
~ 17 ~ 

International Journal of Cloud Computing and Database Management 2020; 1(2): 17-21 
 
 

 
 

E-ISSN: 2707-5915 

P-ISSN: 2707-5907 

IJCCDM 2020; 1(2): 17-21 

Received: 07-02-2020 

Accepted: 10-03-2020 
 

N Subalakshmi  

Assistant Professor, Computer 

Science, Annamalai University 

Annamalai Nagar, Tamil 

Nadu, India. 

 

M Jeyakarthic 

Assistant Director (Academic), 

Tamil Virtual University, 

Chennai. Tamil Nadu, India. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

N Subalakshmi  

Assistant Professor, Computer 

Science, Annamalai University 

Annamalai Nagar, Tamil 

Nadu, India 

 

Cloud resources analysis and prediction system using 

Deep Neural network 

 
N Subalakshmi and M Jeyakarthic 
 

DOI: https://doi.org/10.33545/27075907.2020.v1.i2a.15  

 
Abstract 
Deep Neural Network classifier is one of the Deep Learning models for categorizing the exactness of 

systematic scaling orders in the groupings as an Administration (IaaS) layer of cloud computing. The 

hypothesis in this research is that calculation precision of scaling orders can be improved by 

demonstrating a reasonable time-arrangement expectation calculation dependent on the presentation 

plan after some time. In the examination, outstanding burden was considered as the exhibition metric 

and Deep Neural Network (DNN) were utilized as time-arrangement expectation procedures. The 

aftereffects of the trial demonstrate that expectation exactness of DNN relies upon there mining task at 

hand plan of the framework under learning. Precisely, the outcomes demonstrate that DNN has better 

forecast exactness in the situations with occasional and expanding remaining task at hand plans, while 

DNN in predicting unexpected workload design. Accurately, this paper proposed a design for a self-

versatile expectation suite utilizing an autonomic framework technique. This suite can indicate the 

maximum appropriate prediction technique based on the performance design, which leads to more 

exact prediction outcomes. 

 

Keywords: Deep neural network, Support Vector Machine, Neural Networks, Workload pattern, 

Resource provisioning 

 

1. Introduction 
Deep learning is a developing feasible structure model and in the previous time its use has 

expanded a great deal of acceptance. The National Foundation of Standard and Innovation 

(NIST) expressed the imperative appearances of distributed computing, as: On-request asset 

pooling, estimated administrations, fast flexibility, wide system access and self-

administration [1]. Versatility illustrative of distributed computing allows clients to obtain and 

discharge properties on interest, which diminishes their rate by making them pay for the 

assets they basically have utilized [2, 30]. These administrations can be made accessible to 

(open cloud), restricted for private use (private cloud), or be presented on a crossover cloud 

which is a mix of both private and open mists [3]. This paper tended to the IaaS layer of open 

distributed computing situations. Determining the accurate total of resources for a cloud 

computing environment is a double-edged sword, which might lead to either over-

provisioning or under-provisioning [5, 31]. Over-provisioning and under-provisioning and are 

results of, correspondingly, immersion or misuse of assets, and are among the most 

significant difficulties cloud customers are tested with. One technique to overpowering these 

difficulties is to utilize a scaling framework. Scaling framework comprehends the all-out 

presentation exchange off by over and again changing application assets dependent on its 

outstanding task at hand.  

 

 
 

Fig 1: Architectural overview of a predictive auto-scaling system 
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As exposed in Fig. 1, Monitor, Predictor, and Decision are 

the primary instruments of a prescient scaling framework. 

To catch late execution of distributed computing condition, 

scaling frameworks screen at least one execution metric (s). 

In this work we thought about outstanding task at hand as 

the presentation metric. As delineated in Fig. 1, Indicator 

utilizes execution metric's present an incentive from 

Monitor to estimate upcoming execution metric worth. 

Authors in [5, 7] report that there are three trademark 

remaining burden designs in distributed computing 

situations, with each speaks to a commonplace application 

or situation. These examples are: unpredicted, occasional 

and developing.  

