Paul Grubbs, Jason Perry, Thomas

Ristenpart. Leakage-Abuse Attacks Against Searchable

Encryption. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications

Security. ACM; c2015. p. 668-679.

9. David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit

S Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, et al.

Dynamic Search-able Encryption in Very-Large

Databases: Data Structures and Imple-mentation;

c2014, 853.

10. David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo

Krawczyk, Marcel-Cat˘alin˘ Ros¸u, Michael Steiner.

Highly-Scalable Searchable Sym-metric Encryption

with Support for Boolean Queries. In Advances in

Cryptology–CRYPTO; c2013. p. 353-373.

11. David Cash, Stefano Tessaro. The Locality of

Searchable Symmetric Encryption. In Annual

International Conference on the Theory and

Applications of Cryptographic Techniques; c2014. p.

351-368.

12. Kuyoro SO, Ibikunle F, Awodele O. Cloud computing

security issues and challenges; c2011.

13. Dan Jerker B Svantesson. Data protection in cloud

computing The Swedish perspective, computer law &

security review. 2012;28:476-480.

14. Kavitha K. Assistant Professor, Department of MCA,

Adhiparasakthi engineering college, Melmaruvathur,

Tamilnadu, India, Study on cloud computing model and

its benefits, challenges; c2014.

15. Mell Peter, Grance Timoth. The NIST definition of

cloud computing draft; c2011.

16. Garga S, Versteeg S, Buyya R. A framework for

ranking of cloud computing services. Journal of future

generation computer systems. 2013;22:102-122.

17. Sadr Alsadati. Sayed Mohsen, Security challenges in

cloud computing in order to improve security in the

development of e-government services, The 8th

symposium on advances in science and technology (8th

SAS Tech), Mashhad, Iran, 8th SASTech.khi.ac.ir;

c2013.

18. Soon-Keow Chong, Jemal Abawajy, Masitah Ahmad,

Isredza Rahmi A. Hamid, Enhancing Trust

Management in cloud environment, international

conference on innovation, management and technology

research, Malaysia; c2013. p. 22-23.

19. Masdari M, ValiKardan S, Shahi Z, Azar SI. Towards

workflow scheduling in cloud computing: a

comprehensive analysis, Journal of network and

computer applications. 2016;31:66:64-82.

20. Masdari M, Nabavi SS, Ahmadi V. An overview of

virtual machine placement schemes in cloud

computing, Journal of network and computer

applications. 2016;31(66):106-27.

21. Amol C. Adamuthe cloud computing – A market

perspective and research directions, I.J Information

technology and computer science, (http://www.mecs-

press.org/); c2015. p. 42-53.

22. Arjunan G. An survey on cloud computing process and

its applications, international journal of research in

computer applications and robotics. www.ijrcar.com.

2015;3:10.

23. European Academic Research. ISSN: 2286-4822,

www.euacademic.org, 2016;3:11.

24. Hossein Mohammadi. Considerations on models,

algorithms and security challenges in cloud computing,

IJISET - International journal of innovative science,

engineering & technology. 2015;3(6):2348-7968.

25. Chandni Jain M. Cloud Computing: Network/security

threats and counter measures, International journal of

advanced research in computer and communication

engineering. 2015;4:8.

https://www.computersciencejournals.com/ijccdm

