International Journal of Cloud Computing and Database Management 2020; 1(2): 22-30

International Journal of

Cloud Computing
and Database Management

E-ISSN: 2707-5915
P-ISSN: 2707-5907
1JCCDM 20205 1(2): 22-30
Received: 12-02-2020
Accepted: 16-03-2020

Maddela Kavya

Department of Computer
Science, Sri Venkateswara
University, Tirupati, Andhra
Pradesh, India.

Corresponding Author:
Maddela Kavya

Department of Computer
Science, Sri Venkateswara
University, Tirupati, Andhra
Pradesh, India.

A novel task scheduling algorithm with improved
make span based on prediction of tasks computation
time algorithm for cloud computing

Maddela Kavya

DOlI: https://doi.org/10.33545/27075907.2020.v1.i2a.16

Abstract

In this paper new scheduling algorithm called Prediction of Tasks Computation Time algorithm
(PTCT) to estimate minimum task execution time/Makespan time for cloud computing environment.
Now-a-days all cloud service providers providing all resources to end users at very cheap rate and at
the same time by designing scheduling algorithms cloud service providers are ensuring that all users
can get response data in quick time. Various scheduling algorithms are implemented in cloud
environment such MINMIN, MAXMIN, QOS GUIDE etc. MINMIN algorithm will schedule all task
with less execution time first and then schedule remaining task. In simple terms MINMIN algorithm
give priority to less execution time task. MAXMIN algorithm will schedule all task with more
execution time and then schedule small execution time task. In simple terms MAXMIN give priority to
high execution time first. Many more scheduling algorithms are there but above two algorithms are
very much popular. This two algorithms will not look for resources which can take minimum execution
time and propose PTCT algorithm will look for all resources/processors/machines and then form a
matrix which contains estimated execution time for all jobs and then by applying PCA (Principal
Component Analysis) algorithm it will predict or choose resource which took minimum execution time
and then assign new task to that selected minimum execution time resource. Here resource could be
computer or processor or Virtual Machine.

In propose PTCT algorithm we build an array with all task and processors as Directed Acyclic Graph
(DAG) and then build a matrix with all processors and task. A matrix will contain estimated execution
task time on each processor and all rows of a matrix will filled with all processor’s execution time for
all tasks. On generated matrix we will apply PCA algorithm to choose processor which take less
execution time for selected task. This process continues till all task assigned to all processors. By
applying PTCT algorithm we can further decrease computation and communication cost at cloud side.
To implement this paper, we design 3 algorithms in the form of simulation and then compare
execution/Make span time between them. In all 3 algorithms PTCT algorithms took less execution time
for all tasks.

Keywords: Minimum Task Execution Time, Make span Time, Principal Component Analysis

Introduction

Cloud computing has grown to be a major technological enabler in companies and
organizations I 2 31, It has been shown to increase reliability, deliver cost-cutting solutions,
and provide 24/7/365 access to hard/soft resources from anywhere based on pay/use pricing
policy ™ 51 The cloud offers services in the structure of Software as a Service (SaaS),
Infrastructure as a Service (1aaS), and Platform as a Service (PaaS) [l. Task scheduling is a
major challenge in widely distributed heterogeneous systems (e.g., cloud computing), which
chooses the preeminent resources for a provided task. Also, in heterogeneous systems, task
scheduling is more convoluted in comparison to homogeneous computing (HC) systems
because of the various communication and execution rates amid various processors.

The main aim of cloud computing is to provide a highly efficient platform for appropriate
exploitation of computational properties embedded in organizations, and to support the
enterprise to capitalize on end-user demands [l. However, the decentralized and
heterogeneous nature of cloud networks makes them intricate to deal with. Last but not least,
deciding on suitable assets for tasks has become an acute issue due to the swift rise of users
and resources. For heterogeneous clustering systems, task scheduling is a computationally
demanding problem, even under abridged conventions, as it is NP-hard [* 12,

~22 ~

https://doi.org/10.33545/27075907.2020.v1.i2a.16

International Journal of Cloud Computing and Database Management

The overarching aim of this research is to improve the
performance of task scheduling, while reducing
computational costs. A key objective is to predict the ideal
algorithm for incoming/available data as and when needed.
In order to achieve this, we perform a systematic analysis of
heuristic techniques for resource utilization by means of
Principal Components Analysis (PCA) in the cloud
environment. Moreover, we analyze the requirements and
consequences of utilizing Quality of Service (QoS) with the
proposed Prediction of Tasks Computation Time algorithm
(PTCT).