In the previously mentioned experimentation, sliding 

window procedure was utilized to prepare forecast 

calculations. In this procedure, window size is one the most 

significant elements that significantly affects the forecast 

exactness. Along these lines, to expand prediction results, 

we have dissected the impact of window size on expectation 

exactness as a part of our test.  

As per [6, 32], Profound Neural Systems (DNN), Neural 

Systems (NN) and Bolster Vector Machine (SVM) are the 

best expectation calculations to anticipate future framework 

attributes. Hence, in this work we utilized DNN, NN and 

SVM calculations as the Forecast segment. The principle 

commitments of this work 

 Contrasting DNN and NN and SVM expectation 

exactness with respect to the distinctive remaining task 

at hand examples. 

 Dissecting the effect of sliding window size on DNN 

with NN and SVM expectation exactness. 

 Recommending an abnormal state plan of a self-

versatile forecast suite which picks the most reasonable 

expectation calculation dependent on the approaching 

remaining task at hand example. 

 

The rest of the examination is arranged as seeks after: Area 

II talks about the foundation and related work. This is trailed 

by investigation of DNN in segment III. Area IV is devoted 

to the examinations and outcomes investigation. Area V end 

and potential headings for the future research are talked 

about.  

 

2. Background and Related Work 

In this segment basic perceptions used in the paper and 

correlated work are presented briefly. Section A is an 

outline of workload concept and its designs. In section B, 

TPC-W and Amazon EC2 are accessible, and finally, 

sections C and D provide an overview of the most primary 

auto-scaling methods in two broad categories: prediction 

techniques and decision making, respectively.  

 

2.1 Workload  

Resource allocation for batch applications is frequently 

mentioned to as progress which includes meeting a certain 

job performance deadline [4]. Scheduling has been widely 

studied in grid situations [4] and also discovered in cloud 

environments, and it is separate of the possibility of this 

paper. Similarly, applications with unchanging (or static) 

workload design do not require a scaling system for 

resource allocation. Therefore, in this paper we only focus 

on applications with the following workload patterns 

 Periodic workload: Represents workloads with 

seasonal changes. This class of workload covers 

cyclic/bursting workload of [4] and periodic and once in-

a-lifetime workloads of [9].  

 Unpredicted workload: Represents fluctuating 

workloads. This class of workload covers unpredicted 

workload of [9]. 

 Growing workload: Represents workloads with 

increasing trend. This class of workload covers growing 

workload of [4] and continuously changing workload of 
[9].  

 

2.2 Amazon EC2and TPC-W 

So as to create previously mentioned remaining task at hand 

examples, one can utilize either genuine follow records or 

request standards. A Complete outline of suggestion records 

and application benchmarks is accounted for in [4]. 

Essentially, benchmarks incorporate a web application 

together with an outstanding burden generator that makes 

session-based solicitations to the application under test. 

Some normally utilized benchmarks for cloud research are 
[4]: Rubies, TPC-W, Cloud Stone, and Wiki Bench. In this 

paper, we have utilized Java usage of TPC-W, because of its 

straightforwardness and broad online documents. Analysts 

still use TPC-W to lead auto-scaling tests [6, 17, 28].  

 

2.3 Decision making techniques  

The authors in [4, 30] gathering existing scaling approaches 

into five classifications: lining hypothesis, time-arrangement 

examination, support learning, control hypothesis, and edge 

based strategies. Among these classifications, time-

arrangement examination centers around the forecast side of 

the asset provisioning task and isn't a "basic leadership" 

strategy. Conversely, the edge based strategy is an 

unadulterated basic leadership system while the remainder 

of the auto-scaling classifications (control hypothesis, lining 

hypothesis, and fortification adapting) by one way or 

another play the Predicator and Decision Maker jobs 

simultaneously. 

