
~ 22 ~

International Journal of Cloud Computing and Database Management 2020; 1(2): 22-30

E-ISSN: 2707-5915

P-ISSN: 2707-5907

IJCCDM 2020; 1(2): 22-30

Received: 12-02-2020

Accepted: 16-03-2020

Maddela Kavya

Department of Computer

Science, Sri Venkateswara

University, Tirupati, Andhra

Pradesh, India.

Corresponding Author:

Maddela Kavya

Department of Computer

Science, Sri Venkateswara

University, Tirupati, Andhra

Pradesh, India.

A novel task scheduling algorithm with improved

make span based on prediction of tasks computation

time algorithm for cloud computing

Maddela Kavya

DOI: https://doi.org/10.33545/27075907.2020.v1.i2a.16

Abstract
In this paper new scheduling algorithm called Prediction of Tasks Computation Time algorithm

(PTCT) to estimate minimum task execution time/Makespan time for cloud computing environment.

Now-a-days all cloud service providers providing all resources to end users at very cheap rate and at

the same time by designing scheduling algorithms cloud service providers are ensuring that all users

can get response data in quick time. Various scheduling algorithms are implemented in cloud

environment such MINMIN, MAXMIN, QOS GUIDE etc. MINMIN algorithm will schedule all task

with less execution time first and then schedule remaining task. In simple terms MINMIN algorithm

give priority to less execution time task. MAXMIN algorithm will schedule all task with more

execution time and then schedule small execution time task. In simple terms MAXMIN give priority to

high execution time first. Many more scheduling algorithms are there but above two algorithms are

very much popular. This two algorithms will not look for resources which can take minimum execution

time and propose PTCT algorithm will look for all resources/processors/machines and then form a

matrix which contains estimated execution time for all jobs and then by applying PCA (Principal

Component Analysis) algorithm it will predict or choose resource which took minimum execution time

and then assign new task to that selected minimum execution time resource. Here resource could be

computer or processor or Virtual Machine.

In propose PTCT algorithm we build an array with all task and processors as Directed Acyclic Graph

(DAG) and then build a matrix with all processors and task. A matrix will contain estimated execution

task time on each processor and all rows of a matrix will filled with all processor’s execution time for

all tasks. On generated matrix we will apply PCA algorithm to choose processor which take less

execution time for selected task. This process continues till all task assigned to all processors. By

applying PTCT algorithm we can further decrease computation and communication cost at cloud side.

To implement this paper, we design 3 algorithms in the form of simulation and then compare

execution/Make span time between them. In all 3 algorithms PTCT algorithms took less execution time

for all tasks.

Keywords: Minimum Task Execution Time, Make span Time, Principal Component Analysis

Introduction

Cloud computing has grown to be a major technological enabler in companies and

organizations [1, 2, 3]. It has been shown to increase reliability, deliver cost-cutting solutions,

and provide 24/7/365 access to hard/soft resources from anywhere based on pay/use pricing

policy [4, 5]. The cloud offers services in the structure of Software as a Service (SaaS),

Infrastructure as a Service (IaaS), and Platform as a Service (PaaS) [3]. Task scheduling is a

major challenge in widely distributed heterogeneous systems (e.g., cloud computing), which

chooses the preeminent resources for a provided task. Also, in heterogeneous systems, task

scheduling is more convoluted in comparison to homogeneous computing (HC) systems

because of the various communication and execution rates amid various processors.

The main aim of cloud computing is to provide a highly efficient platform for appropriate

exploitation of computational properties embedded in organizations, and to support the

enterprise to capitalize on end-user demands [9]. However, the decentralized and

heterogeneous nature of cloud networks makes them intricate to deal with. Last but not least,

deciding on suitable assets for tasks has become an acute issue due to the swift rise of users

and resources. For heterogeneous clustering systems, task scheduling is a computationally

demanding problem, even under abridged conventions, as it is NP-hard [9, 12].

https://doi.org/10.33545/27075907.2020.v1.i2a.16

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

~ 23 ~

The overarching aim of this research is to improve the

performance of task scheduling, while reducing

computational costs. A key objective is to predict the ideal

algorithm for incoming/available data as and when needed.

In order to achieve this, we perform a systematic analysis of

heuristic techniques for resource utilization by means of

Principal Components Analysis (PCA) in the cloud

environment. Moreover, we analyze the requirements and

consequences of utilizing Quality of Service (QoS) with the

proposed Prediction of Tasks Computation Time algorithm

(PTCT).

Literature Survey

As talked about in Section 2, there exists an assortment of

heuristic planning calculations, which can work in both

group and online modes. A portion of these plans are fitting

in heterogeneous booking situations, anyway they can't

generally accomplish great make span, speedup, decreased

expenses and expanded productivity [6, 7, 8, 1, 13]. Henceforth,

QoS-based procedures are basic in getting the most extreme

targets in order to hold QoS qualities for the two errands and

assets.