Literature Survey

As talked about in Section 2, there exists an assortment of
heuristic planning calculations, which can work in both
group and online modes. A portion of these plans are fitting
in heterogeneous booking situations, anyway they can't
generally accomplish great make span, speedup, decreased
expenses and expanded productivity [6 7 & 1. 131 Henceforth,
QoS-based procedures are basic in getting the most extreme
targets in order to hold QoS qualities for the two errands and
assets.

Wang and Yu 1 propose an upgraded Min-Min calculation
to think about the capability of undertaking planning for
distributed computing. As recently demonstrated, the Min-
Min calculation initially decides the undertakings with
shorter execution times and afterward the assets which bring
about the most limited occasions. This can prompt
postpones while looking at the utilization of the calculation
in the cloud condition. Zhang et al., B propose QoS
limitations in the cloud condition as a standard for planning
an undertaking in the Min-Min calculation, named Mul-
QoS-Min-Min. The proposed calculation discovers assets
with comparable assignments to convey task planning, at
that point demands clients to complete their needs. The
reproduction results demonstrate that the exhibition of the
Mul-QoS-Min-Min conspire is improved as far as execution
times, when benchmarked against the conventional Min-
Min calculation.

Both Mao et al., ¥4 support the Max-Min calculation so as
to balance out the heap for the cloud. The calculation
moderates a table that holds insights concerning task
position and assesses the constant outstanding burden for
virtual machines (VMs) with the evaluated task execution
times. The Max-Min calculation supports the use of assets
and diminishes task planning reaction time by utilizing VMs
rather than traditional resources.

Li et al., B2 plans errands utilizing improved max-min task
booking then biggest undertaking is excessively huge
contrasted with different assignments in Meta-task for this
situation generally speaking make span is expanded in light
of the fact that too huge assignment is executed by slowest
asset.

Henning et al., 4 study task planning for the equal strategy
challenge with a fixed number of processors and the best
timetable for superior results. They demonstrate this can be
accomplished by mapping assignments to machines as per
priority limitations. In [B¥ the creators propose an
undertaking planning component for distributing figuring
processors to a purported "task diagram layouts". Since the
creators don't consider the system association as a standard,
this is regarded one of the restrictions of their investigation.
To conquer this restriction, Sinnen and Sousa B8 use
arrange dispute in their errand booking strategy, without

http://www.computersciencejournals.com/ijccdm

considering the expense charged to clients for utilizing these
assets. Two variables must be considered in the distributed
computing condition, i.e., elite of information move and
fulfillment of spending requirements. The creators in &7 and
[38] acquaint a cost-effective calculation with select the most
fitting framework in a cloud situation to actualize the work
process dependent on utilizing the cutoff time and cost
sparing requirements. Li and Su [show a planning
calculation, which can be applied in enormous diagram
preparing, where both expense and timetable length
imperatives are thought of. Be that as it may, their plan
doesn't consider bombed gadgets.

Issues of errand booking have been broadly considered in
the writing. True to form, a huge number of approaches
have been proposed because of its urgent consequences for
execution [151, The heuristic calculation dependent on list
booking techniques ! is one of the traditional planning
calculations for cloud conditions. This gives low time
multifaceted nature, anyway the restrictions of insignificant
all-inclusiveness and poor intermingling have. In 2, the
creators study load adjusting in the cloud condition to dodge
issues, which may happen because of increment in power
utilization, hub disappointment, and machine
disappointment. Be that as it may, the exploration managed
a predetermined number of parameters, e.g., there is no
investigation on the impacts of dynamic booking, increment
in the quantity of errands and machines, too the
development of clients. In 3 extra parameters are thought
of Advancement of errand planning is tended to by
presenting the iterative determination administrator. Be that
as it may, this investigation ignores the issue of burden
adjusting. Shimada et al., 1“4 proposed a novel calculation,
which can move the assignment with the shorter way while
killing excess undertakings. Be that as it may, the issue of
the expansion in the quantity of machines as the quantity of
undertakings builds stays an open test. In 1 the creators
propose a model to build the general framework use, in any
case, load adjusting and other execution parameters should
be additionally improved. Different works, for example 2~
% investigate the participation and coordinated effort
among cloud servers utilizing multi-operator ways to deal
with best relegate assets to approaching undertakings.