 

2.4 Prediction techniques  

The authors in [16] have checked NN and Straight Relapse 

calculations to anticipate the future estimation of CPU 

burden and they have presumed that NN outperforms Direct 

Relapse as far as exactness. Furthermore, they have 

demonstrated that precision of the two calculations relies 

upon the information window size. Then again, the creators 

in [5] have assessed distinctive AI expectation results. The 

creators have considered SVM, NN and Direct Relapse. 

They have checked the forecast aftereffects of these 

calculations utilizing three execution measurements: CPU 

usage, throughput, and reaction time.  

In this paper we utilized SVM and NN strategies for the 

expectation task. These techniques are two of the most 

precise AI calculations in the scaling field [5] and have been 

generally utilized in other designing fields. In section 3 

measured basics of these algorithms (i.e., SVM and NN) 

and their particular arrangement in our trial is displayed. 

 

3. Deep neural network 

Deep learning (DL) is a subfield of Machine Learning 

dependent on learning various levels of representing by 

making an order of structures where the advanced stages are 

characterized from the lower levels and a similar lower level 

highlights can support in characterizing numerous higher 

level features [11]. Deep Learning structure expands the 
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neural network (NN) by adding progressively shrouded 

layers to the system design between the information and 

yield layers to show increasingly unpredictable and 

nonlinear relations. This perception enhanced the 

investigator’ consideration in the recent years for its good 

performance to become the best solution in many problems 

in medical image analysis applications such as 

classification, segmentation, registration and image 

demising [7, 10-13]. Deep neural network (DNN) is another 

Deep Learning construction that is broadly utilized for order 

or relapse with achievement in numerous regions.  

 

 
 

Fig 2: DNN architecture. 
 

Input flows from the input layer to the output layer through 

number of hidden layers which are more than two layers [13]. 

Fig. 1 illustrates the typical architecture for DNNs where Ni 

is the input layer contains of neurons for the input features, 

No is the output layer contains neurons for the output 

classes and Nh, l are the hidden layers. 

In our experiment we utilized profound neural system 

calculation characterized in the WEKA apparatus, which is 

called Multilayer Perceptron. The parameters we utilized in 

our test are appeared in Table I. Parameter determination is 

characteristic call originated on heuristics, as there is no 

technical equation or hypothesis that has been proposed to 

indicate the best parameters. We have chosen Multilayer 

Perceptron parameters dependent on the best outcomes after 

a few preliminaries. 

 
Table 1: Parameters Settings for Deep Nerual Network 

 

Parameter Name Value 

Hidden Layer Sizes 50 

Epochs 10 

Epsilon 1.0E-8 

rho 0.99 

 

4. Experiment and Results 

The authoritative objective of this test is to improve forecast 

exactness of prescient auto-scaling framework. DNN are the 

most precise machine learning calculations [5] that can be 

utilized for remaining task at workload expectation. In this 

analysis we meant to investigate relations between various 

workload patterns and prediction accuracy of DNN. 

 

4.1 Experimental Environment  

To organize the examination condition, we passed on Java 

execution of Amazon EC2 benchmark on TPC-W structure. 

Fig. 3 represents to compositional layout of our preliminary 

course of action. As showed up in Fig. 3, the test course of 

action includes three virtual machines running on Ubuntu 

Linux for the client (RBE), web server and database, 

independently. Table II presents detail of these virtual 

machines. Note that to lessen test unconventionality we 

simply observed execution of the web server level in this 

paper and acknowledged that record isn't a bottleneck. 

Therefore, an about astounding virtual machine is supposed 

to be committed to the database level. 

 

 
 

Fig 3: Architectural overview of experiment 

 
Table 2: Hardware Specification of Servers for Experiment 

 

 Memory Processor Storage 

Client 1GB 4 core 8 GB 

Webserver 1GB 4 core 8 GB 

Storage 2GB 8 core 20 GB 

 

4.2 Proposed methods of DNN 

After producing definite assignments, the precision of DNN 

is anticipated in "periodic" remaining task at hand examples 

DNN are test of directed learning class of deep learning 

procedures. At that point, the made model is assessed 

against the testing dataset. 