Wang and Yu [29] propose an upgraded Min-Min calculation

to think about the capability of undertaking planning for

distributed computing. As recently demonstrated, the Min-

Min calculation initially decides the undertakings with

shorter execution times and afterward the assets which bring

about the most limited occasions. This can prompt

postpones while looking at the utilization of the calculation

in the cloud condition. Zhang et al., [30] propose QoS

limitations in the cloud condition as a standard for planning

an undertaking in the Min-Min calculation, named Mul-

QoS-Min-Min. The proposed calculation discovers assets

with comparable assignments to convey task planning, at

that point demands clients to complete their needs. The

reproduction results demonstrate that the exhibition of the

Mul-QoS-Min-Min conspire is improved as far as execution

times, when benchmarked against the conventional Min-

Min calculation.

Both Mao et al., [31] support the Max-Min calculation so as

to balance out the heap for the cloud. The calculation

moderates a table that holds insights concerning task

position and assesses the constant outstanding burden for

virtual machines (VMs) with the evaluated task execution

times. The Max-Min calculation supports the use of assets

and diminishes task planning reaction time by utilizing VMs

rather than traditional resources.

Li et al., [32] plans errands utilizing improved max-min task

booking then biggest undertaking is excessively huge

contrasted with different assignments in Meta-task for this

situation generally speaking make span is expanded in light

of the fact that too huge assignment is executed by slowest

asset.

Henning et al., [34] study task planning for the equal strategy

challenge with a fixed number of processors and the best

timetable for superior results. They demonstrate this can be

accomplished by mapping assignments to machines as per

priority limitations. In [35], the creators propose an

undertaking planning component for distributing figuring

processors to a purported "task diagram layouts". Since the

creators don't consider the system association as a standard,

this is regarded one of the restrictions of their investigation.

To conquer this restriction, Sinnen and Sousa [36] use

arrange dispute in their errand booking strategy, without

considering the expense charged to clients for utilizing these

assets. Two variables must be considered in the distributed

computing condition, i.e., elite of information move and

fulfillment of spending requirements. The creators in [37] and
[38] acquaint a cost-effective calculation with select the most

fitting framework in a cloud situation to actualize the work

process dependent on utilizing the cutoff time and cost

sparing requirements. Li and Su [39] show a planning

calculation, which can be applied in enormous diagram

preparing, where both expense and timetable length

imperatives are thought of. Be that as it may, their plan

doesn't consider bombed gadgets.

Issues of errand booking have been broadly considered in

the writing. True to form, a huge number of approaches

have been proposed because of its urgent consequences for

execution [9, 15]. The heuristic calculation dependent on list

booking techniques [9] is one of the traditional planning

calculations for cloud conditions. This gives low time

multifaceted nature, anyway the restrictions of insignificant

all-inclusiveness and poor intermingling have. In [42], the

creators study load adjusting in the cloud condition to dodge

issues, which may happen because of increment in power

utilization, hub disappointment, and machine

disappointment. Be that as it may, the exploration managed

a predetermined number of parameters, e.g., there is no

investigation on the impacts of dynamic booking, increment

in the quantity of errands and machines, too the

development of clients. In [43] extra parameters are thought

of Advancement of errand planning is tended to by

presenting the iterative determination administrator. Be that

as it may, this investigation ignores the issue of burden

adjusting. Shimada et al., [44] proposed a novel calculation,

which can move the assignment with the shorter way while

killing excess undertakings. Be that as it may, the issue of

the expansion in the quantity of machines as the quantity of

undertakings builds stays an open test. In [45] the creators

propose a model to build the general framework use, in any

case, load adjusting and other execution parameters should

be additionally improved. Different works, for example [52 -

54] investigate the participation and coordinated effort

among cloud servers utilizing multi-operator ways to deal

with best relegate assets to approaching undertakings.

Proposed work

This section introduces the general framework of the

proposed PTCT algorithm, including algorithmic details.