Proposed work

This section introduces the general framework of the
proposed PTCT algorithm, including algorithmic details.

In heterogeneous computing, effective task scheduling is of
the utmost importance to increase the advantages of
accomplishing an application. Consequently, the task
scheduling problem has been widely studied and many
algorithms have been proposed including list scheduling,
clustering, and task duplication scheduling based on Genetic
Algorithm. In summary, list-scheduling algorithms are ideal
in delivering low cost solutions, in comparison to other
approaches. Clustering algorithms perform better in the case
of homogeneous processors. Finally, task duplication
scheduling algorithms are utilized for communication
intensive programs. A point to note is that a review of the
open literature on task scheduling revealed a number of
enhancements for homogeneous processors [6 10 16-18]
however there appears to be less progress in the case of
heterogeneous processors 1922, This provides further
motivation for the development of our proposed framework
in the context of a heterogeneous environment

~23~

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management

Table 1: Computation costs of tasks in Fig 1

Edge (E) Node (V)
(1,2 7.48
1,3 0.48
(2,3) 6.75
1,4 8.85
(1,5) 2.52
(1,6) 1.39
2,7 8.71
(2, 8) 9.49
(4,8) 6.75
(6, 8) 5.51
(4,9) 8.71
(5,9) 0.48
(3,10) 9.493
(7,10) 6.75
(8,10) 8.27
(9,10 5.69
(10, 10) 4.58

|l BTET Task Scheduimg Slgonthm

http://www.computersciencejournals.com/ijccdm

(5,11) 6.73
(8, 11) 1.12
(10,11) 3.77

Consider the following two attributes, Earliest Start Time
(EST) and Earliest Finish Time (EFT), used to outline the
objectives of the task scheduling issue. EST (VI, PJ)
represents the EST for task VI on processor PJ, and
similarly, EFT (VI, PJ) represents EFT for task VI on
processor PJ. EST (V1) and EFT (V1) represent the values of
these attributes over the set of processors, respectively. For
any initial entry task, Ventry, EST (Ventry) = 0, the values
of EST and EFT are calculated from the entry to the exit
tasks, traveling the task graph from top to bottom. All
immediate predecessor tasks of VI should be scheduled to
allow the calculation of EST.

4. Results and discussions

A Task Scheduling Algorithm with Improved Makespan Based on Predictlon of Tasks

Number Of Processors
Wumber Of Tasks

Caloulate Random Exscution

Computation Time algorithm for Cloud Computing
Simulation Configuration Screen

Run WMin-Min Algorithm Fun Maxz-Min Algorithm

Ramn PTCT Algorithm Makospan Time Comparsion Graph

Task ID

E O Type here 1o search

| &4 PTCT Task Scheduling Algorithm

Execution Time

Assigned Procossor

Fig 1: In above screen enter number of processors and number of tasks

A Task Scheduling Algorithm with Improved Makespan Based on Prediction of Tasks

Mumber Of Processors |2
Number Of Taska |2g|
caleulats Random Executien

Fam PTCT Algorith

Computation Time algorithm for Cloud Computing

Simulation Configuration Screen

Fun Min-Min Algorithm Run Max-Min Algerithm

Task ID

ﬂ 0 Type here to search

Time on Graph

Execution Time

Assigned Processor

Fig 2: In above screen | entered number of processors as 2 and number of task as 10 which means all 10 tasks has to schedule and run in
given 2 processors. Now click on ‘Calculate Random Execution Time’ button to assign some execution time to each task and based on this
execution time algorithms will schedule tasks to processors See below screen

~ 24 ~

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

| PTCT Task Scheduling Algorithm - (] H
A Task Scheduling Algorlthm with Improved Makespan Based on Prediotion o

Compuntation Time algorithm for Cloud Ccomputing
Simulation Configuration Sareen

Nuzber Of Processors 2

Number Of Tasks 1m0

|g' Falminte Random Exeoation H . nm Min-Min Algorithm Fom Max-Min Algorithm

| Run PTET Algorithm Makespan Time Comparsion Graph |

Task ID Execution Time Ascigned Proceszor
Task O 1307 =
Task 1 3489 |-
Task 2 .4986 -
Task 3 a454 -
Task 4 .3487 -
Task 5 .2137 .—
Task 6 .4857 .-
Task 7 .3126 .—
Task 8 3683 -
Task 9 .361 .—