Another significant factor in SVM and NN is information 

highlights. In deep learning an element is an individual 

quantifiable property of a marvel being watched. 

Subsequently, in this analysis – notwithstanding our 

principle objective (for example impact of various 

outstanding task at hand examples on SVM and NN forecast 

precision) – we examined impact of window size on the 

expectation exactness of DNN, SVM and NN, as well. 

 

4.3 Evaluation metrics  

Exactness of the outcomes can be assessed dependent on 

various measurements, for example, Mean Absolute 

Percentage Error (MAPE), PRED (25) and R2 Prediction 

Accuracy [21]. Also, R2 Prediction Accuracy is a proportion 

of integrity of-fit, which it’s worth falls inside the range [0, 

1] and is normally connected to straight relapse models [16]. 

Because of the impediments of PRED (25) and R2 
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Prediction Accuracy, we utilized MAPE measurements in 

this work. Formal meanings of these measurements are: 

 

 
 

Where YPi is the anticipated yield and Yi is the real yield 

for I-th perception, and n is the quantity of perceptions for 

which the forecast is made. MAPE typically communicates 

exactness as a rate and is a famous measurement in insights, 

particularly in pattern estimation. Smaller MAPE qualities 

show a progressively scheme. 

 

4.4 Results 

Tables 3 represent the accuracy of DNN in predicting 

“periodic” workload pattern. 

 
Table 3: MAPE Values for Existing and Proposed Methods 

 

Window 

Size 

MAPE Proposed 

DNN 
MAPE NN MAPE SVM 

2 2.1902 4.9108 2.7604 

3 2.1890 5.1113 2.7295 

4 2.1876 4.8585 2.7356 

5 2.1865 4.8553 2.7391 

6 2.1843 4.5919 2.7319 

7 2.1790 4.6787 2.7389 

8 2.1787 4.3998 2.7339 

9 2.1760 4.4980 2.6765 

10 2.1589 3.3097 2.6742 

 

Fig.4compare MAPE values for proposed DNN and 

Existing NN and SVM in the workload patterns. We have 

only presented MAPE values of DNN, NN and SVM in the 

workload patterns. 

In addition, based on Fig.4, for small window sizes NN has 

somewhat improved prediction accurateness associated to 

SVM and proposed DNN (for window size = 2, MAPE NN 

value is 4.91, which is slightly less than MAPE SVM value 

that is 2.76 and MAPE proposed DNN value that is 2.19). 

Our results show that for environments with “periodic 

workload pattern” DNN outperforms SVM and NN. 

Moreover, increasing window size does not improve 

prediction accuracy for this workload pattern.  

 

 
 

Fig 4: MAPE Values for Existing and Proposed Methods 

 

5. Conclusions and future research 

In this paper, we have proposed and demonstrated a 

hypothesis on expectation exactness of Deep Neural 

Network System (DNN) to group the prescient scaling 

frameworks for the IaaS layer of distributed computing. As 

per the hypothesis, expectation precision of prescient 

scaling frameworks can be improved by showing a suitable 

time-arrangement forecast calculation dependent on 

approaching incoming workload pattern. In the 

investigation, the impact of remaining burden designs on 

forecast precision of DNN was contemplated by utilizing 

MAPE factors as exactness appraisal criteria. Our 

discoveries demonstrated that in the situations with 

"developing" or "occasional" remaining task at hand 

examples DNN has better expectation exactness contrasted 

with SVM and NN, while in the conditions with 

"unpredicted" outstanding task at hand examples DNN beats 

NN and SVM. Our outcomes likewise demonstrated that 

expanding the window size just has sway on the situations 

with "unpredicted" remaining task at hand example with 

increment in forecast precision of DNN. Be that as it may, 

in different situations (i.e., developing or intermittent 

remaining burden designs), expanding the window size does 

not improve the DNN exactness. A further future work will 

be to contemplate the effect of the database layer and 

dormancy on the forecast and basic leadership exactness of 

the various calculations dependent on outstanding burden 

designs just as the distinctive window sizes. 
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