In heterogeneous computing, effective task scheduling is of

the utmost importance to increase the advantages of

accomplishing an application. Consequently, the task

scheduling problem has been widely studied and many

algorithms have been proposed including list scheduling,

clustering, and task duplication scheduling based on Genetic

Algorithm. In summary, list-scheduling algorithms are ideal

in delivering low cost solutions, in comparison to other

approaches. Clustering algorithms perform better in the case

of homogeneous processors. Finally, task duplication

scheduling algorithms are utilized for communication

intensive programs. A point to note is that a review of the

open literature on task scheduling revealed a number of

enhancements for homogeneous processors [8, 10, 16-18],

however there appears to be less progress in the case of

heterogeneous processors [19–22]. This provides further

motivation for the development of our proposed framework

in the context of a heterogeneous environment

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

~ 24 ~

Table 1: Computation costs of tasks in Fig 1

Edge (E) Node (V)

(1, 2) 7.48

(1, 3) 0.48

(2, 3) 6.75

(1, 4) 8.85

(1, 5) 2.52

(1, 6) 1.39

(2, 7) 8.71

(2, 8) 9.49

(4, 8) 6.75

(6, 8) 5.51

(4, 9) 8.71

(5, 9) 0.48

(3, 10) 9.493

(7, 10) 6.75

(8, 10) 8.27

(9, 10) 5.69

(10, 10) 4.58

(5, 11) 6.73

(8, 11) 1.12

(10,11) 3.77

Consider the following two attributes, Earliest Start Time

(EST) and Earliest Finish Time (EFT), used to outline the

objectives of the task scheduling issue. EST (VI, PJ)

represents the EST for task VI on processor PJ, and

similarly, EFT (VI, PJ) represents EFT for task VI on

processor PJ. EST (VI) and EFT (VI) represent the values of

these attributes over the set of processors, respectively. For

any initial entry task, Ventry, EST (Ventry) = 0, the values

of EST and EFT are calculated from the entry to the exit

tasks, traveling the task graph from top to bottom. All

immediate predecessor tasks of VI should be scheduled to

allow the calculation of EST.

4. Results and discussions

Fig 1: In above screen enter number of processors and number of tasks

Fig 2: In above screen I entered number of processors as 2 and number of task as 10 which means all 10 tasks has to schedule and run in

given 2 processors. Now click on ‘Calculate Random Execution Time’ button to assign some execution time to each task and based on this

execution time algorithms will schedule tasks to processors See below screen

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

~ 25 ~

Fig 3: In above screen all 10 tasks got some random execution time and now click on ‘Run Min-Min Algorithm’ button to schedule this 10

tasks to 2 processors. We can see MINMIN will schedule less execution time task first, in third column empty value is there as processor not

yet assign to task

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

~ 26 ~

Fig 4: In above 2 screen we can see MINMIN scheduling task based on freeness of resource and execution time. In third column we can see

task is assign to which processor and after task completion we will get message as task done on which processor. After all task execution we

will get total execution time for all tasks. See below screen

Fig 5: In above screen we can see MINMIN took 18815 MILLI seconds to complete all tasks. Similarly click on ‘Run Max-Min Algorithm’

button to schedule all tasks based on MAXMIN algorithm

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

~ 27 ~

Fig 6: Above two screen showing scheduling process of MAXMIN algorithm and below is MAXMIN algorithm total execution time

Fig 7: In above screen we can see MAXMIN took 18398 Milli Seconds to complete all tasks and we can say MAXMIN took less time

compare to MINMIN. Similarly click on ‘Run PTCT Algorithm’ button to schedule tasks based on PTCT algorithm concept.

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

~ 28 ~

Fig 8: Above two screen showing PTCT scheduling output and below is total PTCT execution time

Fig 9: In above screen we can see PTCT took 15889 Milli Seconds to complete all tasks execution and is better than other 2 algorithms.

Now click on ‘Makespan Time Comparison Graph’ button to see all algorithms execution time graph

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

~ 29 ~

Fig 10: In above graph x-axis represents algorithm name and y-axis represents execution time in MILLI seconds, From above graph we can

conclude PTCT propose algorithm better than other 2 algorithms, this code is dynamic so u can give any number of tasks and processors

Conclusion

In this proposed work, a novel algorithm, Prediction of

Tasks Computation Time, was presented. This results in a

performance improvement in cloud-based task scheduling

by using Principal Component Analysis. This permits the

reduction of the size of the Expected Time to Compute

(ETC) matrix. The proposed algorithm was applied to

simulated task graphs, and its performance was assessed in

terms of speed-up, make span, schedule length ratio and

efficiency. The simulation results showed improved

performance, when benchmarked with four state-of-the-art

scheduling algorithms, namely Min-Min, Max-Min, QoS-

guided and MIM-MAM. In the cloud computing context,

the simulation results indicated that the proposed PTCT can

reduce the overall make span and task execution time. The

simulation setup was based on static scheduling, where task

arrival at the processors and speed are assumed to be

known. Future work will consider dynamic scheduling for

real-world application graphs and benchmarking in real-

world problems. The focus will be on improving the total

energy utilization and consumption of task scheduling using

the PTCT algorithm and comparing the findings with

relevant state-of-the-art algorithms for cloud energy

consumption, such as Gree Di and Gree AODV [47 – 51].