ﬂ 0 Type here to search

Fig 3: In above screen all 10 tasks got some random execution time and now click on ‘Run Min-Min Algorithm’ button to schedule this 10
tasks to 2 processors. We can see MINMIN will schedule less execution time task first, in third column empty value is there as processor not
yet assign to task

| £ PTCT Task Scheduling Algonthm B » 5

A Task Scheduling Algorithm wlth Improved Makespan Based on Predictlon of Tasks

Computation Time algorithm for Cloud Computing

ion Configuration Sci

Mumber 0Of Processors

Number Of Tasks |

| calemlate Random Bxeention || in-Min Algorithm ||| Run Max-Min Algorithm

| Run PTCT .ﬁgot.".].i;hm |)la.ksspan Time Comparsion Gl:aph il

Task ID Execution Time Assigned Processor
Task 0 1907 gaigned To Processor 1
Task 1 3489 -
Task 2 4086 =
Task 3 4454 -
Task 4 3487 -
Task § 2187 gaigned To Processcr 0
Task & 4857 -
Task 7 3728 =
Task B 3683 -
Task 9 36T =

H O Type here to search

~ 25~

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

[PTCT Task Scheduling Algarithm - =
A Task Scheduling Algorithm with Improved Makespan Based on Prediction of Tasks

Computation Time algorithm for Clond Computing

Simulation Configuration Screen

Number Of Processors 2

Number OFf Tasks 1

| caleulate Random Bxecution |[Rum Min-Min Algorithe | Run Mer-Min Alqoriths |

| Run et Algorithn || Makespan Time Comparsion Graph |

Task ID Execution Time Asslgned Processor
Task 0 1807 Task Dome. Exlted From Processor 1
Task 1 348% Task Dene. Exited From Frocesseor 0
Task 2 4986 -
Task 3 .4454 .Aaai.g'ned To Frocegscr O
Task & 3487 Task Dome. Exited From Processer 1
Task 5 .213'1‘ .task Dene. Exited From Processor
Task & 4857
Task 7 .3?23 .Rnsigned To Processor 1
Task 8 .3633 .l'aak Dene. Exited From Procaesser 0
Task 9 3670 Task Done. Exited From Processor 1

H O Type here to search

Fig 4: In above 2 screen we can see MINMIN scheduling task based on freeness of resource and execution time. In third column we can see
task is assign to which processor and after task completion we will get message as task done on which processor. After all task execution we
will get total execution time for all tasks. See below screen

A Task Scheduling Algorithm with Improved Makespan Based on Prediction of Tasks
computation Time algerithm for GCloud Computing

Simulation Configuration Screen

Number Of Processors 2
Number Of Tasks pli}
Calculate Random Execution Run Min-Min Algorithm Run Max-Min Algorithm

| Run PTCT Algorithm || Makespan Time Comparsion Graph

Task ID Execation Time Assigned Processor
Task O 1907 Task Done. Bxited From Processer 1
Task 1 3489 Taxk Done. Exited From Processor 0

T Message xF

Task 2 4986 Task Done. Exlted From Processor 0
Task 3 1454 ﬁ' MR MIK 2lgerithm execution Sme: 12313 Task Done. Exited From Processer 0
Task 4 3487 Task Dome. Exited Prom Processor 1
Task 5 :21&7 i Task Done. Exited From Processor 0
Task & :4857 Task Done. Exlted From Processor 1
Task 7 3rag Task Done. Exited From Processor 1
Task 3683 Task Done. Exited From Brocessor 0
Task § .3670 Task Done. Exlted From Processor 1

H O Type here to search

Fig 5: In above screen we can see MINMIN took 18815 MILLI seconds to complete all tasks. Similarly click on ‘Run Max-Min Algorithm’
button to schedule all tasks based on MAXMIN algorithm

~ 26~

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

L4 PTCT Task Scheduling Algerithen = 2 il
with Imp:

Simulation Con
Nashor Of Brocessors |2
tamber Of Tasks 10

calonlate Random Executicn Run Min-Min Algorithm 3 Max-Min Algorithm |

Run PTCT i | Time i Graph

Task ID Execution Time Assigned Processor

Task 0 1907 F

Task 1 ades -

Task 2 lases .Malglnd To Brocessor 1
Tagk 3 .445'1 I

Task 4 .JQST =

Task § :2391 L

Task € .4351 .Mnlgmd To Procassocr 0
Tamk 7 3728 8

Task 8 3683 -

Task 9 :3610 L

H o Type here to search

&4 PTCT Task Scheduling Algerzhin
A Task Schedullng Algorithm with Improved Makespan Based on Prediotlion of Tasks

wtation Tima algorithm for Cloud Computing
Simulation Configuration Screen

Nusbor Of Processors 2
tmber Of Tasks 10 |
Caloulate Randem Ewecution | Fam Min-Min algoriths | | Run Max-Hin Algozitha |

Fum BTCT i Timm ion Graph |
Task ID Execution Time Assigned Pracessor
Pask 0 pti
Task 1 3289 lnssiqned To Frocessor L
Task 2 .4985 Task Done. Exited From Processor 1
Task 3 laans Taek Done, Exited From Erocessor 0
Tesk 4 J3an7 rssigned To Frocessar 0
rask 5 l1ar
Task 6 IQQET Task Done. Exited From Procassor 0
Task 7 728 Pock Done, Exited Prom Prosessor 1
Tesk 3 3683 Tesk Done. Exited From Erocessor 1
Task 9 .357ﬂ Task Done. Exited From Processor 0

H o Type here to search

Fig 6: Above two screen showing scheduling process of MAXMIN algorithm and below is MAXMIN algorithm total execution time

A Task Sobeduling Algorithm with Improved Makespan Based on Predictlion of Tasks

Computation Time algorithm for Clomd Computing
Simulation Configuration Screen

Nashor Of Brocessors |2
tamber Of Tasks 10
caloulate Randem Execution | Run Min-Mio Algorithn | Run Max-Min Algorithn

Fun BTCT 3 | Time ion Graph
Task ID Execution Time Assigned Processar
Pack 0 1907 Task Dona. Exited Prem Prooessac 0
Task 1 des Task Done. Exited From Processor 1

1 Mezage x| 1

Task 2 4986 |Task Done. Exited From Frocessor 1
Tagk 3 4454 0 MU MIN algerthen execuben time: 12250 Task Done. Exited From Processor 0
Tesk 4 46T T Task Done. Exited From Frooessor 0
Task § la1p7 Task Done. Exited Prom Frocessor 1
Task € 4857 ‘Task Dona. Exited From Processcr 0
Pack 7 31268 Task Dona. Exited Prem Proosssac 1
Tesk 3663 Task Done. Exited From Processor 1
Task 9 13670 |Task Done. Exited From Frocessor 0

H o Type here to search

Fig 7: In above screen we can see MAXMIN took 18398 Milli Seconds to complete all tasks and we can say MAXMIN took less time
compare to MINMIN. Similarly click on ‘Run PTCT Algorithm’ button to schedule tasks based on PTCT algorithm concept.

~27 ~

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

L& PTCT Task Scheduling Algorthm = [xd x

Simulation Configuration Soreen
Mumbor Of Processors |2
Mumber Of Tasks |2
Caloulate Randon Exeoution | Run Min-Min Algoriths | Run Max-Min Algoritim

Makespan Time Cosparsion Graph |

Task ID Execution Time Assigned Processar

Task 0 9T -

Task 1 e

Task 2 .4986 Task Done. Exited From Processor 0
Task 3 :4434 Reslgnad To Procesaor 1

Task 4 .3‘181' -

Task 5 .2.181' -

Task 6 laas7 Tagk Dona. Zxited Feem Trocesser 1
Tack 7 1728 Arsigned To g

Task @ 3683 =

Task 9 .36‘?0

H O Type here to search

&4 PTCT Task Scheduling Algenthm =t

Simulation Configuration Screen

Wimbor Of Processora 2
tmber Of Tasks 10
caloulate Random Execution || Rum Min-Min Algorithm | Fom Max-Min Algorithm

[Fom BFET Higoritim || Mskespen Tine Comparsion Graph

Task ID Execution Tinse Assigned Processor

Task 0 1907 |Aasigned To Processor 1

Tagk 1 34es Task Done. Exited From Processor 0
Task 2 .4996 :Ta:k Done. Exited Prom Processor 0
Task 3 .445'1 .Task Done. Exited From Processor 1
Task 4 .3-{81 .Task Done. Exited From Processor 1
Task 5 .219? .)\ss}.gned To Erooessoxr 0

Task & .1851 .'hﬂk Dana. Exitad From Procassor 1
Task 7 .JTQB .'I'eak Done. Exited From Processor 0
Task @ 3683 Task Done. Exited From Processor O
Task 9 .3610 :Ta:k Done. Exited From Processor 1

H o Type here to search

Fig 8: Above two screen showing PTCT scheduling output and below is total PTCT execution time

Simulation Configuration Screen

Wimbor Of Processora 2
tmber Of Tasks 10
Caloulate Random Emecution || Ran Min-Min Algorithm | Fom Max-Min Algorithm

Fom BPCT Mlgoriths | Makespan Tine Comparsion Graph

Task ID Execufion Time Assigned Processor
Pank 0 1907 Task Donn. Exited Prom Procassor 1
Task 1 3488 Task Done. Exited From Proceascr 0
I Memage ¥ | I
Task 2 49B6 - |Task Done. Exited Prom Brocesscr 0
Task 3 la4ma ‘0 FTCT alganthm execution sme 1262 |Task Dons. Exited From Erocassor 1
Task 4 3487 | l [7ask Dome. Exited Prom Processor 1
Task 5 .2:9'1‘ = .Task. Done. Exited From Frocessor 0
Tack & 457 Task Bona. Exited From Drocasscr 1
Pank 7 ar28 [Tash Donm. Esited Prom Procesact 0
Task 8 3683 Task Done. Exited From Erocessor 0
Task O 3670 {Task Done. Exited From Frocessor 1

H o Type here to search

Fig 9: In above screen we can see PTCT took 15889 Milli Seconds to complete all tasks execution and is better than other 2 algorithms.
Now click on “Makespan Time Comparison Graph’ button to see all algorithms execution time graph

~ 28 ~

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management

http://www.computersciencejournals.com/ijccdm

A Task Scheduling Algorithm with Improved Makespan Based on Prediction of Tasks

Computation Tima algorithm for Clond Compubing

Simulation Configuration Screen

Number Of Processors 2
Nusber Of Tasks 1 [Makesan Time Comparsio
Calemlate Random Execty

fom PTCT Algorithm

Task ID

Task 0

Task 1 12,000

roakid 10,000

Task 3
8,000

Task 4

Task 5

Makespan Execution Time (Milisec)

Task €

Task 7

Tank &

Task % o

e

At

Algorithm Mame

W Mn Execution Tims 8 Ma: M Exscution Tme ®ETCT Execion Tms.

n O Type here to search

Fig 10: In above graph x-axis represents algorithm name and y-axis represents execution time in MILLI seconds, From above graph we can
conclude PTCT propose algorithm better than other 2 algorithms, this code is dynamic so u can give any number of tasks and processors

Conclusion

In this proposed work, a novel algorithm, Prediction of
Tasks Computation Time, was presented. This results in a
performance improvement in cloud-based task scheduling
by using Principal Component Analysis. This permits the
reduction of the size of the Expected Time to Compute
(ETC) matrix. The proposed algorithm was applied to
simulated task graphs, and its performance was assessed in
terms of speed-up, make span, schedule length ratio and
efficiency. The simulation results showed improved
performance, when benchmarked with four state-of-the-art
scheduling algorithms, namely Min-Min, Max-Min, QoS-
guided and MIM-MAM. In the cloud computing context,
the simulation results indicated that the proposed PTCT can
reduce the overall make span and task execution time. The
simulation setup was based on static scheduling, where task
arrival at the processors and speed are assumed to be
known. Future work will consider dynamic scheduling for
real-world application graphs and benchmarking in real-
world problems. The focus will be on improving the total
energy utilization and consumption of task scheduling using
the PTCT algorithm and comparing the findings with
relevant state-of-the-art algorithms for cloud energy
consumption, such as Gree Di and Gree AODV 4751,

References

1. Awvetisyan, Arutyun I, et al. Open cirrus: A global cloud
computing testbed" Computer. 2010; 43.4:35-43

Panda SK, Jana PK. <“Efficient task scheduling
algorithms for a heterogeneous multi-cloud
environment”, J Supercomputer. 2015; 71(4):1505-
1533.