References

1. Avetisyan, Arutyun I, et al. Open cirrus: A global cloud

computing testbed" Computer. 2010; 43.4:35-43

2. Panda SK, Jana PK. “Efficient task scheduling

algorithms for a heterogeneous multi-cloud

environment”, J Supercomputer. 2015; 71(4):1505-

1533.

3. Buyya, Rajkumar, et al. "Cloud computing and

emerging IT platforms: Vision, hype, and reality for

delivering computing as the 5th utility" Future

Generation computer systems. 2009; 25.6:599-616.

4. Beaty Kirk A, Vijay K Naik, CS Perng. "Economics of

cloud computing for enterprise IT", IBM Journal of

research and development. 2011; 55.6:12-1.

5. Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and

grid computing 360-degree compared. Grid Computing

Environments Workshop, IEEE, 2008, 1-10.

6. Masood Anum, et al. HETS: Heterogeneous Edge and

Task Scheduling Algorithm for Heterogeneous

Computing Systems. Proceeding of 2015 IEEE 17th

International conference on high-performance

computing and communications, 2015 IEEE 7th

International Symposium.

7. Hoffmann R, Prell A, Rauber T. Dynamic task

scheduling and load balancing on cell processors, in:

18th Euromicro International conference on parallel,

distributed and network-based processing (PDP), 2010,

205-212.

8. Munir E, Ullah, Jianzhong Li, Shengfei Shi. QoS

sufferage heuristic for independent task scheduling in

grid, Information technology Journal. 2007; 6(8):1166-

1170.

9. Buyya R, Yeo C, Venugopal S, Broberg J, Brandic I.

Cloud computing and emerging IT platforms: vision,

hype, and reality for delivering computing as the 5th

utility, Future generation computer systems 2009;

25(6):599-616.

10. Bawa, Rajesh Kumar, Gaurav Sharma. Modified min-

min heuristic for job scheduling based on QoS in Grid

environment, Information management in the

knowledge economy (IMKE), 2nd International

Conference on, IEEE, 2013.

11. Napper J, Bientinesi P. Can cloud computing reach the

top500? In proceedings of the combined workshops on

unconventional high performance computing workshop

plus Memory access workshop, Ischia, Italy, 2009, 17-

20.

12. WANG En Dong, LI Xu. QoS-oriented monitoring

model of cloud computing resources availability”,

International conference on computational and

information sciences, 2013.

13. Chiyu Zhang, Ran Huang, Jinhui Zhang. Distributed

adaptive consensus tracking of unknown heterogeneous

linear systems via output feedback, Proceedings of the

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

~ 30 ~

35th Chinese control conference. 2016; 27-29.

Chengdu, China.

14. Beheshti Z, Shamsuddin SMH. A review of population-

based meta-heuristic algorithms, Int J Adv Soft Comput

Appl. 2013; 5(1):1-35.

15. Feng, Chen, Hong Xu, and Baochun Li. An alternating

direction method approach to cloud traffic

management, arXiv preprint arXiv. 1407, 8309, 2014.

16. Begum Suriya CSR. Prashanth. Stochastic based load

balancing mechanism for non-iterative optimization of

traffic in cloud. Wireless Conference on, IEEE, 2016.

17. Smirnov, Andrey V et al. Network traffic processing

module for infrastructure attacks detection in cloud

computing platforms, soft computing and

measurements (SCM), XIX IEEE International

Conference on, IEEE, 2016.

18. Kang Lu, Xing Ting. Application of adaptive load

balancing algorithm based on minimum traffic in cloud

computing architecture Logistics, informatics and

service sciences (LISS), International Conference on,

IEEE, 2015.

19. Rajendra Sahu, Anand K Chaturvedi, ABV-IIITM

Gwalior, India, Many-Objective Comparison of Twelve

Grid Scheduling Heuristics, International Journal of

Computer Applications (0975–8887), Volume 13–

No.6, January. 2011; 13(6).

20. Amudha (Assistant Professor) T, Dhivyaprabha (MPhil

Research Scholar) TTT, QoS priority based scheduling

algorithm and proposed framework for task scheduling

in a grid environment, Department of computer

application, school of computer science & Eng,

Bharathiar University, Coimbatore – 46, IEEEs-

International conference on recent trends in information

technology, ICRTIT 2011, MIT, Anna University,

Chennai. June, 2011, 3-5.

21. Patel, Gaurang, Rutvik Mehta, Upendra Bhoi.

"Enhanced load balanced min-min algorithm for static

Meta task scheduling in cloud computing", Procedia

Computer Science. 2015; 57:545-553.

http://www.computersciencejournals.com/ijccdm