Buyya, Rajkumar, et al. "Cloud computing and
emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility" Future
Generation computer systems. 2009; 25.6:599-616.
Beaty Kirk A, Vijay K Naik, CS Perng. "Economics of
cloud computing for enterprise IT", IBM Journal of
research and development. 2011; 55.6:12-1.

2.

~29 ~

5.

10.

11.

12.

13.

Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and
grid computing 360-degree compared. Grid Computing
Environments Workshop, IEEE, 2008, 1-10.

Masood Anum, et al. HETS: Heterogeneous Edge and
Task Scheduling Algorithm for Heterogeneous
Computing Systems. Proceeding of 2015 IEEE 17th
International ~ conference on high-performance
computing and communications, 2015 IEEE 7th
International Symposium.

Hoffmann R, Prell A, Rauber T. Dynamic task
scheduling and load balancing on cell processors, in:
18th Euromicro International conference on parallel,
distributed and network-based processing (PDP), 2010,
205-212.

Munir E, Ullah, Jianzhong Li, Shengfei Shi. QoS
sufferage heuristic for independent task scheduling in
grid, Information technology Journal. 2007; 6(8):1166-
1170.

Buyya R, Yeo C, Venugopal S, Broberg J, Brandic I.
Cloud computing and emerging IT platforms: vision,
hype, and reality for delivering computing as the 5th
utility, Future generation computer systems 2009;
25(6):599-616.

Bawa, Rajesh Kumar, Gaurav Sharma. Modified min-
min heuristic for job scheduling based on QoS in Grid
environment, Information management in the
knowledge economy (IMKE), 2nd International
Conference on, IEEE, 2013.

Napper J, Bientinesi P. Can cloud computing reach the
top500? In proceedings of the combined workshops on
unconventional high performance computing workshop
plus Memory access workshop, Ischia, Italy, 2009, 17-
20.

WANG En Dong, LI Xu. QoS-oriented monitoring
model of cloud computing resources availability”,
International conference on computational and
information sciences, 2013.

Chiyu Zhang, Ran Huang, Jinhui Zhang. Distributed
adaptive consensus tracking of unknown heterogeneous
linear systems via output feedback, Proceedings of the

http://www.computersciencejournals.com/ijccdm

International Journal of Cloud Computing and Database Management http://www.computersciencejournals.com/ijccdm

35th Chinese control conference. 2016; 27-29.
Chengdu, China.

14. Beheshti Z, Shamsuddin SMH. A review of population-
based meta-heuristic algorithms, Int J Adv Soft Comput
Appl. 2013; 5(1):1-35.

15. Feng, Chen, Hong Xu, and Baochun Li. An alternating
direction method approach to cloud traffic
management, arXiv preprint arXiv. 1407, 8309, 2014.

16. Begum Suriya CSR. Prashanth. Stochastic based load
balancing mechanism for non-iterative optimization of
traffic in cloud. Wireless Conference on, IEEE, 2016.

17. Smirnov, Andrey V et al. Network traffic processing
module for infrastructure attacks detection in cloud
computing platforms, soft computing and
measurements (SCM), XIX IEEE International
Conference on, IEEE, 2016.

18. Kang Lu, Xing Ting. Application of adaptive load
balancing algorithm based on minimum traffic in cloud
computing architecture Logistics, informatics and
service sciences (LISS), International Conference on,
IEEE, 2015.

19. Rajendra Sahu, Anand K Chaturvedi, ABV-IIITM
Gwalior, India, Many-Objective Comparison of Twelve
Grid Scheduling Heuristics, International Journal of
Computer Applications (0975-8887), Volume 13-
No.6, January. 2011; 13(6).

20. Amudha (Assistant Professor) T, Dhivyaprabha (MPhil
Research Scholar) TTT, QoS priority based scheduling
algorithm and proposed framework for task scheduling
in a grid environment, Department of computer
application, school of computer science & Eng,
Bharathiar University, Coimbatore — 46, IEEEs-
International conference on recent trends in information
technology, ICRTIT 2011, MIT, Anna University,
Chennai. June, 2011, 3-5.

21. Patel, Gaurang, Rutvik Mehta, Upendra Bhoi.
"Enhanced load balanced min-min algorithm for static
Meta task scheduling in cloud computing”, Procedia
Computer Science. 2015; 57:545-553.

~30~

http://www.computersciencejournals.com/ijccdm

